Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA...

82
Campbell-Bozorgnia NGA Empirical Ground Motion Model for the Average Horizontal Component of PGA, PGV and SA at Selected Spectral Periods Ranging from 0.01–10 Seconds Kenneth W. Campbell (1) and Yousef Bozorgnia (2) (1) EQECAT Inc., Beaverton, Oregon (2) PEER, University of California, Berkeley, California Workshop on Implementation of the Next Generation Attenuation Relationships (NGA) in the 2007 Revision of the National Seismic Hazard Maps PEER Center, Richmond, California September 25–26 , 2006

Transcript of Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA...

Page 1: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Campbell-Bozorgnia NGA Empirical GroundMotion Model for the Average Horizontal

Component of PGA, PGV and SA at SelectedSpectral Periods Ranging from 0.01–10 Seconds

Kenneth W. Campbell(1) and Yousef Bozorgnia(2)

(1) EQECAT Inc., Beaverton, Oregon(2) PEER, University of California, Berkeley, California

Workshop on Implementation of the Next Generation AttenuationRelationships (NGA) in the 2007 Revision of the National Seismic

Hazard MapsPEER Center, Richmond, California

September 25–26 , 2006

Page 2: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Next Generation Attenuation Project

• Partnered research program– PEER Lifelines Program

• Pacific Earthquake Engineering Research Center (PEER)• California Energy Commission (CEC)• California Department of Transportation (Caltrans)• Pacific Gas and Electric Company (PG&E)

– U.S. Geological Survey (USGS)– Southern California Research Center (SCEC)

• Multi-disciplinary, 3-year project bringing together– Seismologists– Geophysicists– Geologists– Geotechnical engineers– Structural engineers

Page 3: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

NGA Project Details

• NGA empirical ground motion model developers– Abrahamson & Silva (updating their 1997 model)– Boore & Atkinson (updating Boore et al., 1997 model)– Campbell & Bozorgnia (updating their 2003 model)– Chiou & Youngs (updating Sadigh et al., 1997 model)– Idriss (updating his 1993 & 1996 models)

• All developers started with a common database– Worldwide earthquakes– Shallow crustal earthquakes in active tectonic regions– Metadata (e.g., magnitude, distance, etc.)– Uniformly processed strong-motion recordings

Page 4: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

NGA Project Details

• NGA developers applied their own selection criteria tothe common database, with the proviso that– Criteria are explicitly defined and documented– Criteria are shared with other developers– Reasons for excluding data are justifiable– Other developers are notified if metadata is modified

• NGA supporting studies– 1-D ground-motion simulations of rock ground motion– 3-D ground-motion simulations of basin response– 1-D ground-motion simulations of shallow site response

Page 5: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

NGA Project Database

• NGA strong-motiondatabase:– 172 worldwide

earthquakes– 1,400 recording

stations– 3,500 multi-

component strong-motion recordings

– Over 100 parametersdescribing source,path, and siteconditions

0.1 1 10 100 1000

Distance (km)

4

5

6

7

8

Mag

nit

ud

e

Previous Data

0.1 1 10 100 1000

Distance (km)

4

5

6

7

8

Mag

nit

ud

e

New Data

Page 6: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

NGA Project Requirements

• Ground motion model– Provide a model for median ground motion– Provide a model for aleatory standard deviation

• Ground motion parameters– Horizontal components (Geometric Mean, FN, FP)– PGA, PGV, PGD (optional)– Spectral acceleration (minimum of 20 periods from 0 –10 s)

• Applicable magnitude range– Use moment magnitude– 5.0 – 8.5 (strike-slip faulting)– 5.0 – 8.0 (reverse faulting)

Page 7: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Developer Scope

• Applicable distance range– Select preferred distance measure– 0 – 200 km

• Style of faulting (fault mechanism)– Strike slip– Reverse– Normal

• Site classification– Select preferred site classification scheme– Classification scheme need not include “very soft soil”– Provide translation to NEHRP site categories

Page 8: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Some Critical Issues Addressed

• Over-saturation at short distances– Data generally required it regardless of functional form– Issue for short periods, short distances, large magnitudes– Developers were divided on whether to allow it– Some concern about stability in future events– We allow saturation but not over-saturation

• Rupture aspect ratio (L/W)– We initially proposed it to model breakdown in self-similarity– We abandoned its use because of data inconsistencies– Its effect trades-off with magnitude scaling in the regression– We will reconsider its use once inconsistencies are resolved

Page 9: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Some Critical Issues Addressed

• Depth to coseismic rupture– Higher ground motions from buried & blind reverse faults are

empirically supported and included in our model– Also supported by laboratory and numerical ground-motion

simulations when weak upper layers are included– Not empirically supported for many strike-slip faults– We include buried effects for reverse faults, implying similar ground

motions for large surface-rupturing reverse and strike-slip events• Extrapolation to 10-second period

– Small-to-moderate events are not reliable to long periods– Large events provide empirical constraints to 10 seconds– There is no developer consensus on how to extrapolate– We extrapolate to small magnitudes using seismological constraints

and assuming constant displacement beyond a corner period

Page 10: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Some Critical Issues Addressed

• Functional form of aleatory standard deviation– Should it be a function of magnitude or amplitude?– Results support independence on M, dependence on PGA– Large near-fault scatter in 2004 Parkfield EQ is consistent

with predicted uncertainty– We include decreasing aleatory uncertainty with lower VS30

and higher rock PGA• Treatment of epistemic uncertainty

– Should it be a function of magnitude and distance?– Developers agree the use of multiple models is insufficient– Developers agree it should be increased in parameter ranges

where data are limited and models are extrapolated– We will develop an epistemic uncertainty model using

bootstrap and jackknife statistical methods

Page 11: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Some Critical Issues Addressed

• Normal-faulting earthquakes– Should normal-faulting events have lower ground motions and

hanging-wall effects– Spudich et al. (1999) found strike-slip and normal-faulting ground

motions were lower for extensional regions as compared to strike-slip events in both extensional and non-extensional regions

– Ambraseys et al. (2005) found normal-faulting events to have lowerground motions than strike-slip events at short periods

– Differences between extensional and non-extensional regimes arenot empirically supported after including the effects of normalfaulting

– Empirical results support statistically insignificant reduction at shortperiods and increase on hanging wall; laboratory and numericalmodeling support hanging wall effects but are inconsistent regardinglower ground motions

– We include hanging-wall effects and slight reduction at short periods

Page 12: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Some Critical Issues Addressed

• Use of large worldwide earthquakes– Does the use of large worldwide earthquakes bias the predictions in

California and the WUS?– Data are not sufficient to resolve this issue statistically– Studies have shown that ground motions from moderate sized

events in similar tectonic regimes are similar in U.S., Japan, Europeand Taiwan, inferring the same might be true for large events

– Many studies outside of the U.S. use near-source data from eventsin the U.S.

– Topic is controversial, but some seismologists suggest there is notheoretical basis for assuming ground motions are not similar insimilar tectonic regimes worldwide

– As in our previous models (1981–2003), we include large worldwideevents to constrain magnitude scaling at M > 7.0, mitigated bydisallowing over-saturation when predicted by the regression

Page 13: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

General Data Selection Criteria

• Earthquakes– Located in shallow continental lithosphere– Located in tectonically active regions– Generally reliable earthquake metadata

• Recordings– Negligible embedment effects– Negligible soil-structure interaction effects– Generally reliable path and site metadata

Page 14: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

CB-NGA Specific Exclusion Criteria

• Only one horizontal and/or vertical component• No measured or estimated value of VS30

• No rake angle, focal mechanism, or P-T plunge• Focus/rupture in deep crust, oceanic plate, or SCR• Aftershocks (but not “triggered” events)• Poorly recorded events (depending on magnitude)

– N < 5 for M < 5.0– N < 3 for 5.0 ≤ M < 6.0– N < 2 for 6.0 ≤ M < 7.0 and all RRUP > 60 km

Page 15: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

CB-NGA Specific Exclusion Criteria

• Non-free-field recordings– Building basement or superstructure– Embedded or downhole– Toe, base, or crest of dam (but not abutments)

• Demonstrated strong topographic effects– Tarzana Cedar Hill Nursery– Pacoima Dam upper-left abutment

• Recordings considered unreliable– LDGO recordings from 1999 Duzce, Turkey earthquake– Quality “D” recordings from 1999 Chi-Chi earthquake

Page 16: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Distribution of Selected Recordings64 Earthquakes, 1561 Recordings

0.1 1.0 10.0 100.0

Closest Distance to Rupture (km)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

Mo

me

nt M

ag

nitu

de

DATABASE

Other

California

Taiwan

Western U.S.

Alaska

Page 17: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Campbell-Bozorgnia Findings

• GM scaling with magnitude– Scaling decreases at large M, small RRUP, and short periods– Short periods saturate at small RRUP for M > 6.5

• GM scaling with distance– Rate of attenuation decreases with increasing M– All periods saturate for small RRUP

• GM scaling with fault parameters– Higher GM for buried and blind reverse faults– GM same for strike slip and surface-rupturing reverse faults– Higher GM on hanging-wall of reverse-faults (PGA ≈ 1g)– All these effects become negligible at long periods

Page 18: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Campbell-Bozorgnia Findings

• GM scaling with shallow soil conditions– GM decreases with decreasing VS30 (linear part)– GM decreases with increasing rock PGA (nonlinear part)– Nonlinear scaling constrained by 1-D site response simulations

• GM scaling with sediment depth– GM increases for depths > 3 km (basin effects)– GM decreases for depths < 1 km (shallow sediment effects)– Basin effects constrained by 3-D ground motion simulations

• Aleatory standard deviation– Based on better recorded events– Only weakly dependent on magnitude and period– Larger at larger magnitudes compared to C-B (2003)– Smaller at smaller magnitudes compared to C-B (2003)

Page 19: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Campbell-Bozorgnia Findings

• Epistemic uncertainty– Underestimated by use of multiple ground motion models– Need to specify a minimum value of standard deviation– Need to develop a separate model of standard deviation

Page 20: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Analysis Methodology

• Functional form development– Exploratory data analysis (analysis of residuals)– Past experience (personal and literature review)– Developer interaction meetings– Theoretical studies (site response, basin effects)

• Regression analysis (exploratory phase)– Two-step regression analysis (Boore et al., 1997)– Weighted nonlinear least squares– Intra-event terms fit in first step– Inter-event terms fit in second step

Page 21: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Analysis Methodology

• Regression analysis (final phase)– Random effects regression (Abrahamson & Youngs, 1992)– Maximum likelihood method with random effects– Iteratively smoothed regression coefficients

• Start with least correlated coefficients• Smooth observed coefficient trend with period

– Constrain coefficients as necessary• Compensate for over-saturation• Control behavior at long periods

Page 22: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Generalized Functional Form

ln Y = natural log of ground motionfmag = earthquake magnitude termfdis = source-site distance termfflt = style-of-faulting termfhng = hanging-wall termfsite = shallow site conditions termfdep = sediment depth termε = random error term: Normal (0, σT)

1(M)f

Page 23: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Earthquake Magnitude Term

M = moment magnitudec0–c12 = regression coefficients

1(M)f

Page 24: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Source-Site Distance Term

M = moment magnitudeRRUP = closest distance to fault rupture (km)

1(M)f

Page 25: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Style-of-Faulting Term

FRV = reverse-faulting indicator variableFNM = normal-faulting indicator variableZTOR = depth to top of coseismic rupture (km)

1(M)f

Page 26: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Hanging-Wall Term

M = moment magnitudeRRUP = closest distance to fault rupture (km)RJB = closest surface distance to fault rupture (km)FRV = reverse faulting indicator variableZTOR = depth to top of coseismic rupture (km)δ = dip of rupture plane (degrees)

1(M)f

Page 27: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Shallow Site Conditions Term

VS30 = average 30-m shear-wave velocity (m/s)A1100 = PGA for VS30 = 1100 m/s (rock PGA, g)k1, k2 = theoretical period-dependent coefficientsc, n = theoretical period-independent coefficients

(theoretically constrained nonlinear soil model from Walling & Abrahamson, 2006)

1(M)f

Page 28: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Sediment Depth Term

Z2.5 = depth to 2.5 km/s S-wave velocity (km)k3 = theoretical period-dependent coefficient

(theoretically constrained 3-D basin model from Day et al., 2005)

1(M)f

Page 29: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Random Error Term

σT = total aleatory standard deviation (S.D.)τ, σ = inter-event and intra-event S.D. of geom. meant, s = inter-event and intra-event S.E. of regressionα = rate of change of fsite w.r.t. ln A1100 (rock PGA)χ = S.D. of the random (arbitrary) horizontal comp.r = 0 for geometric mean; 1 for random component

1(M)f

Page 30: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

General Limits of Applicability

• Tectonic environment– Shallow continental lithosphere– Active tectonic regions

• Magnitude– M = 4.0 – 8.5 (strike-slip faulting)– M = 4.0 – 8.0 (reverse faulting)– M = 4.0 – 7.5 (normal faulting)

• Distance– RRUP = 0 – 200 km

• Shallow site conditions– VS30 = 180 – 1500 m/s (NEHRP B – D)

Page 31: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

General Limits of Applicability

• Sediment Depth– Z2.5 = 0 – 6 km

• Depth to top of rupture– ZTOR = 0 – 20 km

• Dip of rupture plane– δ = 15 – 90°

Page 32: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Residuals (Intra/Inter) vs. MagnitudePGA, All Faults

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0Moment Magnitude

-3

-2

-1

0

1

2

3

PGA Residual

PGA, All Faults

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0Moment Magnitude

-3

-2

-1

0

1

2

3

PGA Residual

SA(1.0s), All Faults

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0Moment Magnitude

-3

-2

-1

0

1

2

3

SA(1.0s) Residual

SA(1.0s), All Faults

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0Moment Magnitude

-3

-2

-1

0

1

2

3

SA(1.0s) Residual

Page 33: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Total Residuals vs. Distance and VS30PGA, All Faults

0 50 100 150 200Rupture Distance (km)

-3

-2

-1

0

1

2

3

PGA Residual SA(1.0s), All Faults

0 50 100 150 200Rupture Distance (km)

-3

-2

-1

0

1

2

3

SA(1.0s) Residual

PGA, All Faults

0 250 500 750 1000 1250 150030-m Shear-Wave Velocity (m/sec)

-3

-2

-1

0

1

2

3

PGA Residual SA(1.0s), All Faults

0 250 500 750 1000 1250 150030-m Shear-Wave Velocity (m/sec)

-3

-2

-1

0

1

2

3

SA(1.0s) Residual

Page 34: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Total Residuals vs. Rock PGA and Z2.5PGA, All Faults, Vs30<360

0.0 0.2 0.4 0.6 0.8PGA on Vs30=1100 m/sec (g)

-3

-2

-1

0

1

2

3

PGA Residual SA(1.0s), All Faults, Vs30<360

0.0 0.2 0.4 0.6 0.8PGA on Vs30=1100 m/sec (g)

-3

-2

-1

0

1

2

3

SA(1.0s) Residual

PGA, All Faults

0 1 2 3 4 5 6Sediment Depth (km)

-3

-2

-1

0

1

2

3

PGA Residual SA(1.0s), All Faults

0 1 2 3 4 5 6Sediment Depth (km)

-3

-2

-1

0

1

2

3

SA(1.0s) Residual

Page 35: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Strike Slip/Surface Reverse – NEHRP BC

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Moment Magnitude

Ac

ce

lera

tion

(g)

10-3

10-2

10-1

100

PGA, Strike Slip, VS30=760

Campbell & Bozorgnia (2003)

Campbell & Bozorgnia (NGA May 06)

50

10

200

RRUP

=0.1

1 10 100

Closest Distance to Rupture (km)

10-2

10-1

100

Ac

ce

lera

tion

(g)

Campbell & Bozorgnia (2003)

Campbell & Bozorgnia (NGA May 06)

PGA, Strike Slip, VS30=760

M = 8.0

7.0

6.05.0

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Moment Magnitude

Ac

ce

lera

tion

(g)

10-3

10-2

10-1

100

SA(1.0s), Strike Slip, VS30=760

Campbell & Bozorgnia (2003)

Campbell & Bozorgnia (NGA May 06)50

10

200

RRUP

=0.1

1 10 100

Closest Distance to Rupture (km)

10-2

10-1

100

Ac

ce

lera

tion

(g)

Campbell & Bozorgnia (2003)

Campbell & Bozorgnia (NGA May 06)

SA(1.0s), Strike Slip, VS30=760

M = 8.0

7.0

6.05.0

Page 36: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Strike Slip/Surface Reverse – NEHRP D

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Moment Magnitude

Ac

ce

lera

tion

(g)

10-3

10-2

10-1

100

PGA, Strike Slip, VS30=270

Campbell & Bozorgnia (2003)

Campbell & Bozorgnia (NGA May 06)

50

10

200

RRUP

=0.1

1 10 100

Closest Distance to Rupture (km)

10-2

10-1

100

Ac

ce

lera

tion

(g)

Campbell & Bozorgnia (2003)

Campbell & Bozorgnia (NGA May 06)

PGA, Strike Slip, VS30=270

M = 8.0

7.0

6.05.0

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Moment Magnitude

Ac

ce

lera

tion

(g)

10-3

10-2

10-1

100

SA(1.0s), Strike Slip, VS30=270

Campbell & Bozorgnia (2003)

Campbell & Bozorgnia (NGA May 06)

50

10

200

RRUP

=0.1

1 10 100

Closest Distance to Rupture (km)

10-2

10-1

100

Ac

ce

lera

tion

(g)

Campbell & Bozorgnia (2003)

Campbell & Bozorgnia (NGA May 06)

SA(1.0s), Strike Slip, VS30=270

M = 8.0

7.0

6.05.0

Page 37: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Surface Reverse – FW vs. HW

1 10 100

Closest Distance to Rupture (km)

10-2

10-1

100

Ac

ce

lera

tion

(g)

Campbell & Bozorgnia (2003)

Campbell & Bozorgnia (NGA May 06)

SA(1.0s), Reverse, FW, ZTOR

=0, VS30=760

M = 8.0

7.0

6.05.0

1 10 100

Closest Distance to Rupture (km)

10-2

10-1

100

Ac

ce

lera

tion

(g)

Campbell & Bozorgnia (2003)

Campbell & Bozorgnia (NGA Jan 06)

PGA, Reverse, HW, ZTOR

=0, VS30

=760

M = 8.0

7.0

6.05.0

1 10 100

Closest Distance to Rupture (km)

10-2

10-1

100

Ac

ce

lera

tion

(g)

Campbell & Bozorgnia (2003)

Campbell & Bozorgnia (NGA Jan 06)

PGA, Reverse, FW, ZTOR

=0, VS30=760

M = 8.0

7.0

6.05.0

1 10 100

Closest Distance to Rupture (km)

10-2

10-1

100

Ac

ce

lera

tion

(g)

Campbell & Bozorgnia (2003)

Campbell & Bozorgnia (NGA Jan 06)

SA(1.0s), Reverse, HW, ZTOR

=0, VS30=760

M = 8.0

7.0

6.05.0

Page 38: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Buried Reverse – FW vs. HW

1 10 100

Closest Distance to Rupture (km)

10-2

10-1

100

Ac

ce

lera

tion

(g)

Campbell & Bozorgnia (2003)

Campbell & Bozorgnia (NGA May 06)

PGA, Reverse, FW, ZTOR

=5, VS30=760

M = 8.0

7.0

6.05.0

1 10 100

Closest Distance to Rupture (km)

10-2

10-1

100

Ac

ce

lera

tion

(g)

Campbell & Bozorgnia (2003)

Campbell & Bozorgnia (NGA May 06)

PGA, Reverse, HW, ZTOR

=5, VS30=760

M = 8.0

7.0

6.05.0

1 10 100

Closest Distance to Rupture (km)

10-2

10-1

100

Ac

ce

lera

tion

(g)

Campbell & Bozorgnia (2003)

Campbell & Bozorgnia (NGA May 06)

SA(1.0s), Reverse, FW, ZTOR

=5, VS30=760

M = 8.0

7.0

6.05.0

1 10 100

Closest Distance to Rupture (km)

10-2

10-1

100

Ac

ce

lera

tion

(g)

Campbell & Bozorgnia (2003)

Campbell & Bozorgnia (NGA May 06)

SA(1.0s), Reverse, HW, ZTOR

=5, VS30=760

M = 8.0

7.0

6.05.0

Page 39: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Site Effects – Shallow Site Conditions

0.001 0.01 0.1 1

PGA on Rock (g)

Site

Fa

cto

r

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

SA(1.0s), Nonlinear Site Effects

Vs30 = 180

360

270

560

760

11301500

0.001 0.01 0.1 1

PGA on Rock (g)

Site

Fa

cto

r

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

PGA, Nonlinear Site Effects

Vs30 = 180

360

270

560

760

11301500

0.01 0.1 1

PGA on Rock (g)

Site

Fa

cto

r Re

lativ

e to

NE

HR

P B

0.5

1.0

1.5

2.0

2.5

PGA, Nonlinear Site Effects

Vs30 = 270

560

1130

Campbell & Bozorgnia (NGA, 2006)

Choi & Stewart (2005)

NEHRP (2003)

0.01 0.1 1

PGA on Rock (g)

Site

Fa

cto

r Re

lativ

e to

NE

HR

P B

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

SA(1.0s), Nonlinear Site Effects

Vs30 = 270

560

1130

Campbell & Bozorgnia (NGA, 2006)

Choi & Stewart (2005)

NEHRP (2003)

Page 40: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Site Effects – Sediment Depth1(M)f

0 1 2 3 4 5 6 7 8 9 10

Depth to 2.5 km/s S-Wave Velocity (km)

Se

dim

en

t-De

pth

Fa

cto

r

0.0

0.5

1.0

1.5

2.0

2.5

Shallow Sediment and Basin Effects

PGA

SA(1.0s)

SA(3.0s)

Page 41: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Standard Deviation vs. Magnitude

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Moment Magnitude

Sta

nd

ard

De

via

tion

(Ln

)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PGA, VS30=180

C&B 2006 (Rrup = 0)

C&B 2006 (Rrup = 10)

C&B 2006 (Rrup = 50)

C&B 2006 (Rrup = 200)

C&B 2003 (Rseis = 3)

C&B 2003 (Rseis = 10.4)

C&B 2003 (Rseis = 50.1)

C&B 2003 (Rseis = 200)

C&B 2003 (Mw-based)

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Moment Magnitude

Sta

nd

ard

De

via

tion

(Ln

)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PGA, VS30=360

C&B 2006 (Rrup = 0)

C&B 2006 (Rrup = 10)

C&B 2006 (Rrup = 50)

C&B 2006 (Rrup = 200)

C&B 2003 (Rseis = 3)

C&B 2003 (Rseis = 10.4)

C&B 2003 (Rseis = 50.1)

C&B 2003 (Rseis = 200)

C&B 2003 (Mw-based)

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Moment Magnitude

Sta

nd

ard

De

via

tion

(Ln

)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PGA, VS30=760

C&B 2006 (Rrup = 0)

C&B 2006 (Rrup = 10)

C&B 2006 (Rrup = 50)

C&B 2006 (Rrup = 200)

C&B 2003 (Rseis = 3)

C&B 2003 (Rseis = 10.4)

C&B 2003 (Rseis = 50.1)

C&B 2003 (Rseis = 200)

C&B 2003 (Mw-based)

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Moment Magnitude

Sta

nd

ard

De

via

tion

(Ln

)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PGA, VS30=1500

C&B 2006 (Rrup = 0)

C&B 2006 (Rrup = 10)

C&B 2006 (Rrup = 50)

C&B 2006 (Rrup = 200)

C&B 2003 (Rseis = 3)

C&B 2003 (Rseis = 10.4)

C&B 2003 (Rseis = 50.1)

C&B 2003 (Rseis = 200)

C&B 2003 (Mw-based)

Page 42: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Standard Deviation vs. Rock PGA

0.01 0.1 1

PGA on Rock with Vs30 = 1100 m/s (g)

Sta

nd

ard

De

via

tion

(Ln

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SA(0.2s)

Vs30 = 180 (Geo.)

Vs30 = 360 (Geo.)

Vs30 = 760 (Geo.)

Vs30 = 1500 (Geo.)

Vs30 = 180 (Ran.)

Vs30 = 360 (Ran.)

Vs30 = 760 (Ran.)

Vs30 = 1500 (Ran.)

0.01 0.1 1

PGA on Rock with Vs30 = 1100 m/s (g)

Sta

nd

ard

De

via

tion

(Ln

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PGA

Vs30 = 180 (Geo.)

Vs30 = 360 (Geo.)

Vs30 = 760 (Geo.)

Vs30 = 1500 (Geo.)

Vs30 = 180 (Ran.)

Vs30 = 360 (Ran.)

Vs30 = 760 (Ran.)

Vs30 = 1500 (Ran.)

0.01 0.1 1

PGA on Rock with Vs30 = 1100 m/s (g)

Sta

nd

ard

De

via

tion

(Ln

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SA(1.0s)

Vs30 = 180 (Geo.)

Vs30 = 360 (Geo.)

Vs30 = 760 (Geo.)

Vs30 = 1500 (Geo.)

Vs30 = 180 (Ran.)

Vs30 = 360 (Ran.)

Vs30 = 760 (Ran.)

Vs30 = 1500 (Ran.)

0.01 0.1 1

PGA on Rock with Vs30 = 1100 m/s (g)

Sta

nd

ard

De

via

tion

(Ln

)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

SA(3.0s)

Vs30 = 180 (Geo.)

Vs30 = 360 (Geo.)

Vs30 = 760 (Geo.)

Vs30 = 1500 (Geo.)

Vs30 = 180 (Ran.)

Vs30 = 360 (Ran.)

Vs30 = 760 (Ran.)

Vs30 = 1500 (Ran.)

Page 43: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

2004 Parkfield Earthquake (M = 6.0)

1 10 100

Closest Distance to Fault (km)

10-3

10-2

10-1

100

Accele

ratio

n (g

)

Campbell & Bozorgnia (2003)

Campbell & Bozorgnia (NGA Oct 05)

PGA, Parkfield, Vs30=360

1 10 100

Closest Distance to Fault (km)

10-3

10-2

10-1

100

Accele

ratio

n (g

)

Campbell & Bozorgnia (2003)

Campbell & Bozorgnia (NGA Oct 05)

SA(1.0s), Parkfield, Vs30=360

Page 44: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Predicted Acceleration SpectraStrike Slip, RRUP = 10 km, VS30 = 760 m/s

0.01 0.1 1 10

Period (sec)

0.01

0.1

1S

pec

tra

l A

cc

ele

rati

on

(g

)

M=5.0

M=6.0

M=7.0

M=8.0

Page 45: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Predicted Acceleration SpectraStrike Slip, M = 7.0, VS30 = 760 m/s

0.01 0.1 1 10

Period (sec)

0.01

0.1

1S

pec

tra

l A

cc

ele

rati

on

(g

)

RRUP

= 10

RRUP

= 40

RRUP

= 200

Page 46: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Predicted Acceleration SpectraStrike Slip, M = 7.0, RRUP = 10 km

0.01 0.1 1 10

Period (sec)

0.01

0.1

1S

pec

tra

l A

cc

ele

rati

on

(g

)

Vs30

= 180

Vs30

= 360

Vs30

= 760

Vs30

=1500

Page 47: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Predicted Spectral Displacement Strike Slip, RRUP = 10 km, VS30 = 760 m/s

0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Period (sec)

0.0001

0.001

0.01

0.1

1

10

100S

pec

tra

l D

isp

lace

me

nt

(cm

)

M 5.0

M 6.0

M 7.0

M 8.0

Page 48: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Work in Progress

• Finish smoothing regression coefficients– Smooth predicted response spectra– Extrapolate to 10-second period

• Develop relationship for other components– Fault-normal (FN)– Fault-parallel (FP)– Vertical

• Add source directivity term– Geometric method (e.g., Abrahamson and Somerville)– Isochrone method (e.g., Spudich)

• Extend to other regions and tectonic environments– Subduction zones

Page 49: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Comparison with Ambraseys et al.(2005) Empirical Ground Motion Model

for Europe and Middle East

Page 50: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Strike Slip – NEHRP B (Rock)

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Moment Magnitude

Ac

ce

lera

tion

(g)

10-3

10-2

10-1

100

PGA, Strike Slip, VS30=1130

Ambraseys et al. (2005)

Campbell & Bozorgnia (2006)

50

10

200

RRUP

=0.1

1 10 100

Closest Distance to Rupture (km)

10-2

10-1

100

Ac

ce

lera

tion

(g)

Ambraseys et al. (2005)

Campbell & Bozorgnia (2006)

PGA, Strike Slip, VS30=1130

M = 8.0

7.0

6.05.0

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Moment Magnitude

Ac

ce

lera

tion

(g)

10-3

10-2

10-1

100

SA(1.0s), Strike Slip, VS30=1130

Ambraseys et al. (2005)

Campbell & Bozorgnia (2006)50

10

200

RRUP

=0.1

1 10 100

Closest Distance to Rupture (km)

10-2

10-1

100

Ac

ce

lera

tion

(g)

Ambraseys (2005)

Campbell & Bozorgnia (2006)

SA(1.0s), Strike Slip, VS30=1130

M = 8.0

7.06.05.0

Page 51: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Strike Slip – NEHRP C (Stiff Soil)

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Moment Magnitude

Ac

ce

lera

tion

(g)

10-3

10-2

10-1

100

PGA, Strike Slip, VS30=560

Ambraseys et al. (2005)

Campbell & Bozorgnia (2006)

50

10

200

RRUP

=0.1

1 10 100

Closest Distance to Rupture (km)

10-2

10-1

100

Ac

ce

lera

tion

(g)

Ambraseys et al. (2005)

Campbell & Bozorgnia (2006)

PGA, Strike Slip, VS30=560

M = 8.0

7.0

6.05.0

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Moment Magnitude

Ac

ce

lera

tion

(g)

10-3

10-2

10-1

100

SA(1.0s), Strike Slip, VS30=1130

Ambraseys et al. (2005)

Campbell & Bozorgnia (2006)50

10

200

RRUP

=0.1

1 10 100

Closest Distance to Rupture (km)

10-2

10-1

100

Ac

ce

lera

tion

(g)

Ambraseys (2005)

Campbell & Bozorgnia (2006)

SA(1.0s), Strike Slip, VS30=560

M = 8.0

7.0

6.05.0

Page 52: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Strike Slip – NEHRP D (Soft Soil)

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Moment Magnitude

Ac

ce

lera

tion

(g)

10-3

10-2

10-1

100

PGA, Strike Slip, VS30=270

Ambraseys et al. (2005)

Campbell & Bozorgnia (2006)

50

10

200

RRUP

=0.1

1 10 100

Closest Distance to Rupture (km)

10-2

10-1

100

Ac

ce

lera

tion

(g)

Ambraeys et al. (2005)

Campbell & Bozorgnia (2006)

PGA, Strike Slip, VS30=270

M = 8.0

7.0

6.05.0

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Moment Magnitude

Ac

ce

lera

tion

(g)

10-3

10-2

10-1

100

SA(1.0s), Strike Slip, VS30=270

Ambraseys et al. (2005)

Campbell & Bozorgnia (2006)

50

10

200

RRUP

=0.1

1 10 100

Closest Distance to Rupture (km)

10-2

10-1

100

Ac

ce

lera

tion

(g)

Ambraseys et al. (2005)

Campbell & Bozorgnia (2006)

SA(1.0s), Strike Slip, VS30=270

M = 8.0

7.0

6.05.0

Page 53: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Site Effects – Shallow Site Conditions

0.01 0.1 1

PGA on Rock (g)

Site

Facto

r

0.6

0.8

1.0

1.2

1.4

1.6

1.8

PGA, Nonlinear Site Effects

Vs30 = 270

560

1130

Campbell & Bozorgnia (2006)

Ambraseys et al. (2005)

NEHRP (2003)

0.01 0.1 1

PGA on Rock (g)

Site

Facto

r0.0

0.5

1.0

1.5

2.0

2.5

3.0

SA(1.0s), Nonlinear Site Effects

Vs30 = 270

560

1130

Campbell & Bozorgnia (2006)

Ambraseys et al. (2005)

NEHRP (2003)

Page 54: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Standard Deviation vs. Magnitude

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Moment Magnitude

Sta

nd

ard

De

via

tion

(na

t. log

)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

PGA

Campbell & Bozorgnia (2003)

Campbell & Bozorgnia (2006)

Ambraseys et al. (2005)

4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5

Moment Magnitude

Sta

nd

ard

De

via

tion

(na

t. log

)0.2

0.3

0.4

0.5

0.6

0.7

0.8

SA(1.0s)

Campbell & Bozorgnia (2003)

Campbell & Bozorgnia (2006)

Ambraseys et al. (2005)

Page 55: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Conclusions – Strike Slip

• Comparison with Ambraseys et al. (2005) is best for:– NEHRP B site conditions (Rock, VS30 = 1130 m/s)– M = 5.0 – 6.5– RRUP = 10 – 100 km

• Comparison with Ambraseys et al. (2005) deterioratesfor softer site conditions– NGA model supports nonlinear soil behavior– Ambraseys model assumes linear soil behavior

• Comparison with Ambraseys et al. (2005) deterioratesfor large magnitudes and close distances– NGA model supports nonlinear magnitude scaling– Ambraseys model assumes linear magnitude scaling

Page 56: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Conclusions – Strike Slip

• Ambraseys et al. (2005) has larger standarddeviations– NGA model applied stricter data selection criteria based on a

database that was rich in metadata– Ambraseys model used all relevant data based on a

database with limited metadata

• Preliminary conclusions– Need to compare NGA model directly with Ambraseys data– Campbell-Bozorgnia model appears to be appropriate for use

for shallow crustal earthquakes in active tectonic regions ofEurope

– By analogy other NGA models are also likely to beappropriate in this region

Page 57: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Normal Fault Issues

Page 58: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

1106.6Corinth, Greece1981

23 – 446.4Dinar, Turkey1995320 – 796.4Kozani, Greece1995816 – 1005.7Little Skull Mtn., Nevada19921296.1Griva, Greece1990216 – 696.6Edgecumbe, New Zealand1987519 – 515.8Lazio-Abruzzo, Italy1984283 – 856.9Bora Peak, Idaho1983

138 – 606.9Irpinia, Italy198035 – 156.1Mammoth Lakes, California1980319 – 365.9Norcia, Italy1979

No.RRUP (km)MEarthquakeDate

Normal and Normal-Oblique Events

Page 59: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Normal-Faulting CoefficientUnsmoothed Regression Coefficients vs. Period

Regression Coefficient C8

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.01 0.1 1 10

Period (sec)

Co

eff

icie

nt

Page 60: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

HW Factor for Normal FaultingPGA HW Coefficient Similar to Reverse Faulting

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

PG

A R

es

idu

al

0 .2 .4 .6 .8 1

Hanging-Wall Factor

Overlay Plot

Page 61: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Reverse-Faulting HW Coefficient Unsmoothed Regression Coefficients vs. Period

Regression Coefficient C9

-0.4

-0.2

0

0.2

0.4

0.6

0.8

0.01 0.1 1 10

Period (sec)

Co

eff

icie

nt

Page 62: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Normal-Faulting Questions

• Should hanging-wall effects be included for normal-faulting events?– Supported by preliminary results for PGA– Based on only a limited number of recordings

• Should hanging-wall effects for normal-faulting besimilar to reverse-faulting?– Supported by preliminary results for PGA– PGA HW term is similar to that for reverse-faulting events– Regression coefficient is not statistically significant

Page 63: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Normal-Faulting Questions

• Should normal-faulting events have lower short-periodground motion than strike-slip events?– Ambraseys et al. (2005) – Europe and Middle East

• Both normal and strike slip from extensional regions• 8% to 24% lower than strike slip for T < 0.13s• Effect decreases to 0 between T = 0.13–0.32s• Short-period effect is statistically significant

– Campbell and Bozorgnia (NGA)• No distinction between extensional and non-extensional• 9% to 12% lower than strike slip for T < 0.08s• Effect decreases to 0 between T = 0.08–0.2s• Effect increases to –30% from T = 0.2–2.0s• Short-period effect is marginally statistically significant

Page 64: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Normal-Faulting Questions

• Should normal-faulting events have lower short-periodground motion than strike-slip events?– Spudich et al. (1999)

• Both normal and strike slip from extensional regions• Many events from California’s Imperial Valley• 15% to 25% lower than strike slip for T < 0.15s• Effect decreases to 0 between T = 0.15–0.35s• Effect increases to –35% between T = 1.2–2.0s• Long-period effect is not significant (IV events?)

– Spudich et al. (1999) – Compared to Boore et al. (1997) soil• Slightly lower than BJF97 strike slip for T < 0.15s• Effect increases to –33% from T = 0.15–2.0s• Long-period effect is statistically significant

Page 65: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Normal-Faulting Questions

• Should normal-faulting events have lower long-periodground motion than strike-slip events?– Ambraseys et al. (2005) predicts similar amplitudes

• Recordings come from same regions• Suggests similar static stress drops

– Campbell and Bozorgnia (NGA) predicts different amplitudes• Recordings come from different regions• Could be systematic differences in sediment depths

– Spudich et al. (1999) predict different amplitudes than BJF97• Recordings come from different regions• Effects are nearly identical to NGA results• Could be systematic differences in sediment depths

Page 66: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Tentative Conclusions: Normal Faulting

• Hanging-wall effects– Assumed to be the same as reverse faults– 63% higher than footwall for T < 1.7s– Effect phases out at T > 3.8s

• Normal-faulting effects– 11% lower than strike slip for T < 0.09s– Effect phases out at T > 0.2s

Page 67: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Regional Bias Issues

Page 68: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Inter-event Residuals by Region

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Moment Magnitude

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Inte

r-ev

en

t Re

sid

ua

l

PGA

Other

California

Taiwan

Western U.S.

Alaska

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Moment Magnitude

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Inte

r-ev

en

t Re

sid

ua

l

SA(0.2s)

Other

California

Taiwan

Western U.S.

Alaska

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Moment Magnitude

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Inte

r-ev

en

t Re

sid

ua

l

SA(1.0s)

Other

California

Taiwan

Western U.S.

Alaska

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Moment Magnitude

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Inte

r-ev

en

t Re

sid

ua

l

SA(3.0s)

Other

California

Taiwan

Western U.S.

Alaska

Page 69: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Inter-event Residuals by Stress Regime

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Moment Magnitude

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Inte

r-ev

en

t Re

sid

ua

l

PGA

Non-extensional

Extensional

Extensional?

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Moment Magnitude

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Inte

r-ev

en

t Re

sid

ua

l

SA(0.2s)

Non-extensional

Extensional

Extensional?

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Moment Magnitude

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Inte

r-ev

en

t Re

sid

ua

l

SA(1.0s)

Non-extensional

Extensional

Extensional?

4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0

Moment Magnitude

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Inte

r-ev

en

t Re

sid

ua

l

SA(3.0s)

Non-extensional

Extensional

Extensional?

Page 70: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Intra-event Residuals by Region

0.1 1 10 100

Closest Distance to Rupture (km)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

PGA

Other

California

Taiwan

Western U.S.

0.1 1 10 100

Closest Distance to Rupture (km)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

SA(0.2s)

Other

California

Taiwan

Western U.S.

0.1 1 10 100

Closest Distance to Rupture (km)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

SA(1.0s)

Other

California

Taiwan

Western U.S.

0.1 1 10 100

Closest Distance to Rupture (km)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

SA(3.0s)

Other

California

Taiwan

Western U.S.

Page 71: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Intra-event Residuals by VS30

100 1000

Shear-Wave Velocity in Top 30m (m/sec)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

PGA

Other

California

Taiwan

Western U.S.

E D C B A

100 1000

Shear-Wave Velocity in Top 30m (m/sec)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

SA(0.2s)

Other

California

Taiwan

Western U.S.

E D C B A

100 1000

Shear-Wave Velocity in Top 30m (m/sec)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

SA(1.0s)

Other

California

Taiwan

Western U.S.

E D C B A

100 1000

Shear-Wave Velocity in Top 30m (m/sec)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

SA(3.0s)

Other

California

Taiwan

Western U.S.

E D C B A

Page 72: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Near-Source Bias Issues

Page 73: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Intra-event Residuals Within 50 km

0 10 20 30 40 50

Closest Distance to Rupture (km)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

PGA

Other

California

Taiwan

Western U.S.

0 10 20 30 40 50

Closest Distance to Rupture (km)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

SA(0.2s)

Other

California

Taiwan

Western U.S.

0 10 20 30 40 50

Closest Distance to Rupture (km)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

SA(1.0s)

Other

California

Taiwan

Western U.S.

0 10 20 30 40 50

Closest Distance to Rupture (km)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

SA(3.0s)

Other

California

Taiwan

Western U.S.

Page 74: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Chi-Chi Earthquake Issues

Page 75: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Intra-event Residuals by Distance

0 25 50 75 100 125 150 175 200

Closest Distance to Rupture (km)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

PGA

Off Rupture to North

Off Rupture to South

Footwall

Hanging Wall

0 25 50 75 100 125 150 175 200

Closest Distance to Rupture (km)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

SA(1.0s)

Off Rupture to North

Off Rupture to South

Footwall

Hanging Wall

0 25 50 75 100 125 150 175 200

Closest Distance to Rupture (km)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

SA(0.2s)

Off Rupture to North

Off Rupture to South

Footwall

Hanging Wall

0 25 50 75 100 125 150 175 200

Closest Distance to Rupture (km)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

SA(3.0s)

Off Rupture to North

Off Rupture to South

Footwall

Hanging Wall

Page 76: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Intra-event Residuals by HW/FW

-40 -30 -20 -10 0 10 20 30 40

Closest Distance to Rupture (km)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

PGA

Hanging Wall

Footwall

-40 -30 -20 -10 0 10 20 30 40

Closest Distance to Rupture (km)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

SA(0.2s)

Hanging Wall

Footwall

-40 -30 -20 -10 0 10 20 30 40

Closest Distance to Rupture (km)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

SA(1.0s)

Hanging Wall

Footwall

-40 -30 -20 -10 0 10 20 30 40

Closest Distance to Rupture (km)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

SA(3.0s)

Hanging Wall

Footwall

Page 77: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Intra-event Residuals by Direction

-40 -30 -20 -10 0 10 20 30 40

Closest Distance to Rupture (km)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

PGA

Off Rupture to North

Off Rupture to South

-40 -30 -20 -10 0 10 20 30 40

Closest Distance to Rupture (km)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

SA(0.2s)

Off Rupture to North

Off Rupture to South

-40 -30 -20 -10 0 10 20 30 40

Closest Distance to Rupture (km)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

SA(1.0s)

Off Rupture to North

Off Rupture to South

-40 -30 -20 -10 0 10 20 30 40

Closest Distance to Rupture (km)

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

Intra

-ev

en

t Re

sid

ua

l

SA(3.0s)

Off Rupture to North

Off Rupture to South

Page 78: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Buried vs. Surface Faulting Issues

Page 79: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Inter-event Residuals by Rupture Depth

0.0 5.0 10.0 15.0 20.0

Depth to Top of Rupture (km)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Inte

r-ev

en

t Re

sid

ua

l

PGA

Strike Slip

Reverse

Normal

0.0 5.0 10.0 15.0 20.0

Depth to Top of Rupture (km)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Inte

r-ev

en

t Re

sid

ua

l

SA(0.2s)

Strike Slip

Reverse

Normal

0.0 5.0 10.0 15.0 20.0

Depth to Top of Rupture (km)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Inte

r-ev

en

t Re

sid

ua

l

SA(1.0s)

Strike Slip

Reverse

Normal

0.0 5.0 10.0 15.0 20.0

Depth to Top of Rupture (km)

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Inte

r-ev

en

t Re

sid

ua

l

SA(3.0s)

Strike Slip

Reverse

Normal

Page 80: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Conclusions

• NGA project represents a significant improvement in:– Quantity and quality of ground-motion recordings and

associated metadata– Number of near-source recordings from large-magnitude

earthquakes– Number of independent variables from which to choose– Degree of developer and principle investigator interaction– Availability of supporting theoretical and numerical studies– Peer review through workshops, conference presentations

and formal review– Scientific basis of the Campbell-Bozorgnia empirical ground

motion model

Page 81: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Recommendation

We believe that our 2006 NGA empirical ground motionmodel is scientifically superior to our 1997 and 2003

empirical ground motion models and should beconsidered to supersede them

Page 82: Campbell-Bozorgnia NGA Empirical Ground Motion Model for ... › static › lfs › nshm › ...NGA Project Details •NGA empirical ground motion model developers –Abrahamson &

Thank You!