Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of...

66
UNENE Math Refresher Course Calculus 1

Transcript of Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of...

Page 1: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

UNENE Math Refresher Course

Calculus

1

Page 2: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Differentiation © Wei-Chau Xie

Derivatives

Some simple derivatives

d

dxxn = n xn−1

d

dxeax = a eax

d

dxln x = 1

x

d

dxsinax = a cosax

d

dxcosax = −a sinax

2

Page 3: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Differentiation © Wei-Chau Xie

Important Rules for Evaluating Derivatives

[ f(x) + g(x)]′ = f ′(x) + g ′(x)

[c f(x)]′ = c f ′(x)

[ f(x) g(x)]′ = f ′(x) g(x) + f(x) g ′(x) Product Rule

[

f(x)

g(x)

]′= f ′(x) g(x) − f(x) g ′(x)

g2(x)Quotient Rule

y = y(u), u = u(x) =⇒dy

dx= dy

du· du

dxChain Rule

3

Page 4: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Differentiation © Wei-Chau Xie

Example

Find the derivative of y = tan x.

y ′ = (tan x)′ =( sin x

cos x

)′

= (sin x)′ cos x − sin x (cos x)′

cos2 xQuotient Rule

( fg

)′= f ′g − f g ′

g2

= cos x · cos x − sin x · (− sin x)

cos2 x

= cos2 x + sin2 x

cos2 xsin2 x + cos2 x = 1

= 1

cos2 x= sec2 x

4

Page 5: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Differentiation © Wei-Chau Xie

Example

Find the derivative of y = ln cos x.

y = ln cos x can be written as

y = ln u, u = cos x

Apply the Chain Rule

dy

dx= dy

du· du

dx

= 1

u· (− sin x) = 1

cos x· (− sin x)

= − tan x

5

Page 6: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Differentiation © Wei-Chau Xie

Example

Find the derivative of y = ax.

y = ax can be written as

y = ax = eln ax = ex · ln a

∴ y = eu, u = x · ln a

Apply the Chain Rule

dy

dx= dy

du· du

dx

= eu · ln a = ax ln a

6

Page 7: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Differentiation © Wei-Chau Xie

Higher-Order Derivatives

d2y

dx2= d

dx

(

dy

dx

)

d3y

dx3= d

dx

(

d2y

dx2

)

...

dny

dxn= d

dx

(

dn−1y

dxn−1

)

7

Page 8: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Differentiation © Wei-Chau Xie

Physical Meanings of Derivatives

Consider a function y = y(x).

The first-order derivative y ′(x0) is the slope of the curve y(x) at (x0, y0).

The first-order derivative y ′(x0) is the rate of change of the function at x0.

The curvature of the curve is κ = y ′′

(1+ y ′2)3/2.

In many applications of physics and engineering, such as the equation of

bending in beams, the approximations to the fluid flow around surfaces,∣

∣ y ′∣∣≪1, and hence κ≈y ′′ .

Consider the motion of a particle (mass) with displacement x(t).

The first-order derivativedx

dt= v(t) is the velocity of the particle.

The second-order derivatived2x

dt2= a(t) is the acceleration of the particle.

8

Page 9: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Differentiation © Wei-Chau Xie

Example

Find the second-order derivative of y = ex(sin x + cos x).

y ′ = [ex(sin x + cos x)]′

Product Rule ( f g)′ = f ′g + f g ′

= (ex)′(sin x + cos x) + ex (sin x + cos x)′

= ex (sin x + cos x) + ex (cos x − sin x)

= 2 ex cos x

y ′′ = [2 ex cos x]′

Product Rule ( f g)′ = f ′g + f g ′

= 2 [(ex)′ cos x + ex (cos x)′]

= 2 [ex cos x + ex (− sin x)]

= 2 ex (cos x − sin x)

9

Page 10: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Differentiation © Wei-Chau Xie

Example

Find the second-order derivative of y = ex2.

Rewrite y = eu, u = x2

∴dy

dx= dy

du· du

dxChain Rule

= eu · 2x = 2x ex2

∴d2y

dx2= [2x ex2

]′

Product Rule ( f g)′ = f ′g + f g ′

= 2 [(x)′ ex2 + x (ex2)′]

= 2(

1 · ex2 + x · 2x ex2)

= 2 ex2(1 + 2x2)

10

Page 11: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Taylor Series © Wei-Chau Xie

Taylor Series

In many applications, it is desirable to approximate complicated functions by

simple functions, such as polynomials.

Let f(x) and its derivatives f ′(x), f ′′(x), . . . , f (n)(x) exist and be

continuous in a closed interval a6x6b. Then for x0 in [a, b]

f(x) = f(x0) + f ′(x0)

1! (x−x0) + f ′′(x0)

2! (x−x0)2 + · · · + f (n)(x0)

n! (x−x0)n + · · ·

=∞∑

n=0

f (n)(x0)

n! (x−x0)n

Function f(x) can be approximated by a polynomial of degree n:

f(x) = f(x0) + f ′(x0)

1! (x−x0) + f ′′(x0)

2! (x−x0)2 + · · · + f (n)(x0)

n! (x−x0)n + Rn(x)

Rn = f (n+1)(ξ)

(n+1)! (x−x0)n+1, x0 6ξ 6x

11

Page 12: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Taylor Series © Wei-Chau Xie

MacLaurin Series

When x0 = 0, a Taylor series is also referred to as a MacLaurin series

f(x) = f(0) + f ′(0)

1! x + f ′′(0)

2! x2 + · · · + f (n)(0)

n! xn + · · · =∞∑

n=0

f (n)(0)

n! xn

Approximation of function f(x):

f(x) ≈ f(0) + f ′(0)

1! x + f ′′(0)

2! x2 + · · · + f (n)(0)

n! xn

The error in the approximation is

∣Rn(x)∣

∣ = f (n+1)(ξ)

(n+1)! xn+1, 06ξ 6x

6M

(n+1)!∣

∣x∣

n+1, M = max

∣ f (n+1)(x)∣

12

Page 13: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Taylor Series © Wei-Chau Xie

Example

Find the Taylor series at x0 = 0 (MacLaurin series) of f(x) = ex.

∵ f(x) = ex, f(0) = e0 = 1

f ′(x) = ex, f ′(0) = e0 = 1

f ′′(x) = ex, f ′′(0) = e0 = 1...

f (n)(x) = ex, f (n)(0) = e0 = 1

∴ ex = f(0) + f ′(0)

1! x + f ′′(0)

2! x2 + · · · + f (n)(0)

n! xn + · · ·

= 1 + x + x2

2! + x3

3! + · · · + xn

n! + · · ·

13

Page 14: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Taylor Series © Wei-Chau Xie

Example

Find the Taylor series at x0 = 0 (MacLaurin series) of f(x) = sin x.

∵ f(x) = sin x, f(0) = sin 0 = 0

f ′(x) = cos x, f ′(0) = cos 0 = 1

f ′′(x) = − sin x, f ′′(0) = − sin 0 = 0

f ′′′(x) = − cos x, f ′′′(0) = − cos 0 = −1

f (4)(x) = sin x, f (4)(0) = sin 0 = 0...

∴ f (2n)(0) = 0, f (2n+1)(0) = (−1)n

∴ sin x = f(0) + f ′(0)

1! x + f ′′(0)

2! x2 + · · · + f (n)(0)

n! xn + · · ·

= 0 + (−1)0

1! x + 0

2! x2 + (−1)1

3! x3 + · · · + (−1)n

(2n+1)! x2n+1 + · · ·

= x − x3

3! + x5

5! − x7

7! + · · · + (−1)n x2n+1

(2n+1)! + · · ·

14

Page 15: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Taylor Series © Wei-Chau Xie

sin x = x − x3

3! + x5

5! − x7

7! + · · · + (−1)n x2n+1

(2n+1)! + · · ·

–2

–1

0

1

2

3

0.5 1 321.5 2.5

sinx

x−x

x3

3!−

x7

7!+

x5

5!

−xx3

3!+

x5

5!

x

−xx3

3!

15

Page 16: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration © Wei-Chau Xie

Integrals of Fundamental Functions

xn dx = xn+1

n+1, n 6=−1

1

xdx = ln

∣x∣

∣, x 6=0

ex dx = ex,

eax dx = 1a

eax

sin x dx = − cos x

cos x dx = sin x

tan x dx = − ln∣

∣cos x∣

cot x dx = ln∣

∣sin x∣

sec x dx = ln∣

∣sec x + tan x∣

csc x dx = ln∣

∣csc x − cot x∣

16

Page 17: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration - Change of Variables © Wei-Chau Xie

Techniques of Integration — Change of Variables

Example

Evaluate I =∫

x√

1 − x2 dx.

Let 1 − x2 = u, −2x dx = du =⇒ x dx = − 12

du

I =∫

1 − x2 · x dx =∫ √

u ·(

− 12

du)

= − 12

u12 du = − 1

2· u

12+1

12 +1

+ C

un du = un+1

n+1+ C

= − 13

u32 + C = − 1

3(1 − x2)

32 + C

17

Page 18: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration - Change of Variables © Wei-Chau Xie

Example

Evaluate I =∫

a2 − x2 dx, a>0.

Let x = a sin u =⇒ u = sin−1 x

a, dx = a cos u du sin2 x + cos2 x = 1

I =∫

a2 − a2 sin2 u · a cos u du, cos u =√

1 − sin2 u

= a2

cos2 u du = a2

1 + cos 2u

2du

= a2

2

(

u + 1

2sin 2u

)

+ C = a2

2u + a2

2sin u cos u + C

= a2

2sin−1 x

a+ a2

2· x

a·√

1 −( x

a

)2+ C

= a2

2sin−1 x

a+ 1

2x√

a2 − x2 + C

18

Page 19: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration © Wei-Chau Xie

Some Useful Formulas

d

dx(ax + b) = a =⇒ dx = 1

ad(a x + b)

d

dx(xn+1) = (n+1) xn =⇒ xn dx = 1

n+1d(xn+1)

d

dx(ln x) = 1

x=⇒

1

xdx = d(ln x)

d

dx(eax) = a eax =⇒ ea x dx = 1

ad(ea x)

d

dx(sin x) = cos x =⇒ cos x dx = d(sin x)

d

dx(cos x) = − sin x =⇒ sin x dx = −d(cos x)

19

Page 20: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration - Change of Variables © Wei-Chau Xie

Example

Evaluate I =∫

tan x dx.

I =∫

tan x dx =∫

sin x

cos xdx

= −∫

1

cos xd(cos x), sin x dx = −d(cos x)

= − ln∣

∣cos x∣

∣ + C

1

udu = ln

∣u∣

∣, u = cos x

20

Page 21: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration - Change of Variables © Wei-Chau Xie

Example

Evaluate I =∫

2x ex2dx.

I =∫

ex2 · 2x dx =∫

ex2d(x2), xn dx = 1

n+1d(xn+1)

= ex2 + C

eu du = eu, u = x2

21

Page 22: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration - Change of Variables © Wei-Chau Xie

Example

Evaluate I =∫

3x3

2 − x4dx.

I = 3

1

2 − x4· x3 dx

= 3

1

2 − x4· 1

4d(x3+1), xn dx = 1

n+1d(xn+1)

= 3

4

1

2 − x4· 1

−1d( 2 − x4 ), dx = 1

ad(a x + b)

= − 3

4ln

∣2 − x4∣

∣ + C,

1

udu = ln

∣u∣

∣, u = 2−x4

22

Page 23: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration - Change of Variables © Wei-Chau Xie

Example

Evaluate I =∫

sin3 x dx.

I =∫

sin2 x · sin x dx

= −∫

sin2 x d(cos x), sin x dx = −d(cos x)

= −∫

(1 − cos2 x) d(cos x), sin2 x + cos2 x = 1

= − cos x + 13

cos3 x + C,

un du = un+1

n+1, u = cos x

23

Page 24: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration - Change of Variables © Wei-Chau Xie

Example

Evaluate I =∫

sin2 x cos3 x dx.

I =∫

sin2 x cos2 x · cos x dx

=∫

sin2 x cos2 x d(sin x), cos x dx = d(sin x)

=∫

sin2 x (1 − sin2 x) d(sin x), sin2 x + cos2 x = 1

=∫

(sin2 x − sin4 x) d(sin x)

= 13

sin3 x − 15

sin5 x + C,

un du = un+1

n+1, u = sin x

24

Page 25: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration © Wei-Chau Xie

Techniques of Integration — Integration by Parts

f(x) dx =∫

u dv = u v −∫

v du

The important step is to split function f(x) into the product of two functions∫

f(x) dx =∫

u(x) · g(x) dx =∫

u(x) d[v(x)]

to identify functions u(x) and v(x).

Some rules for selecting functions u(x) and v(x):

1. It is easy to find v(x).

2.

v du is easier to evaluate than

u dv.

3. Functions, such as ln x, sin−1 x, cos−1 x, tan−1 x, . . . , whose derivatives

are of an easier form to integrate, should be left out as u(x).

25

Page 26: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration - Integration by Parts © Wei-Chau Xie

Example

Evaluate I =∫

x2 cos x dx.

I =∫

x2 · cos x dx =∫

x2 d(sin x), cos x dx = d(sin x)

= x2 sin x −∫

sin x · 2x dx, Integration by parts

= x2 sin x − 2

x · sin x dx

= x2 sin x + 2

x d(cos x), sin x dx = −d(cos x)

= x2 sin x + 2(

x cos x −∫

cos x dx)

= x2 sin x + 2 x cos x − 2 sin x + C

26

Page 27: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration - Integration by Parts © Wei-Chau Xie

Example

Evaluate I =∫

x ln x dx.

I =∫

ln x · x dx =∫

ln x · 12

d(x2), xn dx = 1

n+1d(xn+1)

= 12

(

x2 ln x −∫

x2 · 1

xdx

)

, Integration by parts

= 12

(

x2 ln x −∫

x dx)

= 12

(

x2 ln x − 12

x2)

+ C

= 14

x2(2 ln x − 1) + C

27

Page 28: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration - Integration by Parts © Wei-Chau Xie

Example

Evaluate I =∫

ex sin x dx.

I =∫

sin x · ex dx =∫

sin x d(ex), ex dx = d(ex)

= ex sin x −∫

ex · cos x dx, Integration by parts

= ex sin x −∫

cos x d(ex)

= ex sin x −{

ex cos x −∫

ex · (− sin x) dx

}

ex sin x dx = ex sin x − ex cos x −∫

ex sin x dx

ex sin x dx = 12

ex(sin x − cos x) + C

28

Page 29: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration © Wei-Chau Xie

Techniques of Integration — Partial Fractions

Partial fraction decomposition is an essential step in

integrating rational fractions

solving ordinary differential equations using the method of Laplace transform

Consider a rational functionN(x)

D(x), where N(x) and D(x) are polynomials.

If the degree (power) of N(x) is higher or equal to that of Q(x), use long

division to simplify first.

Completely factorize the denominator D(x) into factors of the form

(αx+β)m and (ax2+bx+c)n,

where ax2+bx+c is an unfactorable quadratic.

29

Page 30: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration - Partial Fractions © Wei-Chau Xie

For each factor of the form (αx+β)m, the partial fraction decomposition is

Am

(αx+β)m+

Am−1

(αx+β)m−1+ · · · + A1

(αx+β).

For each factor of the form (ax2+bx+c)n, the partial fraction decomposition

is n terms

Bn x+Cn

(ax2+bx+c)n+

Bn−1 x+Cn−1

(ax2+bx+c)n−1+ · · · + B1 x+C1

(ax2+bx+c).

Example

5x3+2x+7

2x8+7x7−10x5−6x4−x3= 5x3+2x+7

x3(2x−1)(x2+2x−1)2

= A3

x3+ A2

x2+ A1

x+ B

2x−1+ C2 x+D2

(x2+2x−1)2+ C1 x+D1

x2+2x−1

30

Page 31: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration - Partial Fractions © Wei-Chau Xie

The Cover-Up Method

Suppose D(x) has a factor (x−a)m, the partial fraction decomposition is

N(x)

D(x)= N(x)

(x−a)m D1(x)= Am

(x−a)m+

Am−1

(x−a)m−1+ · · · + A1

(x−a)+ N1(x)

D1(x)

in which D1(x) does not have (x−a) as a factor.

Multiplying both sides of the equation by (x−a)m yields

N(x)

D1(x)= Am + Am−1(x−a) + · · · + A1(x−a)m−1 + N1(x)

D1(x)(x−a)m

Setting x = a =⇒ Am = N(x)

D1(x)

x=a

This result can be restated as follows:

To find Am, ‘‘cover-up’’ (remove) the term (x−a)m and set x = a:

Am = N(x)

×(x−a)m D1(x)

x=a

Works only for the highest power of repeated linear factor.

31

Page 32: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration - Partial Fractions © Wei-Chau Xie

Example

Evaluate I =∫

4

(x−1)2(x+1)dx.

Using partial fractions:4

(x−1)2(x+1)= A2

(x−1)2+ A1

x−1+ B

x+1

To find A2, cover-up (x−1)2 and set x = 1 =⇒ A2 = 4

x+1

x=1

= 2

To find B, cover-up (x+1) and set x = −1 =⇒ B = 4

(x−1)2

x=−1

= 1

For A1, set x = 0 : 4

(0−1)2(0+1)= 2

(0−1)2+ A1

0−1+ 1

0+1=⇒ A1=−1

∴ I =∫ {

2

(x−1)2− 1

x−1+ 1

x+1

}

dx = − 2

x−1− ln

∣x−1∣

∣ + ln∣

∣x+1∣

∣ + C

32

Page 33: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration - Partial Fractions © Wei-Chau Xie

Example

Evaluate I =∫

8

(x−1)(x2+2x+5)dx.

Using partial fractions:

8

(x−1)(x2+2x+5)= A

x−1+ Bx+C

x2+2x+5

= A(x2+2x+5) + (Bx+C)(x−1)

(x−1)(x2+2x+5)= (A+B)x2+(2A−B+C)x+(5A−C)

(x−1)(x2+2x+5)

To find A, cover-up (x−1) and set x = 1:

A = 8

x2+2x+5

x=1

= 8

1+2+5= 1

33

Page 34: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration - Partial Fractions © Wei-Chau Xie

Compare the coefficients of the numerators

x2 : A + B = 0 =⇒ B = −A = −1

x : 2A − B + C = 0 =⇒ C = B − 2A = −1 − 2·1 = −3

1 : 5A − C = 8 Use this equation as a check: 5·1−(−3)=8

∴8

(x−1)(x2+2x+5)= 1

x−1− x+3

x2+2x+5= 1

x−1− (x+1) + 2

(x+1)2+22

= 1

x−1− (x+1)

(x+1)2+22− 2

(x+1)2+22

Complete the Squares: a2 + 2·a·b + b2 = (a + b)2

3x2 + 2x + 5 = 3(

x2 + 23

x)

+ 5 = 3[

x2 + 2·x·13

+(

13

)2−

(

13

)2]

+ 5

= 3{[

x2 + 2·x·13

+(

13

)2]

+ 53

−(

13

)2}

= 3{(

x + 13

)2+ 14

9

}

= 3{(

x + 13

)2+

(

√143

)2}

34

Page 35: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration - Partial Fractions © Wei-Chau Xie

I =∫ {

1

x−1− (x+1)

(x+1)2+22− 2

(x+1)2+22

}

dx

=∫

1

x−1d(x−1) − 1

2

1

(x+1)2+22d[(x+1)2+22] − 2

1

(x+1)2+22d(x+1)

= ln∣

∣x−1∣

∣ − 12

ln∣

∣(x+1)2 + 22∣

∣ − tan−1 x+1

2+ C

1

xdx = ln

∣x∣

∣,

1

x2 + a2dx = 1

atan−1 x

a

35

Page 36: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration © Wei-Chau Xie

Definite Integrals

f(x) dx = F(x) =⇒∫ b

af(x) dx = F(x)

b

x=a= F(b) − F(a)

The integral A =∫ b

af(x) dx is the area bounded by curve y = f(x) and the

x-axis between a and b.

x

y

y = f(x)

a b

A

36

Page 37: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration - Definite Integrals © Wei-Chau Xie

Example

Find the area bounded by the sine curve y = sin x and the x-axis between 0

and π .

x0 π

y=sin x

A =∫ π

0sin x dx = − cos x

π

0

= −(cos π − cos 0) = −[(−1) − 1] = 2

37

Page 38: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration - Definite Integrals © Wei-Chau Xie

Example

Evaluate I =∫ 4

0

x+2√2x + 1

dx.

Let√

2x + 1 = u, x = u2−1

2, dx = u du

x = 0 =⇒ u =√

2·0+1 = 1; x = 4 =⇒ u =√

2·4+1 = 3

I =∫ 4

x=0

x + 2√2x+1

dx =∫ 3

u=1

u2−1

2+ 2

u· u du

= 12

∫ 3

1(u2 + 3) du = 1

2

[

13

u3 + 3u]3

1

= 12

[

(13·33 + 3·3

)

−(1

3·13 + 3·1

)

]

= 223

38

Page 39: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration - Definite Integrals © Wei-Chau Xie

Example

Determine the area bounded by parabola y2 = 2x and line y = x−4.

x0

y 2=2x

y=x−4y

(8, 4)

(2, −2)

The intersections are given by

{

y2 = 2x

y = x−4

Substitute the second equation into the first

(x−4)2 = 2x =⇒ x2 − 10x + 16 = 0 =⇒ (x−2)(x−8) = 0

x = 2 =⇒ y = x−4 = −2, x = 8 =⇒ y = x−4 = 4

The points of intersection are (2, −2) and (8, 4).

39

Page 40: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Integration - Definite Integrals © Wei-Chau Xie

x0

x=

y 2=2x

y=x−4

x=y+4

y

ydy

y 2

2(8, 4)

(2, −2)

Consider a horizontal strip of height dy as shown

dA =[

( y+4) − y2

2

]

dy

A =∫ 4

y=−2

(

y + 4 − y2

2

)

dy =[

12

y2 + 4 y − 16

y3]4

y=−2

=(

12·42 + 4·4 − 1

6·43

)

−[

12(−2)2 + 4(−2) − 1

6(−2)3

]

= 18

40

Page 41: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Partial Derivatives © Wei-Chau Xie

Partial Derivatives

Consider a functiony = f(x1, x2, . . . , xn)

of n independent variables x1, x2, . . . , xn.

The partial derivatives are defined as derivatives when all but the variable of

interest are held fixed during the differentiation.

∂ y

∂xi

is the first-order derivative of y w.r.t. xi, when

x1, x2, . . . , xi−1, xi+1, . . . , xn are held fixed (or regarded as constants).

For ‘‘nice’’ functions (partial derivatives exist and are continuous), mixed

partial derivatives must be equal regardless of the order in which the

differentiation is performed.

For examples, consider f(x, y),

∂2f

∂x ∂ y= ∂2f

∂y ∂x,

∂3f

∂x2∂ y= ∂3f

∂y ∂x2, . . .

41

Page 42: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Partial Derivatives © Wei-Chau Xie

Example

Given z = x2 − y3 + 2x y2, find∂z

∂x,

∂z

∂ y,

∂2z

∂x2,

∂2z

∂ y2,

∂2z

∂x ∂ y.

∂z

∂x= ∂

∂x(x2 − y3 + 2 x y2) = 2x + 2 y2 y is fixed

∂z

∂ y= ∂

∂ y(x2 − y3 + 2 x y2) = −3 y2 + 4 x y x is fixed

∂2z

∂x2= ∂

∂x

(∂z

∂x

)

= ∂

∂x(2x + 2 y2) = 2 y is fixed

∂2z

∂ y2= ∂

∂ y

( ∂z

∂ y

)

= ∂

∂ y(−3 y2 + 4 x y) = −6 y + 4 x x is fixed

∂2z

∂x ∂y= ∂

∂x

( ∂z

∂ y

)

= ∂

∂x(−3 y2 + 4 x y) = 4 y y is fixed

42

Page 43: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Partial Derivatives © Wei-Chau Xie

Chain Rules for Partial Derivatives

Suppose z = f(u, v), u = g(x, y), v = h(x, y)

z

u v

y yx x

∂z

∂x= ∂z

∂u

∂u

∂x+ ∂z

∂v

∂v

∂x

∂z

∂ y= ∂z

∂u

∂u

∂ y+ ∂z

∂v

∂v

∂ y

43

Page 44: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Chain Rules for Partial Derivatives © Wei-Chau Xie

Example

Find∂z

∂sif z = f(x, y), x = g(s, t), y = h(s, t),

in which z = x2 e y + y ln x, x = s2 cos t, y = 4t2 sin 2s.

By the Chain Rule:

∂z

∂s= ∂z

∂x

∂x

∂s+ ∂z

∂ y

∂ y

∂s

z

x y

t ts s

z = x2 e y + y ln x

∂z

∂x= ∂

∂x(x2 e y + y ln x) = 2x e y + y· 1

xy is fixed

∂z

∂ y= ∂

∂ y(x2 e y + y ln x) = x2 e y + ln x x is fixed

x = s2 cos t

∂x

∂s= ∂

∂s(s2 cos t) = 2s cos t t is fixed

44

Page 45: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Chain Rules for Partial Derivatives © Wei-Chau Xie

y = 4t2 sin 2s

∂ y

∂s= ∂

∂s(4t2sin 2s) = 8t2 cos 2s t is fixed

∴∂z

∂s= ∂z

∂x

∂x

∂s+ ∂z

∂ y

∂ y

∂s

=(

2x e y + y

x

)

(2s cos t) + (x2 e y + ln x) (8t2 cos 2s)

45

Page 46: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Partial Derivatives © Wei-Chau Xie

Implicit Function

Equation F(x, y) = 0 defines y as an implicit function of x: y = y(x).

Differentiate F[x, y(x)] = F(x, y) = 0 with respect to x:

dF

dx= ∂F

∂x+ ∂F

∂ y

dy

dx= 0

F

y

x

x

∴dy

dx= −

∂F

∂x

∂F

∂y

, provided∂F

∂y6= 0

46

Page 47: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Partial Derivatives of Implicit Functions © Wei-Chau Xie

Example

F(x, y) = yex + sin(x y) + 4 = 0, finddy

dx.

∂F

∂x= ∂

∂x[ yex + sin(x y) + 4] = y ex + cos(x y)·y y is fixed.

∂F

∂y= ∂

∂y[ yex + sin(x y) + 4] = ex + cos(x y)·x x is fixed.

dy

dx= −

∂F

∂x

∂F

∂y

= −y [ex + cos(x y)]ex + x cos(x y)

47

Page 48: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Multiple Integrals © Wei-Chau Xie

Double Integrals

Let f(x, y) be defined in a closed region R of the x y-plane.

x

1Ak (xk, yk)

y

R

Divide R into n small regions of area 1Ak, k = 1, 2, . . . , n.

Let (xk, yk) be some point in 1Ak.

∫∫

R

f(x, y) dA = limn→∞

n∑

k=1

f(xk, yk) 1Ak

in which max1Ak → 0 when n → ∞.

48

Page 49: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Multiple Integrals © Wei-Chau Xie

Double Iterated Integrals

Convert double integrals to double iterated integrals.

Use horizontal lines to divide the region into horizontal strips.

x

x=x1(y) x=x2(y)

y

R

y

c

d

dy

dAy+dy

∫∫

R

f(x, y) dA =∫ d

y=c

{ ∫ x2( y)

x=x1( y)f(x, y) dx

}

dy

49

Page 50: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Double Iterated Integrals © Wei-Chau Xie

Use vertical lines to divide the region into vertical strips.

y= y2(x)

dx

dA

x

y

xa bx+dx

R

y= y1(x)

∫∫

R

f(x, y) dA =∫ b

x=a

{ ∫ y2(x)

y= y1(x)

f(x, y) dy

}

dx

50

Page 51: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Double Integrals © Wei-Chau Xie

Some Physical Meanings of I =∫∫

R

f(x, y) dA

If f(x, y)= 1 in R, then

I =∫∫

R

f(x, y) dA =∫∫

R

1 · dA = Area of region R

If f(x, y)=ρ(x, y)= density, I is the mass of a plate with unit thickness,

cross section R, and variable density ρ(x, y).

If z = f(x, y), I is the volume of a cylinder with flat bottom R and height

f(x, y).

x

z

y

z = f(x,y)

R

51

Page 52: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Double Iterated Integrals © Wei-Chau Xie

Example

Evaluate

∫∫

R

x2 y dA, where R is bounded by y =√

x+4, y = 0, x+ y = 2.

Method 1: Take horizontal strips

x

y

1

y= x+4x

y=0

x+y=2

x=2–yx=y2–4

2

–4 –3 –2 –1 0 1 2

R

∫∫

R

x2 y dA =∫ 2

y=0

[ ∫ 2−y

x=y2−4x2 y dx

]

dy =∫ 2

y=0y[

13

x3]2−y

x=y2−4dy

= 13

∫ 2

y=0(72 y − 12 y2 − 42 y3 − y4 + 12 y5 − y7) dy

= 13

[

36 y2 − 4 y3 − 212

y4 − 15

y5 + 2 y6 − 18

y8]2

y=0= 56

5

52

Page 53: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Double Iterated Integrals © Wei-Chau Xie

Method 2: Take vertical strips

x

y

1

y= x+4x

y= x+4x

y=0 y=0

x+y=2

y=2–x

2

–4 –3 –2 –1 0 1 2

R1 R2

∫∫

R

x2 y dA =∫ 0

x=−4

[ ∫

√x+4

y=0x2 y dy

]

dx +∫ 2

x=0

[ ∫ 2−x

y=0x2 y dy

]

dx

=∫ 0

x=−4x2

[

12

y2]

√x+4

y=0dx +

∫ 2

x=0x2

[

12

y2]2−x

y=0dx

= 12

[ ∫ 0

x=−4(4x2 + x3) dx +

∫ 2

x=0(4x2 − 4x3 + x4) dx

]

= 12

{

[

43

x3 + 14

x4]0

x=−4+

[

43

x3 − x4 + 15

x5]2

x=0

}

= 565

53

Page 54: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Multiple Integrals © Wei-Chau Xie

Triple Integrals

Let V be a closed volume bounded by a piecewise smooth surface S.

Divide V into n small volumes 1Vk, k = 1, 2, . . . , n.

Let (xk, yk, zk) be some point in 1Vk.

x

z

S

y

1Vk

V

(xk, yk, zk)

∫∫∫

Vf(x, y, z) dV = lim

n→∞

n∑

k=1

f(xk, yk, zk) 1Vk

in which max1Vk→0 when n→∞.

54

Page 55: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Multiple Integrals © Wei-Chau Xie

Triple Iterated Integrals

Triple integrals are evaluated using triple iterated integrals.

x

z

yz=z1(x,y)

z=z2(x,y)

Sxy

∫∫∫

Vf(x, y, z) dV =

∫∫

Sxy

{ ∫ z2(x, y)

z=z1(x, y)f(x, y, z) dz

}

dA

A double integral over Sxy is obtained after evaluating the inner integral.

55

Page 56: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Triple Iterated Integrals © Wei-Chau Xie

Example

Find the volume bounded by the surfaces x+ y+z = 4, y = 3z, x = 0, y = 0.

x

z

yy=3z

x+y+z =4

y+z =4

x=4–y–z

x=0

4

4

4

z

Syz

y

y=3z

4

430

V =∫∫∫

VdV =

∫∫

Syz

{ ∫ 4−y−z

x=0dx

}

dA =∫∫

Syz

x∣

4−y−z

x=0dA

=∫∫

Syz

(4 − y − z) dA

56

Page 57: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Triple Iterated Integrals © Wei-Chau Xie

z

Syz

y

y=3z

z =4–y

4

430z=

y

3

V =∫∫

Syz

(4 − y − z) dA =∫ 3

y=0

{ ∫ 4−y

z= y3

(4 − y − z) dz

}

dy

=∫ 3

y=0

[

4z − yz − 12

z2]4−y

z= y3

dy =∫ 3

y=0

(

89

y2 − 163

y + 8)

dy

=[

827

y3 − 83

y2 + 8 y]3

y=0= 8

57

Page 58: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Vector Fields © Wei-Chau Xie

Scalar Field

If f(x, y, z) is a scalar function defined at every point (x, y, z) in a region of

space, then the function is a scalar field.

Only one quantity (magnitude) is required to describe a scalar field.

For example, temperature field T(x, y, z) is a scalar field.

Vector Field

If F(x, y, z) = P(x, y, z) i + Q(x, y, z) j + R(x, y, z) k is a vector function de-

fined at every point (x, y, z) in a region of space, then it is a vector field.

Two quantities are required to define a vector field: the scalar field of its

magnitude and the vector field of its direction.

For example, a force field F(x, y, z) and the velocity field V(x, y, z) of a fluid

are vector fields.

58

Page 59: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Vector Fields © Wei-Chau Xie

Gradient of a Scalar Field

Denote

∇ =( ∂

∂x,

∂y,

∂z

)

= i∂

∂x+ j

∂y+ k

∂z

Gradient of a scalar field f(x, y, z) is defined as the vector field

grad f = ∇f =( ∂ f

∂x,

∂ f

∂y,

∂ f

∂z

)

= i∂ f

∂x+ j

∂ f

∂y+ k

∂ f

∂z

The gradient at a point is a vector pointing in the direction of the steepest

slope or grade at that point, i.e. the direction of the gradient is the direction

of the max rate of change of f.

The steepness of the slope at that point is given by the magnitude of the

gradient, i.e. the magnitude of gradient gives the max rate of change of f.

59

Page 60: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Vector Fields © Wei-Chau Xie

Normal Vectors of a Surface

If f(x, y, z) = 0 defines a surface S and f has continuous first partial derivatives,

then at any point P of S, the vector ∇f is normal to the surface S.

∴ Normal vector N = ∇f =⇒ Unit normal vector n = ∇f∣

∣∇f∣

x

z

yf(x, y, z)=0

SP

N=∇f

60

Page 61: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Vector Fields © Wei-Chau Xie

Divergence of a Vector Field

Divergence of a vector field F(x, y, z) = P(x, y, z) i + Q(x, y, z) j + R(x, y, z) k is

defined as the scalar field

div F = ∇·F =( ∂

∂x,

∂y,

∂z

)·(P, Q, R) = ∂P

∂x+ ∂Q

∂y+ ∂R

∂z

Divergence measures the extend to which a vector field flow behaves like a

source or a sink at a given point.

If the divergence is nonzero at some point, then there must be a source (positive

divergence) or a sink (negative divergence) at the point.

A vector field with constant zero divergence is called incompressible or

solenoidal. In this case, no net flow can occur across any closed surface.

61

Page 62: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Vector Fields © Wei-Chau Xie

Curl of a Vector Field

Curl of a vector field F(x, y, z) = P(x, y, z) i + Q(x, y, z) j + R(x, y, z) k is defined

as the vector field

curl F = ∇×F =

i j k

∂x

∂y

∂z

P Q R

=(∂R

∂y− ∂Q

∂z

)

i +(∂P

∂z− ∂R

∂x

)

j +(∂Q

∂x− ∂P

∂y

)

k

Curl describes the infinitesimal rotation of a 3-dimensional vector filed.

The direction of the curl is the axis of rotation, as determined by the right-hand

rule. The magnitude of the curl is the magnitude of rotation.

A vector field whose curl is zero is called irrotational.

62

Page 63: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Vector Fields © Wei-Chau Xie

Laplacian

Laplacian of a scalar function f(x, y, z) is the divergence of the gradient of the

function

∇2f = ∇·∇f =( ∂

∂x,

∂y,

∂z

)·( ∂ f

∂x,

∂ f

∂y,

∂ f

∂z

)

= ∂

∂x

(∂ f

∂x

)

+ ∂

∂y

(∂ f

∂y

)

+ ∂

∂z

(∂ f

∂z

)

∴ ∇2f = ∇·∇f = ∂2f

∂x2+ ∂2f

∂y2+ ∂2f

∂z2

63

Page 64: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Surface Integrals © Wei-Chau Xie

Surface Integral Involving Vector Fields

Let f(x, y, z) = F(x, y, z)·n, where n is the unit normal vector to surface S.

Surface integral

∫∫

SF(x, y, z)·n dS is called the flux of vector field F(x, y, z).

The Divergence Theorem (Gauss)

Let S be a closed surface and n the unit outward normal to S. V is the region

enclosed by S. Then

∫∫

⊂⊃SF·n dS =

∫∫∫

V∇·F dV

If F(x, y, z) = P(x, y, z) i + Q(x, y, z) j + R(x, y, z) k, then

∫∫

⊂⊃SF·n dS =

∫∫

⊂⊃S(P i + Q j + R k)·n dS =

∫∫∫

V

(∂P

∂x+ ∂Q

∂y+ ∂R

∂z

)

dV

64

Page 65: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Surface Integrals © Wei-Chau Xie

Example

Evaluate the surface integral∫∫

⊂⊃S(2x yz i − y2z j + xz k)·n dS

where S is the surface enclosing the volume bounded by x= y, x+ y=2, z=0,

z=2, and x=0, and n is the unit inward normal to S.

Apply the Divergence Theorem

I =∫∫

⊂⊃S(2xyz i − y2z j + xz k)·n dS

= −∫∫∫

V

{

∂(2xyz)

∂x+ ∂(−y2z)

∂y+ ∂(xz)

∂z

}

dV

= −∫∫∫

V(2 yz − 2 yz + x) dV

= −∫∫∫

Vx dV

65

Page 66: Calculus - UNENE · 2020-03-19 · Calculus — Differentiation ©Wei-Chau Xie Physical Meanings of Derivatives Consider a function y = y(x). The first-order derivative y′(x 0)

Calculus — Surface Integrals © Wei-Chau Xie

x

x

z

y

y=x

y=x

x+y=2

y=2–x

z=2

z=0

2

2

2

Sxy

y

2

1

20

z=0Sxy

Intersection of x = y and x+y = 2 =⇒ x = 1, y = 1.

I = −∫∫∫

Vx dV = −

∫∫

Sxy

{ ∫ 2

z=0x dz

}

dA = −∫∫

Sxy

xz∣

2

z=0dA

= −∫ 1

x=0

{ ∫ 2−x

y=x2x dy

}

dx = −∫ 1

x=02xy

2−x

y=xdx

= −∫ 1

x=04(x−x2) dx = −4

[

12

x2 − 13

x3]1

x=0= −2

3

66