Calculus Review

94
Calculus Review

description

Calculus Review. Slope. Slope = rise/run = D y/ D x = (y 2 – y 1 )/(x 2 – x 1 ) Order of points 1 and 2 abitrary, but keeping 1 and 2 together critical Points may lie in any quadrant: slope will work out - PowerPoint PPT Presentation

Transcript of Calculus Review

Page 1: Calculus Review

Calculus Review

Page 2: Calculus Review

Slope

• Slope = rise/run • = y/x • = (y2 – y1)/(x2 – x1)

• Order of points 1 and 2 abitrary, but keeping 1 and 2 together critical

• Points may lie in any quadrant: slope will work out

• Leibniz notation for derivative based on y/x; the derivative is written dy/dx

Page 3: Calculus Review

Exponents

• x0 = 1

Page 4: Calculus Review

Derivative of a line

• y = mx + b• slope m and y axis intercept b• derivative of y = axn + b with respect to x:• dy/dx = a n x(n-1) • Because b is a constant -- think of it as bx0 -- its

derivative is 0b-1 = 0 • For a straight line, a = m and n = 1 so• dy/dx = m 1 x(0), or because x0 = 1, • dy/dx = m

Page 5: Calculus Review

Derivative of a polynomial

• In differential Calculus, we consider the slopes of curves rather than straight lines

• For polynomial y = axn + bxp + cxq + …

• derivative with respect to x is

• dy/dx = a n x(n-1) + b p x(p-1) + c q x(q-1) + …

Page 6: Calculus Review

Example

a 3 n 3 b 5 p 2 c 5 q 0

0

2

4

6

8

10

12

14

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

y

y = axn + bxp + cxq + …

-5

0

5

10

15

20

25

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x

y

dy/dx = a n x(n-1) + b p x(p-1) + c q x(q-1) + …

Page 7: Calculus Review

Numerical Derivatives

• ‘finite difference’ approximation

• slope between points

• dy/dx ≈ y/x

Page 8: Calculus Review

Derivative of Sine and Cosine

• sin(0) = 0 • period of both sine and cosine is 2• d(sin(x))/dx = cos(x) • d(cos(x))/dx = -sin(x)

-1.5

-1

-0.5

0

0.5

1

1.5

0 1 2 3 4 5 6 7

Sin(x)

Cos(x)

Page 9: Calculus Review

Partial Derivatives

• Functions of more than one variable• Example: h(x,y) = x4 + y3 + xy

1 4 7

10 13 16 19S1

S7

S13

S19

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

X

Y

2.5-3

2-2.5

1.5-2

1-1.5

0.5-1

0-0.5

-0.5-0

-1--0.5

-1.5--1

Page 10: Calculus Review

Partial Derivatives

• Partial derivative of h with respect to x at a y location y0

• Notation ∂h/∂x|y=y0

• Treat ys as constants• If these constants stand alone, they drop

out of the result• If they are in multiplicative terms involving

x, they are retained as constants

Page 11: Calculus Review

Partial Derivatives

• Example: • h(x,y) = x4 + y3 + x2y+ xy • ∂h/∂x = 4x3 + 2xy + y

• ∂h/∂x|y=y0 = 4x3 + 2xy0+ y0

1 4 7

10 13 16 19

S1

S7

S13

S19

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

X

Y

Page 12: Calculus Review

WHY?

Page 13: Calculus Review

Gradients

• del h (or grad h)

• Darcy’s Law:

y

h

x

hh

ji

hKq

Page 14: Calculus Review

Equipotentials/Velocity Vectors

Page 15: Calculus Review

Capture Zones

Page 16: Calculus Review

Capture Zones

Page 17: Calculus Review

Hydrologic Cycle/Water Balances

Page 18: Calculus Review

Earth’s Water

• Covers approximately 75% of the surface

• Volcanic emissions

http://earthobservatory.nasa.gov/Library/Water/

Page 19: Calculus Review

One estimate of global water distribution

 Volume

(1000 km3)

Percent of Total Water

Percent of Fresh Water

Oceans, Seas, & Bays 1,338,000 96.5 -

Ice caps, Glaciers, & Permanent Snow

24,064 1.74 68.7

Groundwater 23,400 1.7 -

        Fresh (10,530) (0.76) 30.1

        Saline (12,870) (0.94) -

Soil Moisture 16.5 0.001 0.05

Ground Ice & Permafrost 300 0.022 0.86

Lakes 176.4 0.013 -

        Fresh (91.0) (0.007) .26

        Saline (85.4) (0.006) -

Atmosphere12.9 0.001 0.04

Swamp Water 11.47 0.0008 0.03

Rivers 2.12 0.0002 0.006

Biological Water 1.12 0.0001 0.003

Total 1,385,984 100.0 100.0

Source: Gleick, P. H., 1996: Water resources. In Encyclopedia of Climate and Weather, ed. by S. H. Schneider, Oxford University Press, New York, vol. 2, pp.817-823.http://earthobservatory.nasa.gov/Library/Water/

Page 20: Calculus Review

Fresh Water

Ice caps, Glaciers, & PermanentSnow

Groundwater

Soil Moisture

Ground Ice & Permafrost

Lakes

Atmosphere

Swamp Water

Rivers

Biological Water

Page 21: Calculus Review

Hydrologic Cycle

• Powered by energy from the sun• Evaporation 90% of atmospheric water• Transpiration 10% • Evaporation exceeds precipitation over oceans• Precipitation exceeds evaporation over

continents• All water stored in atmosphere would cover

surface to a depth of 2.5 centimeters• 1 m average annual precipitation

http://earthobservatory.nasa.gov/Library/Water/

Page 22: Calculus Review

Hydrologic Cycle

http://earthobservatory.nasa.gov/Library/Water/

In the hydrologic cycle, individual water molecules travel between the oceans, water vapor in the atmosphere, water and ice on the land, and underground water. (Image by Hailey King, NASA GSFC.)

Page 23: Calculus Review

Water (Mass) Balance

• In – Out = Change in Storage– Totally general– Usually for a particular time interval– Many ways to break up components– Different reservoirs can be considered

Page 24: Calculus Review

Water (Mass) Balance

• Principal components:– Precipitation– Evaporation– Transpiration– Runoff

• P – E – T – Ro = Change in Storage

• Units?

Page 25: Calculus Review

Ground Water (Mass) Balance

• Principal components:– Recharge– Inflow– Transpiration– Outflow

• R + Qin – T – Qout = Change in Storage

Page 26: Calculus Review

Water Balance Components

Page 27: Calculus Review

http://www.srs.fs.usda.gov/gallery/images/5_rain_gauge.jpg

Page 28: Calculus Review

DBHydroRainfall Stations

• Approximately 600 stations

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

0 200000 400000 600000 800000 1000000 1200000

Page 29: Calculus Review

Spatial Distribution of Average Rainfall

http://sflwww.er.usgs.gov/sfrsf/rooms/hydrology/compete/obspatialmapx.jpg

Page 30: Calculus Review

Voronoi/Thiessen Polygons

Page 31: Calculus Review

Evaporation Pan

www.photolib.noaa.gov/ historic/nws/wea01170.htm

Page 32: Calculus Review

Pan Evaporation

• Pan Coefficients: 0.58 – 0.78

• Transpiration

• Potential Evapotranspiration– Thornwaite Equation

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

0 200000 400000 600000 800000 1000000 1200000

Page 33: Calculus Review

Watersheds

http://www.bsatroop257.org/Documents/Summer%20Camp/Topographic%20map%20of%20Bartle.jpg

Page 34: Calculus Review

Watersheds

http://www.bsatroop257.org/Documents/Summer%20Camp/Topographic%20map%20of%20Bartle.jpg

Page 35: Calculus Review

Stage

Page 36: Calculus Review

Stage Recorder

http://gallatin.humboldt.edu/~brad/nws/assets/drum-recorder.jpg

Page 37: Calculus Review

River Hydrograph

http://cires.colorado.edu/lewis/epob4030/Figures/UseandProtectionofWaters/figures/ColoradoRiverHydrograph.gif

Page 38: Calculus Review

Well Hydrograph

http://wy.water.usgs.gov/news/archives/090100b.htm

Page 39: Calculus Review

Stream Gauging• Measure

velocity at 2/10 and 8/10 depth

• Q = v*A

• Rating curve:– Q vs. Stage

http://www.co.jefferson.wa.us/naturalresources/Images/StreamGauging.jpg

Page 40: Calculus Review

http://www.nws.noaa.gov/om/hod/SHManual/SHMan040_rating.htm

Page 41: Calculus Review

Ground Water Basics

• Porosity

• Head

• Hydraulic Conductivity

Page 42: Calculus Review

Porosity Basics

• Porosity n (or )

• Volume of pores is also the total volume – the solids volume

total

pores

V

Vn

total

solidstotal

V

VVn

Page 43: Calculus Review

Porosity Basics

• Can re-write that as:

• Then incorporate:• Solid density: s

= Msolids/Vsolids

• Bulk density: b

= Msolids/Vtotal • bs = Vsolids/Vtotal

total

solidstotal

V

VVn

total

solids

V

Vn 1

s

bn

1

Page 44: Calculus Review

Cubic Packings and Porosity

http://members.tripod.com/~EppE/images.htm

Simple Cubic Body-Centered Cubic Face-Centered Cubic n = 0.48 n = 0. 26 n = 0.26

Page 45: Calculus Review

FCC and BCC have same porosity

• Bottom line for randomly packed beads: n ≈ 0.4

                                                             

http://uwp.edu/~li/geol200-01/cryschem/

Smith et al. 1929, PR 34:1271-1274

Page 46: Calculus Review

Effective

Porosity

Page 47: Calculus Review

Effective

Porosity

Page 48: Calculus Review

Porosity Basics

• Volumetric water content ()– Equals porosity for

saturated system total

water

V

V

Page 49: Calculus Review

Sand and Beads

Courtesey C.L. Lin, University of Utah

Page 50: Calculus Review

Aquifer Material Aquifer Material (Miami Oolite)(Miami Oolite)

Page 51: Calculus Review

Aquifer MaterialAquifer MaterialTucson recharge siteTucson recharge site

Page 52: Calculus Review

Aquifer Material Aquifer Material (Keys limestone)(Keys limestone)

Page 53: Calculus Review

Aquifer Material Aquifer Material (Miami)(Miami)

Image provided courtesy of A. Manda, Florida International University and the United States Geological Survey.

Page 54: Calculus Review

Aquifer Material (CA Coast)Aquifer Material (CA Coast)

Page 55: Calculus Review

Aquifer Material (CA Coast)Aquifer Material (CA Coast)

Page 56: Calculus Review

Aquifer Material (CA Coast)Aquifer Material (CA Coast)

Page 57: Calculus Review

Karst (MN)

http://course1.winona.edu/tdogwiler/websitestufftake2/SE%20Minnesota%20Karst%20Hydro%202003-11-22%2013-23-14%20014.JPG

Page 58: Calculus Review

Karst

http://www.fiu.edu/~whitmand/Research_Projects/tm-karst.gif

Page 59: Calculus Review

Ground Water Flow

• Pressure and pressure head

• Elevation head

• Total head

• Head gradient

• Discharge

• Darcy’s Law (hydraulic conductivity)

• Kozeny-Carman Equation

Page 60: Calculus Review

Multiple Choice:Water flows…?

• Uphill

• Downhill

• Something else

Page 61: Calculus Review

Pressure

• Pressure is force per unit area• Newton: F = ma

– Fforce (‘Newtons’ N or kg ms-2)– m mass (kg)– a acceleration (ms-2)

• P = F/Area (Nm-2 or kg ms-2m-2 =

kg s-2m-1 = Pa)

Page 62: Calculus Review

Pressure and Pressure Head

• Pressure relative to atmospheric, so P = 0 at water table

• P = ghp

– density– g gravity

– hp depth

Page 63: Calculus Review

P = 0 (= Patm)

Pre

ssur

e H

ead

(incr

ease

s w

ith d

epth

bel

ow s

urfa

ce)

Pressure Head

Ele

vati

on

Head

Page 64: Calculus Review

Elevation Head

• Water wants to fall

• Potential energy

Page 65: Calculus Review

Ele

vatio

n H

ead

(incr

ease

s w

ith h

eigh

t ab

ove

datu

m)

Eleva

tion

Head

Ele

vati

on

Head

Elevation datum

Page 66: Calculus Review

Total Head

• For our purposes:

• Total head = Pressure head + Elevation head

• Water flows down a total head gradient

Page 67: Calculus Review

P = 0 (= Patm)

Tot

al H

ead

(con

stan

t: h

ydro

stat

ic e

quili

briu

m)

Pressure Head

Eleva

tion

Head

Ele

vati

on

Head

Elevation datum

Page 68: Calculus Review

Head Gradient

• Change in head divided by distance in porous medium over which head change occurs

• A slope

• dh/dx [unitless]

Page 69: Calculus Review

Discharge

• Q (volume per time: L3T-1)

• q (volume per time per area: L3T-1L-2 = LT-1)

Page 70: Calculus Review

Darcy’s Law

• q = -K dh/dx– Darcy ‘velocity’

• Q = K dh/dx A– where K is the hydraulic

conductivity and A is the cross-sectional flow area

• Transmissivity T = Kb– b = aquifer thickness

• Q = T dh/dx L– L = width of flow field

www.ngwa.org/ ngwef/darcy.html

1803 - 1858

Page 71: Calculus Review

Mean Pore Water Velocity

• Darcy ‘velocity’:q = -K ∂h/∂x

• Mean pore water velocity:v = q/ne

Page 72: Calculus Review

Intrinsic Permeability

g

kK w

L T-1 L2

Page 73: Calculus Review

Kozeny-Carman Equation

1801

2

2

3md

n

nk

Page 74: Calculus Review

More on gradients1 2 3 4 5 6 7 8 9 10 11

2.445659 2.445659 2.937225 3.61747 4.380528 5.182307 5.999944 6.817582 7.619361 8.382418 9.062663 9.554228 9.5542283.399753 3.399754 3.685772 4.152128 4.722335 5.348756 5.99989 6.651023 7.277444 7.847651 8.314006 8.600023 8.6000234.067833 4.067834 4.253985 4.582937 5.007931 5.490497 5.999838 6.509179 6.991744 7.416737 7.745689 7.931838 7.9318384.549766 4.549768 4.679399 4.917709 5.235958 5.605464 5.999789 6.394115 6.76362 7.081868 7.320177 7.449806 7.4498064.902074 4.902077 4.99614 5.172544 5.412733 5.695616 5.999745 6.303874 6.586756 6.826944 7.003347 7.097408 7.0974085.160327 5.160329 5.230543 5.363601 5.546819 5.764526 5.999705 6.234885 6.452591 6.635808 6.768864 6.839075 6.8390755.348374 5.348377 5.402107 5.504502 5.646422 5.815968 5.999672 6.183375 6.35292 6.494838 6.597232 6.650959 6.6509595.482701 5.482704 5.52501 5.605886 5.718404 5.853259 5.999644 6.146028 6.280883 6.393399 6.474273 6.516576 6.5165765.574732 5.574736 5.609349 5.675635 5.768053 5.879029 5.999623 6.120216 6.231191 6.323607 6.389891 6.424502 6.424502

5.63216 5.632163 5.662024 5.719259 5.799151 5.895187 5.999608 6.10403 6.200064 6.279955 6.337188 6.367045 6.3670455.659738 5.659741 5.68733 5.740232 5.814114 5.902965 5.999601 6.096237 6.185087 6.258968 6.311867 6.339453 6.339453

5.659741 5.68733 5.740232 5.814114 5.902965 5.999601 6.096237 6.185087 6.258968 6.311867 6.339453 6.339453

1 2 3 4 5 6 7 8 9 10 11

S1

S2

S3

S4

S5

S6

S7

S8

S9

S10

S11

S12

10.5-11

10-10.5

9.5-10

9-9.5

8.5-9

8-8.5

7.5-8

7-7.5

6.5-7

6-6.5

5.5-6

5-5.5

4.5-5

4-4.5

3.5-4

3-3.5

2.5-3

2-2.5

1.5-2

Page 75: Calculus Review

More on gradients

• Three point problems:

h

h

h

400 m

412 m

100 m

Page 76: Calculus Review

More on gradients

• Three point problems:– (2 equal heads)

h = 10m

h = 10m

h = 9m

400 m

412 m

100 m

CD • Gradient = (10m-9m)/CD

• CD?– Scale from map– Compute

Page 77: Calculus Review

More on gradients

• Three point problems:– (3 unequal heads)

h = 10m

h = 11m

h = 9m

400 m

412 m

100 m

CD • Gradient = (10m-9m)/CD

• CD?– Scale from map– Compute

Best guess for h = 10m

Page 78: Calculus Review

Types of Porous Media

Homogeneous Heterogeneous

Isotropic

Anisotropic

Page 79: Calculus Review

Hydraulic Conductivity Values

Freeze and Cherry, 1979

8.6

0.86

K

(m/d)

Page 80: Calculus Review

Layered media (horizontal conductivity)

M

ii

M

ihii

h

b

KbK

1

1

Q1

Q2

Q3

Q4

Q = Q1 + Q2 + Q3 + Q4

K1

K2

b1

b2

Flow

Page 81: Calculus Review

Layered media(vertical conductivity)

M

ihii

M

ii

v

Kb

bK

1

1

/

Controls flow

Q1

Q2

Q3

Q4

Q ≈ Q1 ≈ Q2 ≈ Q3 ≈ Q4

R1

R2

R3

R4

R = R1 + R2 + R3 + R4

K1

K2

b1

b2

Flow

The overall resistance is controlled by the largest resistance: The hydraulic resistance is b/K

Page 82: Calculus Review

Aquifers

• Lithologic unit or collection of units capable of yielding water to wells

• Confined aquifer bounded by confining beds

• Unconfined or water table aquifer bounded by water table

• Perched aquifers

Page 83: Calculus Review

Transmissivity

• T = Kb

gpd/ft, ft2/d, m2/d

Page 84: Calculus Review

Schematic

i = 1

i = 2

d1

b1

d2

b2 (or h2)

k1

T1

k2

T2 (or K2)

Page 85: Calculus Review

Pumped Aquifer Heads

i = 1

i = 2

d1

b1

d2

b2 (or h2)

k1

T1

k2

T2 (or K2)

Page 86: Calculus Review

Heads

i = 1

i = 2

d1

b1

d2

b2 (or h2)

k1

T1

k2

T2 (or K2)

h1

h2

h2 - h1

Page 87: Calculus Review

LeakanceLeakage coefficient, resistance (inverse)

• Leakance

• From below:

• From above:

d

k

1

11

i

iiiv d

khhq

1

11

i

iiiv d

khhq

Page 88: Calculus Review

Flows

i = 1

i = 2

d1

b1

d2

b2 (or h2)

k1

T1

k2

T2 (or K2)h1

h2 h2 - h1

qv

Page 89: Calculus Review

Boundary Conditions

• Constant head: h = constant

• Constant flux: dh/dx = constant– If dh/dx = 0 then no flow– Otherwise constant flow

Page 90: Calculus Review

Poisson Equation

• Add/remove water from system so that inflow and outflow are different

• R can be recharge, ET, well pumping, etc.• R can be a function of space• Units of R: L T-1

x y

qx|x qx|x+xb

R

x y

qx|x qx|x+x

x yx yx y

qx|x qx|x+xb

R

Page 91: Calculus Review

Derivation of Poisson Equation

x y

qx|x qx|x+xb

R

x y

qx|x qx|x+x

x yx yx y

qx|x qx|x+xb

R(qx|x- qx|x+x)byρt + Rxyρt =0

x

hKq

xRbx

hK

x

hK

xxx

T

R

x

xh

xh

xxx

T

R

x

h

2

2

Page 92: Calculus Review

General Analytical Solution of 1-D Poisson Equation

AxT

R

x

h

xAxT

Rx

x

h

BAxxT

Rh 2

2

T

R

x

h

2

2

xT

Rx

x

h2

2

BAxxT

Rh 2

2

Page 93: Calculus Review

Water balance

• Qin + Rxy – Qout = 0• qin by + Rxy – qout by = 0• -K dh/dx|in by + Rxy – -K dh/dx|out by = 0• -T dh/dx|in y + Rxy – -T dh/dx|out y = 0• -T dh/dx|in + Rx +T dh/dx|out = 0

BAxxT

Rh 2

2

x y

qx|x qx|x+xb

R

x y

qx|x qx|x+x

x yx yx y

qx|x qx|x+xb

R

Page 94: Calculus Review

2-D Finite Difference Approximation

h|x,y h|x+x,y

x, y

y +y

h|x-x,y

x -x x +x

h|x,y-y

h|x,y+y

4,,,,

,

yyxyyxyxxyxx

yx

hhhhh