Calculations - New Jersey · 2019. 10. 29. · R= hydraulic radius of channel (ft) = _ n m, where...

51
Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019 NJ DEP Division of Water Quality 1 Stormwater Calculations Lisa Schaefer NJDEP Division of Water Quality SWMDR Training Day 1 October 29, 2019 Presentation Goals Calculate the Time of Concentration (T c ) Calculate Peak Flow Rates Using the Rational Method Size a Basin Using the Modified Rational Method Use the NRCS Methodology (TR-55) (Peak Flow, Volume and Hydrographs) 2

Transcript of Calculations - New Jersey · 2019. 10. 29. · R= hydraulic radius of channel (ft) = _ n m, where...

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    1

    StormwaterCalculations

    Lisa SchaeferNJDEP Division of Water Quality

    SWMDR Training Day 1October 29, 2019

    Presentation Goals

    • Calculate the Time of Concentration (Tc)

    • Calculate Peak Flow Rates Using the Rational Method

    • Size a Basin Using the Modified Rational Method

    • Use the NRCS Methodology (TR-55) (Peak Flow, Volume and Hydrographs)

    2

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    2

    i. NRCS Methodology - Section 4, National Engineering Handbook (NEH-4)

    https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=43924.wba

    - Technical Release 55 (“TR-55” ) https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/stelprdb1044171.pdf

    ii. The Rational Method for peak flow and the Modified Rational Method for hydrograph computations

    N.J.A.C. 7:8-5.6(a)1: Stormwater runoff shall be calculated in accordance with the following:

    3

    Estimate Runoff with Models

    1. Groundwater Recharge

    2. Stormwater Quality

    3. Stormwater Quantity

    Design Storms

    Compute stormwater runoff for:

    4

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    3

    NJDEP Stormwater Water Quality Design Storm= 1.25-Inch/2-Hour Design Storm

    Design Storms

    5

    0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    1

    1.1

    1.2

    1.3

    0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 105 110 115 120

    Rain

    fall

    Dept

    h (in

    ches

    )

    Time (minutes)

    1.25

    Design Storms

    Intensity-Duration-Frequency (IDF) CurveStormwater Quantity Control Design Storms

    6

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    4

    Design Storms

    Intensity-Duration-Frequency (IDF) CurveStormwater Quantity Control Design Storms

    7

    NJDEP WQDS1.25-Inch/2-Hour Water Quality Design Storm Rainfall Intensity-Duration Curve

    8

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    5

    Design Storms – Rainfall Data

    9

    https://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs141p2_018235.pdf

    For a specific county, rainfall depth from the New Jersey 24-hour Rainfall Frequency Data :

    Design Storms – Rainfall Data

    10

    https://hdsc.nws.noaa.gov/hdsc/pfds/

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    6

    Design Storms

    11

    Design Storms

    12

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    7

    Calculate the Time of Concentration (Tc)

    13

    Drainage Area

    Time of Concentration (Tc)

    Includes all of the land that drains into a point of analysis.

    14

    POA

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    8

    Time of Concentration (Tc)

    What Affects the Tc?

    • Surface Roughness

    • Channel shape and flow patterns

    • Slope

    15

    Time of Concentration (Tc)

    1. Sheet Flow,

    2. Shallow Concentrated Flow,

    3. Channel Flow or

    A combination of these

    Runoff moves through a watershed as:

    16

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    9

    Sheet FlowShallow

    Concentrated Flow Channel Flow

    Time of Concentration (Tc)

    Depth:about

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    10

    Time of Concentration (Tc)

    Tt = travel time (hr)L = length of sheet flow (≤ 150 ft in length)n = Manning’s overland roughness coefficientP2 = 2-year, 24-hour rainfall

    (NJ Depth: 3.2 – 3.5 in)s = slope of hydraulic grade line (ft/ft)

    Tt0.007 𝑛𝐿 .

    𝑃2 . 𝑠 .Sheet Flow:

    19

    Time of Concentration (Tc) • TR-55, Chapter 3:

    Time of Concentration and Travel Time

    • n = roughnesscoefficient forsheet flow

    • 0.40 = max. roughness in NJ

    20

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    11

    Time of Concentration (Tc)

    • 3.2 – 3.5 in. in NJ

    • NOAA’s National Weather Serviceo Precipitation

    Frequency Data Server (PFDS)

    • NRCS County Rainfall

    P2 = 2-year, 24-hour rainfall

    21

    Time of Concentration (Tc)

    Tt = travel time (hr)L = flow length (ft)V = estimated velocity (ft/sec)

    Tt (hr)

    22

    Shallow Concentrated Flow:

    𝐿𝑉 ∗ 3600

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    12

    Time of Concentration (Tc)

    V = estimatedvelocity,

    = 16.1345 𝑠 . forunpaved conditions

    = 20.3282 𝑠 . for

    paved conditions,

    where:𝑠 = slope of the hydraulic grade line or watercourse slope, ft/ft

    Figure 3-1:A

    verage velocities for estimating travel

    time for shallow

    concentrated flow

    23

    Time of Concentration (Tc)

    Figure 15-4:V

    elocity versus slope for shallow

    concentrated flow

    24

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    13

    Time of Concentration (Tc)

    n = roughness coefficient for open channel flowL = length (ft)R = hydraulic radius of channel (ft)

    = , where a = cross sectional flow area (sf)pw = wetted perimeter (ft)

    s = channel slope (ft/ft)

    Tt(hr)

    Channel Flow:

    25

    𝐿 𝑛3600 1.49𝑅 𝑠 .

    Example Project

    Existing:• Forested• HSG ‘A’ soils• 50 ft of sheet flow over

    an area with a 0.5% slope

    • 1000 ft of shallow concentrated flow over an area with a 1% slope

    • No channel flow occurs

    Developer wants to develop a 20 acre site:Proposed:• 100% impervious surfaces• HSG ‘A’ soils• 50 ft of sheet flow over

    an area with a 0.5% slope

    • 1000 ft of shallow concentrated flow over an area with a 1% slope

    • No channel flow occurs26

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    14

    What are the times of concentration

    of both the existing and proposedconditions on the site?

    27

    Calculate Existing Tc

    • Sheet Flow:

    • Shallow Concentrated Flow:

    • Channel Flow:

    = Sum of all Travel Times for each Segment:

    28

    Tt(hr)0.007 𝑛𝐿 .

    𝑃2 . 𝑠 .

    Tt(hr) 𝐿

    𝑉 ∗ 3600

    Tt(hr) N. A.

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    15

    Existing Sheet Flow Tt

    Tt(hr)0.007 50𝑛 .𝑃2 . 0.005 .

    29

    L = 50 ftn = ?P2 = ?s = 0.5% = 0.005 ft/ft

    Existing roughness coefficient (n)

    n = 0.40 (max. for woods)

    30

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    16

    P2 = 2-year, 24-hour rainfall

    P2 = 3.33 inches

    31

    Existing Sheet Flow Tt

    Tt(hr) .35 hr 21 minutes

    Tt(hr)0.007 50 0.40 .

    3.33 . 0.005 .

    32

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    17

    Existing Shallow Concentrated Flow Tt

    Tt(hr) 1000

    𝑉 ∗ 3600

    33

    L = 1000 ftV = ?

    Existing estimated velocity (V )

    V = 1.6 ft./sec

    34

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    18

    Existing Shallow Concentrated Flow Tt

    Tt(hr) .17 hr 10.5 min

    Tt(hr) 1000

    1.6 ∗ 3600

    35

    Existing Tc

    31.5 min

    Tc(min) 21 10.5

    36

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    19

    Proposed Sheet Flow Tt

    Tt(hr)0.007 50 .011 .

    3.33 . 0.005 .

    37

    L = 50 ftn = 0.011P2 = 3.33 ins = 0.5% = 0.005 ft/ft

    .02 hr 1.2 min

    Proposed Shallow Concentrated Flow Tt

    38

    L = 1000 ftV = 2.05 ft/sec

    Tt(hr) .14 hr 8.5 min

    Tt(hr) 1000

    2.05 ∗ 3600

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    20

    Proposed TC

    Minimum Tc Allowed:• Rational method = 10 min• NRCS method = 6 min

    Tc(min) 1.2 8.5

    39

    9.7 min

    40

    Sheet Flow Tt

    Shallow Concentrated

    Flow Tt

    Tc

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    21

    41

    Sheet Flow Tt

    Shallow Concentrated

    Flow Tt

    Tc

    Calculate Peak Flow Rates Using the Rational Method

    42

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    22

    Rational Method

    • Rainfall intensity is uniform over the drainage basin during the duration of the rainfall

    • Maximum runoff rate occurs when the rainfall lasts as long or longer than the time of concentration

    • The frequency for rainfall and runoff are equal

    43

    Assumptions:

    Rational Method

    • Used for relatively small drainage areas with uniform surface cover (≤20 acres)

    • Used for urban areas

    • Not applicable if areas of ponding occur

    • Used only to estimate the peak runoff rate

    General Use:

    44

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    23

    Rational Method

    𝑄 𝑐𝑖𝐴

    45

    Equation:Q = peak flow(cfs)c = rational runoff coefficient (dimensionless)𝑖 = average rainfall intensity (in/hr)A = drainage area basin (acres)• Rational method runoff coefficient (c) is a function of the soil type

    and drainage basin slope• Table 10-4 in Section 10 of the Roadway Design Manual published

    by New Jersey Department of Transportation, available online at:

    https://www.state.nj.us/transportation/eng/documents/RDM/documents/2015RoadwayDesignManual.pdf

    Rational Method Equation

    c = rational runoff coefficient

    46

    c

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    24

    Rational Method Equation

    NOAA’s National Weather ServicePrecipitation Frequency Data Server (PFDS)

    𝒊 = rainfall intensity

    47

    Rational Method EquationIDF Curve

    48

    𝒊= ra

    infa

    ll in

    tens

    ity

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    25

    Example Project

    Developer wants to develop a 20 acre site:Proposed:• 100% impervious

    surfaces• HSG ‘A’ soils• 50 ft of sheet flow over

    an area with a 0.5% slope

    • 1000 ft of shallow concentrated flow over an area with a 1% slope

    • No channel flow occurs49

    Existing:• Forested• HSG ‘A’ soils• 50 ft of sheet flow over

    an area with a 0.5% slope

    • 1000 ft of shallow concentrated flow over an area with a 1% slope

    • No channel flow occurs

    1. What is the existing peak runoff rate leavingthe site for the 2-, 10- & 100-year stormevents?

    2. What is the proposed peak runoff rateleaving the site for the 2-, 10- & 100-yearstorm events?

    3. What is the peak runoff rate that is allowedto discharge from the developed site for the2-, 10-, & 100-year storm events?

    50

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    26

    Rational Method

    51

    𝑄 𝑐𝑖𝐴Use the Equation:

    c = ?𝑖 = ?A = 20 acTc = 31.5 min

    Rational Method

    Existing conditionsrational runoff coefficient (c )

    c = 0.08

    52

    c

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    27

    Rational Method

    • 100-year = 4.5 in/hr

    • 10-year = 3.2 in/hr

    • 2-year = 2.4 in/hr

    Existing rainfall intensity (𝒊 )=

    53

    Rational Method2-year = 2.27 in/hr

    10-year = 3.18 in/hr 100-year = 4.39 in/hr

    v

    Existing rainfall intensity (𝒊 )=

    54

    v v

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    28

    Rational Method

    Existing Peak Flow Rates (cfs):

    2-year storm: 𝑄 .08 2.27 20 3.63 cfs

    10-year storm: 𝑄 .08 3.18 20 5.08 cfs

    100-year storm: 𝑄 .08 4.39 20 7.02 cfs

    55

    𝑄 𝑐𝑖𝐴

    Rational Method

    56

    Proposed Peak Flow Rates (cfs):

    2-year storm: 𝑄 .99 3.92 20 78.2 cfs

    10-year storm: 𝑄 .99 5.20 20 103.8 cfs

    100-year storm: 𝑄 .99 6.80 20 135.7 cfs

    𝑄 𝑐𝑖𝐴

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    29

    Rational Method

    Peak Flow Rate Comparison (Q )

    57

    Peak Flow Rate (cfs)

    Design Storm Existing Condition Proposed Condition2-year 3.63 78

    10-year 5.08 104100-year 7.02 136

    Water Quantity Standard

    What is the peak flowrate allowedto discharge from the developed site for the

    2-, 10- and 100-year storms?

    58

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    30

    Water Quantity Standard

    Design stormwater management measures so that the post-construction peak runoff rates for the 2-, 10-, and 100-year storm events are 50, 75, and 80 percent, respectively, of the pre-construction peak runoff rates.

    3rd Option (N.J.A.C. 7:8-5.4(a)3.iii):

    59

    Water Quantity Standard

    Design Reduction Ex. Pk. Allowable Prop.Storm Factor x Flow = Peak Flow Rate

    2-year: 0.50 x 3.63 = 1.82 cfs

    10-year: 0.75 x 5.08 = 3.82 cfs

    100-year: 0.80 x 7.02 = 5.62 cfs

    Allowable peak flow rates:

    60

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    31

    Size a Basin Using the Modified Rational Method

    61

    Modified Rational Method

    • Calculates volume

    • No longer assumes the storm duration is equal to the TC

    • Requires a flowrate leaving the basin to calculate critical storage volume

    Major Differences from Rational Method:

    62

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    32

    Modified Rational Method

    Hydrograph:

    63

    Modified Rational Method

    64Image Source:https://www.nj.gov/agriculture/divisions/anr/pdf/2014NJSoilErosionControlStandardsComplete.pdf

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    33

    Example Project

    65

    Developer wants to develop a 20 acre site:Proposed:• 100% impervious surfaces• HSG ‘A’ soils• 50 ft of sheet flow over

    an area with a 0.5% slope

    • 1000 ft of shallow concentrated flow over an area with a 1% slope

    • No channel flow occurs

    Existing:• Forested• HSG ‘A’ soils• 50 ft of sheet flow over

    an area with a 0.5% slope

    • 1000 ft of shallow concentrated flow over an area with a 1% slope

    • No channel flow occurs

    Use the Modified Rational Method to estimate the required detention volume (critical storage

    volume) to reduce the peak flow rate from the 100-year storm event to the allowable rate.

    Tc = 10 minutes𝒄 = 0.99

    Existing 100-year Peak Flow Rate (𝑸) = 7.02 cfsAllowable 100-year Peak Flow Rate (𝑸) = 5.62 cfs

    66

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    34

    Modified Rational Method

    Develop a Table

    A B C D E F GStorm

    Duration (min)

    Intensity (in/hr)

    InflowRate (cfs)

    RunoffVolume

    (cf)

    Outflow Rate (cfs)

    Outflow Volume

    (cf)

    Storage Volume

    (cf)

    67

    Modified Rational Method

    Column A: Storm Duration

    • Lowest Storm Duration = TC

    • Storm Duration Selection

    AStorm

    Duration (min)

    10153060120180360720

    68

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    35

    Modified Rational Method

    • Storm Intensity Data using NOAA

    • Intensities decrease with increased duration

    A BStorm

    Duration (min)

    Storm Intensity (in/hr)

    10 6.80

    15 5.73

    30 4.39

    60 3.02

    120 1.90

    180 1.42

    360 0.925

    720 0.59269

    Column B: Storm Intensity

    Modified Rational Method

    • Peak flow for each storm duration

    • Q = c 𝒊 A (rational method)

    • For this example:c = 0.99 & A = 20 acres

    • Q = (0.99 x 3.02 x 20) x = 59.8 cfs

    A B CStorm

    Duration (min)

    Storm Intensity (in/hr)

    Inflow Rate (cfs)

    10 6.80 134.6

    15 5.73 113.5

    30 4.39 86.9

    60 3.02 59.8120 1.90 37.6

    180 1.42 28.1

    360 0.925 18.3

    720 0.592 11.770

    Column C: Inflow Rate

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    36

    Modified Rational Method

    71

    • Total runoff volume is area under the hydrograph

    • Column D= Column A x Column C x 60= 10 x 134.6 x 60 = 80,760 cf

    Column D: Runoff Volume A C DStorm

    Duration (min)

    Inflow Rate (cfs)

    Runoff Volume

    (cf)10 134.6 8076015 113.5 102150

    30 86.9 156420

    60 59.8 215280120 37.6 270720

    180 28.1 303480

    360 18.3 395280

    720 11.7 505440

    Modified Rational Method

    72

    Column E: Outflow Rate

    • 80% of the pre-development peak flow rate

    • Outflow rate is constant

    EOutflow

    Rate (cfs)5.625.625.625.625.625.625.625.62

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    37

    Modified Rational Method

    73

    • At each storm duration how much volume is flowing out of the basin

    • Column F= Column A x Column E x 60= 30 x 5.62 x 60 = 10,116 cf

    Column F: Outflow Volume A E FStorm

    Duration (min)

    Outflow Rate (cfs)

    OutflowVolume

    (cf)10 5.620 3372

    15 5.620 5058

    30 5.620 1011660 5.620 20232

    120 5.620 40464

    180 5.620 60696

    360 5.620 121392

    720 5.620 242784

    Modified Rational Method

    74

    • How much must be stored?

    • Column G= Column D - Column F= 156,420 – 10,116= 146,304 cf

    Column G: Storage Volume D F GRunoff

    Volume (cf)

    Outflow Volume

    (cf)

    Storage Volume

    (cf)80760 3372 77388

    102150 5058 97092

    156420 10116 146304215280 20232 195048

    270720 40465 230255

    303480 60696 242784

    395280 121392 273888

    505440 242784 262656

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    38

    Modified Rational Method

    A B C D E F GStorm

    Duration (min)

    Storm Intensity (in/hr)

    Inflow Rate (cfs)

    Runoff Volume

    (cf)

    Outflow Rate (cfs)

    Outflow Volume

    (cf)

    Storage Volume

    (cf)10 6.80 134.6 80760 5.620 3372 7738815 5.73 113.5 102150 5.620 5058 9709230 4.39 86.9 156420 5.620 10116 14630460 3.02 59.8 215280 5.620 20232 195048120 1.90 37.6 270720 5.620 40465 230255180 1.42 28.1 303480 5.620 60696 242784360 0.925 18.3 395280 5.620 121392 273888720 0.592 11.7 505440 5.620 242784 262656

    75

    Resulting Table:

    Modified Rational Method

    76

    A B C D E F GStorm

    Duration (min)

    Storm Intensity (in/hr)

    Inflow Rate (cfs)

    Runoff Volume

    (cf)

    Outflow Rate (cfs)

    Outflow Volume

    (cf)

    Storage Volume

    (cf)10 6.80 134.6 80760 5.620 3372 7738815 5.73 113.5 102150 5.620 5058 9709230 4.39 86.9 156420 5.620 10116 14630460 3.02 59.8 215280 5.620 20232 195048120 1.90 37.6 270720 5.620 40465 230255180 1.42 28.1 303480 5.620 60696 242784360 0.925 18.3 395280 5.620 121392 273888720 0.592 11.7 505440 5.620 242784 262656

    Design Storage Volume Required:

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    39

    Modified Rational Method –Further Evaluation:

    77

    Modified Rational Method

    78

    A B C D E F GStorm

    Duration (min)

    Storm Intensity (in/hr)

    Inflow Rate (cfs)

    Runoff Volume

    (cf)

    Outflow Rate (cfs)

    Outflow Volume

    (cf)

    Storage Volume

    (cf)360 0.925 18.3 395280 5.620 121392 273888420 0.869 17.2 433440 5.620 141624 291816480 0.813 16.1 463680 5.620 161856 301824540 0.757 15.0 486000 5.620 182088 303912600 0.701 13.9 500400 5.620 202320 298080660 0.645 12.8 506880 5.620 222552 284328720 0.592 11.7 505440 5.620 242784 262656

    Final Table:

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    40

    Use the NRCS Methodology (TR-55)

    79

    NRCS Methodology (TR-55)

    • Peak Runoff Rates

    • Runoff Volumes

    • Runoff Hydrographs

    What can it calculate?

    80

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    41

    NRCS Methodology (TR-55)

    𝑃 𝐼𝑃 𝐼 𝑆

    81

    𝑄 = depth of runoff𝑃 = rainfall depth (in)𝐼 = initial abstraction (in), losses before

    runoff begins, where 𝐼 = 0.2𝑆𝑆 = potential maximum retention after

    runoff begins, where 𝑆 = 10Simplified,

    NRCS Runoff Equation (𝑪𝑵 Equation):𝑄 (in)

    𝑃 0.2𝑆𝑃 0.8𝑆𝑄 (in)

    NRCS Methodology (TR-55)

    82

    Curve Numbers (𝑪𝑵):

    • Hydrologic Soil Group (HSG)

    • Land Cover

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    42

    NRCS Methodology (TR-55)

    83

    Hydrologic Soil Groups (HSG):*

    • ‘A’ = Low runoff and high infiltration

    • ‘B’ = Moderately low runoff and infiltration

    • ‘C’ = Moderately high runoff and low infiltration

    • ‘D’ = High runoff and very low infiltration

    *When thoroughly saturated

    84

    Curve Number (CN )

    N.J.A.C. 7:8-5.6(a)2: Presume that the pre-construction condition of a site or portion thereof is a wooded land use with good hydrologic condition

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    43

    NRCS Methodology (TR-55)

    𝑪𝑵 = 98P = 1.2 in.Q = 1.0 in.

    85

    NRCS Methodology (TR-55)

    86

    • N.J.A.C. 7:8-5.6(a)4: In computing stormwater runoff from alldesign storms, the design engineer shall consider the relativestormwater runoff rates and/or volumes of pervious andimpervious surfaces separately to accurately compute therates and volume of stormwater runoff from the site.

    Average 𝐶𝑁 vs. Separate 𝐶𝑁:

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    44

    NRCS Methodology (TR-55)

    87

    • Due to the non-linear character of the equation and thepresence of initial abstraction, averaging pervious and impervious CN can result in errors

    • For the Water Quality Design Storm, 1 acre impervious with𝐶𝑁 = 98 plus 2 acres grass lawn with 𝐶𝑁 = 65 generates runoffvolumes as follows:

    = 1,089 cf, when averaged= 3,811 cf, when calculated separately & then added

    Average 𝐶𝑁 vs. Separate 𝐶𝑁 (cont’d.):

    Example Project

    88

    Developer wants to develop a 20 acre site:Proposed:• 100% impervious surfaces• HSG ‘A’ soils• 50 ft of sheet flow over

    an area with a 0.5% slope

    • 1000 ft of shallow concentrated flow over an area with a 1% slope

    • No channel flow occurs

    Existing:• Forested• HSG ‘A’ soils• 50 ft of sheet flow over

    an area with a 0.5% slope

    • 1000 ft of shallow concentrated flow over an area with a 1% slope

    • No channel flow occurs

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    45

    Use the NRCS Method to calculate the volume generated by this site

    for the proposed condition during the

    Water Quality Design Storm.

    89

    NRCS Methodology (TR-55)

    90

    𝑄 = ?𝑃 = 1.25 in (WQDS)𝑆 = 10

    Proposed Total Runoff Amount:𝑃 0.2𝑆𝑃 0.8𝑆𝑄 (in)

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    46

    NRCS Methodology (TR-55)Curve Number (𝑪𝑵) = 98

    91

    NRCS Methodology (TR-55)

    92

    𝑃 = 1.25 in (WQDS)

    𝑆 = 10 = 10 0.204 in

    𝑄 = . . .. . . = 1.03 in

    Proposed Total Runoff Amount:1.25 0.2𝑆

    𝑃 0.8𝑆𝑄 (in)

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    47

    NRCS Methodology (TR-55)

    ft

    93

    𝑄 = 1.03 in x 𝐴 = 20 ac x , 𝑉 = 74,778 cf

    Proposed Condition Runoff Volume:

    𝑉 𝑄𝐴

    insfac

    Dimensionless Unit Hydrograph

    94

    Synthetic Hydrographs:

    • Developed for determining runoff hydrograph for ungauged watersheds

    • Based on an average of natural watersheds with different sizes and geographic locations

    • 2 are commonly usedo SCSo DelMarVa

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    48

    SCS Dimensionless Unit Hydrograph

    95

    Dimensionless curvilinear unit hydrograph and equivalent triangular hydrograph

    DelMarVa Dimensionless Unit Hydrograph

    • Particularly suited for the flat, coastal areas in Delaware, Maryland, Virginia and New Jersey

    • Not used in all areas of the coastal plain (i.e. redevelopment in coastal plains)

    96

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    49

    Dimensionless Unit Hydrograph

    • SCSo 484 peaking factoro 37.5% of runoff in rising limb

    • DelMarVao 284 peaking factoro 22% runoff in rising limb

    Unit Hydrograph Info:

    97

    Dimensionless Unit Hydrograph

    SCS:

    98

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    50

    Dimensionless Unit Hydrograph

    99

    DelMarVa:

    DelMarVa Dimensionless Unit Hydrograph• Conditions for useo Watershed slope ≤ 5%o Coastal Plain physiographyo Land use is rural or agricultural

    o Significant storage in swales and depressions

    o Not heavily urbanizedo No significant impervious cover

    100

    PhysiographicProvinces of New Jersey

    https://www.nj.gov/dep/stormwater/rainfalldata.htmImagery modified from New Jersey Geological Survey Information Circular, Physiographic Provinces of New Jersey, 2006

  • Two‐Day Stormwater Management Design Review Course, Oct. 29 & 31, 2019

    NJ DEP Division of Water Quality

    51

    DelMarVa Dimensionless Unit Hydrograph

    101

    Physiographic Provinces of New Jersey

    Imagery modified from New Jersey Geological Survey Information Circular, Physiographic Provinces of New Jersey, 2006

    More Information

    Bureau of Nonpoint Pollution ControlDivision of Water Quality401 East State StreetPO Box 420, Mail Code 401-2BTrenton, NJ 08625-420Tel: 609-633-7021www.njstormwater.org

    [email protected]