Calculus Two Overview

25
Calculus Two Overview Andrew Shinko, under the advisement of Dr. Price (Image copyright spiriferous) December 4, 2005 Contents 1 Chapter Seven - Inverse Functions 2 1.1 One-to-One functions ......................... 2 1.2 Inverse Formulas ........................... 3 1.3 Basic Exponential and Logarithmic Problems ........... 4 1.4 Logarithmic and Exponential Derivatives ............. 5 1.5 Derivatives Using Trigonometric Substitutions ........... 6 1.6 LHospitalsRule ........................... 7 2 Chapter Eight - Techniques of Integration 7 2.1 Integrals Using Trigonometric Substitutions ............ 7 1

Transcript of Calculus Two Overview

Page 1: Calculus Two Overview

Calculus Two Overview

Andrew Shinko, under the advisement of Dr. Price (Image copyright spiriferous)

December 4, 2005

Contents

1 Chapter Seven - Inverse Functions 21.1 One-to-One functions . . . . . . . . . . . . . . . . . . . . . . . . . 21.2 Inverse Formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . 31.3 Basic Exponential and Logarithmic Problems . . . . . . . . . . . 41.4 Logarithmic and Exponential Derivatives . . . . . . . . . . . . . 51.5 Derivatives Using Trigonometric Substitutions . . . . . . . . . . . 61.6 L�Hospital�s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Chapter Eight - Techniques of Integration 72.1 Integrals Using Trigonometric Substitutions . . . . . . . . . . . . 7

1

Page 2: Calculus Two Overview

2.2 Partial Fraction Decomposition . . . . . . . . . . . . . . . . . . . 102.3 Basic Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . 112.4 Comparison Theory . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 Chapter Nine - Further Applications of Integration 123.1 Lengths of Curves . . . . . . . . . . . . . . . . . . . . . . . . . . 123.2 Areas of Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Chapter Eleven - Parametric Equations and Polar Coordinates 144.1 Cartesian Equations - an Introduction . . . . . . . . . . . . . . . 144.2 Tangent Lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154.3 Second Derivatives . . . . . . . . . . . . . . . . . . . . . . . . . . 164.4 Cartesian - Polar Coordinate Conversions . . . . . . . . . . . . . 164.5 Interpreting Polar Graphs . . . . . . . . . . . . . . . . . . . . . . 174.6 Drawing Polar Graphs . . . . . . . . . . . . . . . . . . . . . . . . 18

5 Chapter Twelve - In�nite Sequences and Series 195.1 Basic Forumulas and Limits . . . . . . . . . . . . . . . . . . . . . 195.2 Basic Convergence or Divergence . . . . . . . . . . . . . . . . . . 205.3 Integral Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215.4 Comparison Test . . . . . . . . . . . . . . . . . . . . . . . . . . . 215.5 Limit Comparision Test . . . . . . . . . . . . . . . . . . . . . . . 225.6 Alternating Series Test . . . . . . . . . . . . . . . . . . . . . . . . 225.7 Ratio Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235.8 Power Series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1 Chapter Seven - Inverse Functions

1.1 One-to-One functions

Excercise 1.1.1 Determine if the given function, f(x) = 2x5 + x4 + 5x2 � 1,is one-to-one.

Solution 1.1.1 Setting up a table of values, we �nd

x -2 -1 0 1 2f(x) -29 3 -1 7 99

plotting the points, we �nd

2

Page 3: Calculus Two Overview

210­1­2

5

2.5

0

­2.5

­5

x

y

x

y

f(x)

Therefore, since f(1) and f(-1) > f(0), the function is not one-to-one

1.2 Inverse Formulas

Excercise 1.2.1 �nd the inverse formula of f(x) = ln((p2x+ 3)=e3) + 2a,

where a is not a variable.

Solution 1.2.1 The solution is displayed below

y = ln((p2x+ 3)=e3) + 2a

y � 2a = ln((p2x+ 3)=e3)

e(y�2a) = (p2x+ 3)=e3

e(y+3�2a) =p2x+ 3

e(2)(y+3�2a) = 2x+ 3

e(2)(y+3�2a) � 3 = 2x

(e(2)(y+3�2a) � 3)=2 = x

Using cancelation equations, we �nd:

x = ln((q2(e(2)(x+3�2a) � 3)=2 + 3)=e3) + 2a

x = (e(2)(ln((p2x+3)=e3)+2a+3�2a) � 3)=2

Once solved, both equations will equal x. Therefore:

f�1(x) = (e(2)(x+3�2a) � 3)=2

3

Page 4: Calculus Two Overview

1.3 Basic Exponential and Logarithmic Problems

Excercise 1.3.1 Find the limit of the given function:

limx!5+

e25

(5�x)

Solution 1.3.1 To �nd the limit of the function, let t = 255�x . As x ! 5+,

t! �1therefore,

limt!�1

et = 0

Excercise 1.3.2 Di¤erentiate the following equation:

d

dx(e2x sin 4x + e2x cos 4x)

Solution 1.3.2 The solution is as follows. We use the product rule and chainrule in step two and simplify the equation.

d

dx(e2x sin 4x + e2x cos 4x)

) (2 sin 4x)e2x sin 4x + (2x)(4)(cos 4x)e2x sin 4x + (2 cos 4x)e2x cos 4x + (2x)(4)(� sin 4x)=) 2 sin(4x)e2x sin 4x + 8x cos(4x)e2x sin 4x + 2 cos(4x)e2x cos 4x � 8x sin(4x)e2x cos 4x

=) 2 cos(4x)(4xe2x sin 4x + e2x cos 4x) + 2 sin(4x)(e2x sin 4x � 4xe2x cos 4x)

Excercise 1.3.3 Expand the following expression

ln((2x+ 3)3(5x3 + 4)8p

3x+ 3(2x))

Solution 1.3.3 The solution is as follows:

ln((2x+ 3)3(5x3 + 4)8p

3x+ 3(2x))

3 ln(2x+ 3) + 8 ln(5x3 + 4)� (0:5 ln(3x+ 3) + ln 2x)

Excercise 1.3.4 Find the solution(s) to the given equation:

2 ln(x) = ln 2 + ln(x� 4)

4

Page 5: Calculus Two Overview

Solution 1.3.4 The solution is as follows:

2 ln(x) = ln 2 + ln(4� x)) lnx2 = ln[2(4� x)]) eln x

2

= eln[2(4�x)]

) x2 = 2x� 4) x2 + 2x� 8 = 0) (x+ 4)(x� 2) = 0) x = 2;�4

Excercise 1.3.5 Find the limit to the given problem:

limv!1

ln(2� v)� ln(5 + v) + 2

Solution 1.3.5 The solution is as follows

limv!1

ln(2� v)� ln(5 + v) + 2

) limv!1

[ln(2� v)� ln(5 + v)] + limv!1

2

) [ limv!1

ln(2� v5 + v

)] + 2

) [ limv!1

ln(2� v5 + v

)] + 2

) [ limv!1

ln(1)] + 2

) 2

1.4 Logarithmic and Exponential Derivatives

Excercise 1.4.1 Compute the derivitive of the following function:

f(x) = ln(4x2 + 2)

(7x� 24) + e�2x5

Solution 1.4.1 the solution is as follows:

f(x) = ln(4x2 + 2)

(7x� 24) + e�2x5

f 0(x) = ln(4x2 + 2)� ln(7x� 24) + e�2x5

f 0(x) =8x

4x2 + 2� 7

7x� 24 + e�2x5(�10x4)

f 0(x) =4x

2x2 + 1� 7

7x� 24 � 10x4(e�2x

5

)

5

Page 6: Calculus Two Overview

Excercise 1.4.2 Compute the derivitive of the following function:

f(x) = 72x2

Solution 1.4.2 The solution is as follows:

f(x) = 72x2

f 0(x) = 72x2

ln 7(4x)

f 0(x) = 4x(ln 7)72x2

1.5 Derivatives Using Trigonometric Substitutions

Excercise 1.5.1 Find the derivitive of the given function. Please simplify whenpossible.

f(x) = cos�1(5x+ 1)

Solution 1.5.1 The solution, using trigonometric substitutions, is shown below

f(x) = cos�1(5x+ 1)

f 0(x) = � 1p1� (5x+ 1)2

(5)

f 0(x) = � 5p1� (25x2 + 10x+ 1)

f 0(x) = � 5p�25x2 � 10x

f 0(x) = � 5p(�5x)(5x+ 2)

Excercise 1.5.2 Find the derivitive of the given function. Please simplify whenpossible.

f(x) = tan�1(e2x+1)

Solution 1.5.2 The solution, using trigonometric substitutions, is shown below

f(x) = tan�1(e2x+1)

f 0(x) =2(e2x+1)

(e2x+1)2 + 1

f 0(x) =2e2x+1

e4x+2 + 1

6

Page 7: Calculus Two Overview

Excercise 1.5.3 Evaluate the given integral:

I =

Zx3p1� x8

dx

Solution 1.5.3 The solution, using trigonometric substitutions, is shown below

I =

Zx3p1� x8

dx let u = x4 and du = 4x3

I =1

4

Zdup1� u2

I =1

4sinu+ C

I =1

4sinx4 + C

1.6 L�Hospital�s Rule

Excercise 1.6.1 Find the limit of the given function:

limx!0

5x � 7xx

Solution 1.6.1 Using L�Hosiptal�s Rule, we �nd

limx!0

5x � 7xx

L0H

=limx!0

5x ln 5� 7x ln 71

= ln 5� ln 7

= ln5

7

2 Chapter Eight - Techniques of Integration

2.1 Integrals Using Trigonometric Substitutions

Excercise 2.1.1 Evaluate the given integral:Zx sec2 3xdx

7

Page 8: Calculus Two Overview

Solution 2.1.1 The solution is as follows:

let u = x; du = dx, v = 3 tan 3x, dv = sec2 3x: Therefore,Zx sec2 3xdx = 3x tan 3x�

Z3 tan 3xdxZ

x sec2 3xdx = 3x tan 3x� 3 ln jsec 3xj+ C

Excercise 2.1.2 Evaluate the given integral:Zsecx csc2 xdx

Solution 2.1.2 The solution is as follows:

let u = secx, du = tanx secx, v = � cotx, dv = csc2 x: Therefore,Zsecx csc2 xdx = secx(� cotx) +

Zcotx tanx secxdx

= � cscx+Zsecxdx

= � cscx+ ln jsecx+ tanxj+ C

Excercise 2.1.3 Solve the given integral:Zsin5 x cos7 xdx

Solution 2.1.3 The solution is as follows:

Zsin5 x cos7 xdx

=

Zsinx(1� cos2 x)2 cos7 xdx, let u = cosx, du = sinx

=

Z(1� u2)2u7du

=

Z(u4 � 2u2 + 1)u7du

=

Z(u11 � 2u9 + u7)du

=1

12u12 � 2

10u10 +

1

8u8 + C

=1

12cos12 x� 1

5cos10 x+

1

8cos8 x+ C

8

Page 9: Calculus Two Overview

Excercise 2.1.4 Solve the given integral:

I =

Zxp

1� 4x2dx

Solution 2.1.4 The solution is as shown:

I =

Zxp

1� 4x2dx, let x =

1

2sinu, dx =

1

2cosu

I =

Z 12 sinuq

1� 4( 12 sinu)2(1

2cosu)

I =1

4

Zsinu cosup1� sin2 u

I =1

4

Zsinu cosu

cosu

I =1

4

Zsinu

I = �14cosu+ C

I = �14

p1� 4x2 + C

Excercise 2.1.5 Integrate the given integral:Zdxpx2 + 25

9

Page 10: Calculus Two Overview

Solution 2.1.5 The solution is as follows:

I =

Zdxpx2 + 25

, let x = 5 tanx, dx = 5 sec2 x

I =

Z5 sec2 xp

(5 tanx)2 + 25

I =

Z5 sec2 xp

25(tan2 x+ 1)

I =

Zsec2 xp

(tan2 x+ 1)

I =

Zsec2 x

secx

I =

Zsecx

I = ln jsecx+ tanxj+ C

I = ln

�����px2 + 25

5+x

5

�����+ CI = ln

����� (px2 + 25 + x)

5

�����+ CI = ln

���(px2 + 25 + x)���� ln j5j+ CI = ln

���(px2 + 25 + x)���+ C2.2 Partial Fraction Decomposition

Excercise 2.2.1 Evaluate the given integral:Z2x+ 5

(x+ 1)(x� 1)dx

Solution 2.2.1 Using partial fractions decomposition, we obtain the followingsolution:

I =

Z2x+ 5

(x+ 1)(x� 1)dx

I =

Z(

A

(x+ 1)+

B

(x� 1))dx

2x� 5 = A(x� 1) +B(x+ 1)

When x = �1, A = 7

2: When x = 1, B = �3

2

I =

Z(7=2

(x+ 1)� 3=2

(x� 1))dx

I =7

2ln(x� 1)� 3

2ln (x+ 1) + C

10

Page 11: Calculus Two Overview

2.3 Basic Convergence

Excercise 2.3.1 Determine whether or not the given integral converges:Z 1

�1

x2

x6 + 16dx

Solution 2.3.1 The solution is shown below.

I =

Z 1

�1

x2

x6 + 16dx

= 2

Z 1

0

x2

x6 + 16dx u = x2, du = 3x2dx

=2

3

Z 1

0

du

u2 + 16v = 4u, dv = 4du

=8

3

Z 1

0

dv

16v2 + 16

=8

48

Z 1

0

dv

v2 + 1

=1

6tan�1 v

=1

6tan�1

u

4

=1

6tan�1

x2

4

Therefore, to see the convergence, we take the following limit:

=

�1

6limt!1

(tan�1(x2

4))

�t0

=1

12�

Excercise 2.3.2 Determine if the given integral converges. Show your work.

Z 2

�1

1

x3dx

Solution 2.3.2 The solution is shown:To solve this integral, we split up the integral where there is in�nite disconituity,

11

Page 12: Calculus Two Overview

which is at x=0 Z 2

�1

1

x3dx =

Z 0

�1

1

x3dx+

Z 2

0

1

x3dx

=

Z 0

�1

1

x3dx+

Z 2

0

1

x3dx

��limt!0=

(1

2x2)

�t�1

= limt!0=

�� 1

2t2+1

2

�= �1, diverges

Therefore, sinceR 0�1

1x3 dx diverges,

R 2�1

1x3 dx does.

2.4 Comparison Theory

Excercise 2.4.1 Use the comparision theory to determine whether or not thegiven integral converges Z 1

1

2x5

7x8 + 3x3 + 5dx

Solution 2.4.1 The solution is as follows:

for x � 1,2x5

7x8 + 3x3 + 5dx <

1

x3Z 1

1

1

x3, p = 3

Therefore,R11

2x5

7x8+3x3+5dx is convergent by the comparison theory

3 Chapter Nine - Further Applications of Inte-gration

3.1 Lengths of Curves

Excercise 3.1.1 Set up, but do not evaluate, an integral for the length of thegiven curve

y = 2x4 � x3 + 7x 0 < x < 1

Solution 3.1.1 The solution is shown below:dy

dx= 8x3 � 3x2 + 7

L =

Z 1

0

p1 + (8x3 � 3x2 + 7)2dx

L =

Z 1

0

p1 + 64x6 � 48x5 + 9x4 + 112x3 � 42x2 + 49dx

L =

Z 1

0

p64x6 � 48x5 + 9x4 + 112x3 � 42x2 + 50dx

12

Page 13: Calculus Two Overview

Excercise 3.1.2 Set up, but do not evaluate, an integral for the length of thegiven curve

y = sin(x) 0 < x < 2�

Solution 3.1.2 The solution is shown below:

dy

dx= cosx

L =

Z 2�

0

p1 + (cosx)2dx

L =

Z 2�

0

p1 + cos2 xdx

3.2 Areas of Curves

Excercise 3.2.1 Find the area of the given curve rotated about the x-axis

y =2

3x3 0 < x < 3

Solution 3.2.1 The solution is shown below:

dy

dx= 2x2

S = 2�

Z 3

0

2

3x3q1 + (2x2)

2dx

S =4

3�

Z 3

0

x3p1 + 4x4dx; u = 1 + 4x4; du = 16x3

S =1

12�

Z 324

1

pudu

S =1

12�

�2

3u3=2

�3241

S =5831

18� (note: due to the complexity of the solution, the previous step is an acceptable answer).

Excercise 3.2.2 Find the area of the given curve rotated about the x-axis

x = y2 + 4 0 < y < 2

13

Page 14: Calculus Two Overview

Solution 3.2.2 The solution is shown below:dx

dy= 2y

S = 2�

Z 2

0

yp1 + (2y)2dy

S = 2�

Z 2

0

yp1 + 4y2dy, u = 1 + 4y2, du = 8ydy

S =�

4

Z 17

1

pudu

S =�

4

�2

3u3=2

�171

S =1

4�

�34

3

p17� 2

3

Excercise 3.2.3 Set up, but do not evaluate, the area of the given curve rotatedabout the y-axis

y =

px

7+ 3 0 < y < 5

Solution 3.2.3 The solution is shown below:

x2 = (7y � 21)x = (7y � 21)2

x = 49y2 � 294y + 441dx

dy= 98y � 294

S = 2�

Z 5

0

(49y2 � 294y + 441)p1 + (98y � 294)2dy

4 Chapter Eleven - Parametric Equations andPolar Coordinates

4.1 Cartesian Equations - an Introduction

Excercise 4.1.1 Find the Cartesian equation of the given curve.

x =pt� 5; y = t� ln t+ 8

Solution 4.1.1 The solution is shown below:

t = (x� 5)2

t = x2 � 10x+ 25y = x2 � 10x+ 25� ln(x2 � 10x+ 25) + 8y = x2 � 10x+ 33� ln(x2 � 10x+ 25)

14

Page 15: Calculus Two Overview

Excercise 4.1.2 Find the Cartesian equation of the given curve. Graph it un-der the given parameters and indicate the direction of travel.

x = 5 cos �; y = 4 sin � 0 < x < �

Solution 4.1.2 The solution is shown below:

(1

5x)2 + (

1

4y)2 = cos2 x+ sin2 y = 1

1

25x2 +

1

16y2 = 1

52.50­2.5­5

4

3

2

1

0

x

y

x

y

The graph moves in a counter-clockwise direction, starting and ending at (5,0)and ending at (-5,0).

4.2 Tangent Lines

Excercise 4.2.1 Find the tangent to the curve at the point corresponding tothe parameter value

x =1

2t4 + 4; y = 3t2 + 4t� 5 t = 2

Solution 4.2.1 The solution is as follows:

dy

dx=

6t+ 4

2t3 + 4

at t = 2;dy

dx=16

20=4

5(x; y) = (12; 15)

y =4

5(x� 12) + 15

y =4

5x+ 5

2

5

Excercise 4.2.2 Find the equation to the tangent(s) to the curve at the givenpoint

x = 2 sin t; y = � cos t (1;p3)

15

Page 16: Calculus Two Overview

Solution 4.2.2 The solution is as shown:

dy

dx=

sin t

2 cos t

the point (1;p3) corresponds to a t =

3value. To �nd the slope, we plug in that value

dy

dx=

sin �32 cos �3

=

p3

2

y =

p3

2(x� 1) +

p3

y =

p3

2x+

p3

2

4.3 Second Derivatives

Excercise 4.3.1 Find d2ydx2

x = t2 � 5 y = 4t3 � 5t2 + 3

Solution 4.3.1 The solution is as shown

dy

dx=

12t2 � 10t2t

dy

dx= 6t� 5

d2y

dx2=

ddt (6t� 5)

2td2y

dx2=

6

2td2y

dx2=

3

t

4.4 Cartesian - Polar Coordinate Conversions

Excercise 4.4.1 Find the the Cartesian points of the given polar coordinates:

(5;�

3)

Solution 4.4.1 The solution is shown below:

x = 5 cos�

3

x =5

2

y = 5 sin�

3

y =5

2

p3

16

Page 17: Calculus Two Overview

Excercise 4.4.2 Find the polar coordinates (where 0 < � < 2�) of the givenCartesian points.

(4; 4p3)

Solution 4.4.2 The solution is shown below:

r =

q42 + (4

p3)2

r =p16 + 48

r = 8

� = tan�1(4p3

4)

� =�

3

Therefore, the polar coordinates are (8; �3 ) and (�8;4�3 )

4.5 Interpreting Polar Graphs

Excercise 4.5.1 Which graph shows the polar equation r = 1� sin �?

1.510.50­0.5­1­1.5 0

­0.5

­1

­1.5

­2

­2.5

­3

xy

xy

A

10.50­0.5­1 0

­0.5

­1

­1.5

­2

xy

xy

B

10.50­0.5­1

0.5

0

­0.5

­1

­1.5

x

y

x

y

C

10.50­0.5­1 0

­0.5

­1

­1.5

x

y

x

y

D

Solution 4.5.1 The answer is choice B.

Excercise 4.5.2 Which graph shows the polar equation r = sin 4�?

0.50­0.5­1

1

0.5

0

­0.5

­1

x

y

x

y

A

0.50­0.5­1

0.5

0

­0.5

x

y

x

y

B

0.750.50.250­0.25­0.5­0.75

0.75

0.5

0.25

0

­0.25

­0.5

­0.75

x

y

x

y

C

0.750.50.250­0.25­0.5­0.75

0.75

0.5

0.25

0

­0.25

­0.5

­0.75

x

y

x

y

D

Solution 4.5.2 The answer is choice C.

17

Page 18: Calculus Two Overview

4.6 Drawing Polar Graphs

Excercise 4.6.1 Sketch the curve and �nd the area it encloses

r = cos 3�

Solution 4.6.1 The solution is shown below:

10.750.50.250­0.25­0.5

0.75

0.5

0.25

0

­0.25

­0.5

­0.75

x

y

x

y

r = cos3�

A =1

2

Z �

0

cos2 3�d�

A = 3

Z �6

0

cos2 3�d�

A =3

2

Z �6

0

(1 + cos 6�)d�

A =3

2

�� +

1

6sin 6�

��6

0

A =�

4

Excercise 4.6.2 Graph the curve and �nd the area one loop of the graph en-closes

r = 3 sin 5�

Solution 4.6.2 The solution is shown below

2.51.250­1.25­2.5

2.5

1.25

0

­1.25

x

y

x

y

r = 3 sin 5�

18

Page 19: Calculus Two Overview

A =1

2

Z �5

0

9 sin2 5�d�

A =9

2

Z �5

0

sin2 5�d�

A =9

4

Z �5

0

(1� cos 10�)d�

A =9

4

�� � 1

10sin 10�

��5

0

A =9

20�

5 Chapter Twelve - In�nite Sequences and Se-ries

5.1 Basic Forumulas and Limits

Excercise 5.1.1 Determine whether or not if the sequence converges. If it does,�nd its limit

an =2n

5n+1

Solution 5.1.1 The solution is shown below:

an =2n

5n+1=1

5(2

5)n

1

5limn!1

(2

5)n =

1

5(0) = 0

The given sequence converges with r= 25

Excercise 5.1.2 Find a formula for the general term, an, assuming the patternof the given terms continues.

f1;�12;1

4;�18;1

16;� 1

32::::g

Solution 5.1.2 The solution is shown below:Since each term is being multiplied by � 1

2 except for the �rst term, an = (�12 )n�1

19

Page 20: Calculus Two Overview

5.2 Basic Convergence or Divergence

Excercise 5.2.1 Determine if the given series converges or diverges. If it isconvergent, �nd its sum.

1Xn=1

n2 � nn2 + n

Solution 5.2.1 The solution is shown below:1Xn=1

n2 � nn2 + n

limn!1

n2 � nn2 + n

= limn!1

1� 1n

1 + 1n

= 1 6= 0

Therefore, the series1Xn=1

n2�nn2+n diverges by the test for divergence

Excercise 5.2.2 Determine if the given series converges or diverges. If it isconvergent, �nd its sum.

1Xn=1

2n�1

5n

Solution 5.2.2 The solution is shown below:

1

5

1Xn=1

2n�1

5n�1

The series is geometric with an = 1 and r = 25 . Since

�� 25

�� < 1, the given seriesconverges.

an1� r =

1

1� 25

=5

3(1

5) =

1

3

Thus, the given series converges to 13 .

Excercise 5.2.3 Determine if the given series converges or diverges. If it isconvergent, �nd its sum.

1Xn=1

�n

3n+1

Solution 5.2.3 The solution is as shown:

1

3

1Xn=1

�n

3n

The series is a geometric series with r = �3 . But, jrj > 1, so the given series

diverges.

20

Page 21: Calculus Two Overview

5.3 Integral Test

Excercise 5.3.1 Use the integral test to determine of the given series convergesor diverges.

1Xn=1

1

n2 + 1

Solution 5.3.1 The solution is shown below:First, we must determine if the series meets the conditions of the integral test.Let f(x) = 1

x2+1

1. x > 0 for all x 2 (1;1)

2. f 0(x) =�2x

2x2 + x4 + 1< 0

so, the given series satis�es the integral test.

f(x) = limt!1

Z t

1

1

x2 + 1

f(x) = limt!1

�tan�1 x

�t1

f(x) =�

4

Since f(x) converges, the given integral,1Xn=1

1n2+1 , also converges by the integral

test.

5.4 Comparison Test

Excercise 5.4.1 Determine if the series converges or diverges.1Xn=1

1

n2 + n

Solution 5.4.1 The solution is shown below:Using the comparison test, we �nd

0 <1

n2 + n<1

n2

let an =1Xn=1

1

n2 + n, and bn =

1Xn=1

1

n2

the series bn is a convergent p=2 series.

Since an < bn and bn =1Xn=1

1n2 converges, then the series an =

1Xn=1

1n2+n also

converges by the comparison test.

21

Page 22: Calculus Two Overview

5.5 Limit Comparision Test

Excercise 5.5.1 Determine if the following series converges or diverges

1Xn=1

n� 1n2 + 2n

Solution 5.5.1 The solution is shown below:Using the limit comparison test, we determine if the given series converges ordiverges.

let an =n� 1n2 + 2n

and bn =1

n

limn!1

n�1n2+2n1n

= limn!1

n(n� 1)n2 + 2n

= limn!1

n2 � nn2 + 2n

= 1 > 0

Since the harmonic series1Xn=1

1n diverges, the given series

1Xn=1

n�1n2+2n diverges by

the limit comparison test.

5.6 Alternating Series Test

Excercise 5.6.1 Determine if the series converges or diverges.

1Xn=1

(�1)npn+ 1

Solution 5.6.1 The solution is shown below:Using the Alternating series test and having bn = 1p

n+1, we �nd

1. bn > 0 for all x 2 (1;1)2.fbng is decreasing3. lim

n!11pn+1

= 0

Therefore, by the Alternating Series Test, the series1Xn=1

(�1)npn+1

converges.

Excercise 5.6.2 Determine if the series absolutely converges, conditionally con-verges, or is divergent.

1Xn=1

(�1)n 2n� 3n+ 1

22

Page 23: Calculus Two Overview

Solution 5.6.2 The solution is shown below:Using the test for divergence, we �nd

limn!1

2n� 3n+ 1

= 2

Hence, the series1Xn=1

2n�3n+1 diverges by the test for divergence

Excercise 5.6.3 Determine if the series absolutely converges, conditionally con-verges, or is divergent.

1Xn=1

(�1)nn+ 1

Solution 5.6.3 The solution is shown below:Using the Alternating series test, we �nd,

1. 1(n+1) > 0 for all x 2 [1;1)

2. 1(n+2) <

1(n+1) or (n+ 1) < (n+ 2) or 0 < 1

3. limn!1

1(n+1) = 0

Since the series1Xn=1

(�1)nn+1 satis�es the AST, we can test for absolute convergence

and conditional convergenceUsing the limit comparison test, we �nd,

let an =1

(n+ 1)and bn =

1

n

limn!1

(

1(n+1)

1n

) = limn!1

n

n+ 1= 1 > 0

Since the harmonic series1Xn=1

1n diverges, the series

1Xn=1

1n+1 does by the limit

comparison test

Therefore, the given series1Xn=1

(�1)nn+1 is conditionally convergent.

5.7 Ratio Test

Excercise 5.7.1 Find the radius of convergence and the integral of convergencefor the given series.

1Xn=1

xnpn

n!

23

Page 24: Calculus Two Overview

Solution 5.7.1 The solution is shown below:1Xn=1

xnpn

n!

Using the ratio test, we �nd,

limn!1

������xn+1

pn+1

(n+1)!

xnpn

n!

������ = jxj limn!1

pn+ 1pn(n+ 1)

= 0(jxj) > 1 = 0 > 1

hence, by using the ratio test, the radius of convergence, R, of the given seriesis 1The interval of convergence is (�1;1)

Excercise 5.7.2 Find the radius of convergence and the integral of convergencefor the given series.

1Xn=1

(�1)nn2nxn

Solution 5.7.2 The solution is shown below:1Xn=1

(�1)nn2nxn

Using the ratio test, we �nd,

limn!1

���� (n+ 1)2n+1xn+1n2nxn

���� = jxj limn!1

2(n+ 1)

n= 2(jxj) > 1 = jxj > 1

2

hence, by using the ratio test, the radius of convergence, R, of the given seriesis 1

2To �nd the interval of convergence, we look at the endpoints.

when x =1

2;

1Xn=1

(�1)nn2n 12

n

=

1Xn=1

(�1)nn

when x = �12;1Xn=1

(�1)nn2n(�12)n =

1Xn=1

n

for both endpoints, limn!1

n = 1, so the enpoints � 12 , and

12 diverge by the test

for divergence.Hence, the integral of convergence for the given series is (� 1

2 ;12 ).

24

Page 25: Calculus Two Overview

5.8 Power Series

Excercise 5.8.1 Find a power series representation for the function.

f(x) =1

x� 4

Solution 5.8.1 The solution is shown below:

f(x) =1

x� 4

f(x) = (�14)1

1� x4

f(x) = �14

1Xn=0

�x4

�nor �

1Xn=0

xn

4n+1

25