Calculation of minibandstructure balanced type II GaAsBi...

18
Calculation of miniband structure in strainbalanced typeII GaAsBi/GaAsN superlattice Jinyoung Hwang and Jamie Phillips * Jinyoung Hwang and Jamie Phillips Solid State Electronics Laboratory Department of Electrical Engineering and Computer Science University of Michigan, Ann Arbor, MI, United States *j hilli@ ih d *jphilli@umich.edu University of Michigan Electrical Engineering and Computer Science

Transcript of Calculation of minibandstructure balanced type II GaAsBi...

Page 1: Calculation of minibandstructure balanced type II GaAsBi ...mctp/SciPrgPgs/events/2011/BCS/talk... · Outline Motivations for GaAsBi/GaAsN Type‐II SLS Study Objectives Calculation

Calculation of miniband structurein strain‐balanced type‐II GaAsBi/GaAsN superlattice

Jinyoung Hwang and Jamie Phillips*Jinyoung Hwang and Jamie PhillipsSolid State Electronics LaboratoryDepartment of Electrical Engineering and Computer ScienceUniversity of Michigan, Ann Arbor, MI, United States*j hilli@ i h d*[email protected]

University of MichiganElectrical Engineering and Computer Science

Page 2: Calculation of minibandstructure balanced type II GaAsBi ...mctp/SciPrgPgs/events/2011/BCS/talk... · Outline Motivations for GaAsBi/GaAsN Type‐II SLS Study Objectives Calculation

OutlineOutline

Motivations for GaAsBi/GaAsN Type‐II SLS/ yp

Study Objectives

Calculation Methodology Strain‐Balanced Criteria

Band alignment and Strain effect

Schrödinger Poisson Self Consistent Equation Schrödinger – Poisson Self‐Consistent Equation

Results

Future worku u e o

Conclusion

July 16th, 2010 2University of MichiganElectrical Engineering and Computer Science

Page 3: Calculation of minibandstructure balanced type II GaAsBi ...mctp/SciPrgPgs/events/2011/BCS/talk... · Outline Motivations for GaAsBi/GaAsN Type‐II SLS Study Objectives Calculation

Motivations for GaAsBi/GaAsNMotivations for GaAsBi/GaAsN

Desire narrow bandgap material with effective lattice match g pto GaAs Key for low‐cost GaAs 

technologytechnology

Particularly important for optoelectronic devices such as detectors wheresuch as detectors where thick active regions required

Lasers?

GaAs

GaAsN GaAsBi

GaAs

Lasers

Photodetectors

Solar Cells

July 16th, 2010University of MichiganElectrical Engineering and Computer Science 3

Page 4: Calculation of minibandstructure balanced type II GaAsBi ...mctp/SciPrgPgs/events/2011/BCS/talk... · Outline Motivations for GaAsBi/GaAsN Type‐II SLS Study Objectives Calculation

Motivations for Type‐II SLSMotivations for Type II SLS

Advantages of superlattices – ee Enhance

Bandstructure engineering Effective bandgap Electronic transport Effective

ee EnhanceCarrier transport(barrier tunneling)(miniband conduction)

Electronic transport Controlled by layer thickness

Advantages of GaAsBi/GaAsN

Effective bandgap Increase

g /Type‐II superlattice Effective lattice match to GaAs Minibands in conduction/valence Effective

Minibande

Radiativetransition can

GaAsBi

Minibands in conduction/valence band can be independently controlled

Radiative transitions (lifetime, absorption) can be controlled

bandgap

h

Radiativetransition

Miniband

transition can be controlled by overlap of the minibands

July 16th, 2010University of MichiganElectrical Engineering and Computer Science 4

p )GaAsN

Page 5: Calculation of minibandstructure balanced type II GaAsBi ...mctp/SciPrgPgs/events/2011/BCS/talk... · Outline Motivations for GaAsBi/GaAsN Type‐II SLS Study Objectives Calculation

Study ObjectivesStudy Objectives

Develop method for calculating electronic structurep g

Determine range of transition energies for SLS Strain balanced structures

“Reasonable” Bi and N content (up to 5% Bi and N composition)

Varying thickness for GaAsBi GaAsN layers Varying thickness for GaAsBi, GaAsN layers

Initial objective to determine criteria to achieve “1 eV” material for photovoltaics

July 16th, 2010University of MichiganElectrical Engineering and Computer Science 5

Page 6: Calculation of minibandstructure balanced type II GaAsBi ...mctp/SciPrgPgs/events/2011/BCS/talk... · Outline Motivations for GaAsBi/GaAsN Type‐II SLS Study Objectives Calculation

Simulation MethodologySimulation Methodology

1 Determine precondition of concentrations of Bi and N using the strain‐balanced criteria on a GaAs  substrate  

Strain‐balanced Criteria1

Obtain band edge discontinuity of the heterostructure based on GaAsBi and GaAsN band alignment 

Band alignment of GaAsBi/GaAsN superlattice2

Consider strain effect due to lattice mismatch

Mi ib d l l i i S h ödi P i i3 Simulate energy states in the superlattice using self consistent Schrödinger – Poisson equation Transfer matrix algorithm used to solve Schrödinger equation 

Miniband calculation using Schrödinger – Poisson equation3

July 16th, 2010University of MichiganElectrical Engineering and Computer Science 6

Page 7: Calculation of minibandstructure balanced type II GaAsBi ...mctp/SciPrgPgs/events/2011/BCS/talk... · Outline Motivations for GaAsBi/GaAsN Type‐II SLS Study Objectives Calculation

Strain‐Balanced SLSStrain Balanced SLS

Strain ‐ balanced criteria on GaAs substrate Balancing compressive strain (GaAsBi) and tensile strain (GaAsN)

Condition of zero average in‐plane stress[1]

Results: GaAs1‐xBix / GaAs1‐yNy

t1 (GaAsBi)= t2 (GaAsN) 

Bi (x) N (y)

0.01 0.006

0.02 0.011

0.03 0.017

0.04 0.022

0.05 0.028

July 16th, 2010University of MichiganElectrical Engineering and Computer Science 7

[1] N. J. Ekins‐Daukes, K. Kawaguchi, and J. Zhang, Crystal Growth & Design 2, 287 (2002)

Page 8: Calculation of minibandstructure balanced type II GaAsBi ...mctp/SciPrgPgs/events/2011/BCS/talk... · Outline Motivations for GaAsBi/GaAsN Type‐II SLS Study Objectives Calculation

Strain‐Balanced SLSStrain Balanced SLS

Critical thickness of GaAsBi and GaAsN on GaAs substrate

2000

GaAsBiGaAsN | |

 

1000

1500

GaAsN

knes

s (Å

)

| |

500

1000

Crit

ical

thic

k

100 Å

0 0.01 0.02 0.03 0.04 0.050

Composition of Bi and N

July 16th, 2010University of MichiganElectrical Engineering and Computer Science 8

Page 9: Calculation of minibandstructure balanced type II GaAsBi ...mctp/SciPrgPgs/events/2011/BCS/talk... · Outline Motivations for GaAsBi/GaAsN Type‐II SLS Study Objectives Calculation

Band alignment – Bi N alloysBand alignment  Bi, N alloys

GaAsBi GaAsN

Conduction and Valence band alignment[2] Conduction and Valence band alignment[3]

GaAsBi GaAsN

Conduction band of GaAs Conduction band of GaAsConduction band of GaAs Conduction band of GaAs

HH/LH bands of GaAs HH/LH band of GaAs1‐yNy

July 16th, 2010 9University of MichiganElectrical Engineering and Computer Science

[2] K. Alberi, J. Wu, W. Walukiewicz, K. M. Yu, O. D. Dubon, S. P. Watkins, C. X. Wang, X. Liu, Y. –J. Cho, and J. Furdyna, Phys. Rev. B. 75, 45203 (2007)[3] W. Shan, W. Walukiewicz, K. M. Yu, J. W. Ager III, E. E. Haller, J. F. Geisz, D. J. Friedman, J. M. Olson, S. R. Kurtz, H. P. Xin, and C. W. Tu, Phys. Stat. Sol 223, 75 (2001)

Page 10: Calculation of minibandstructure balanced type II GaAsBi ...mctp/SciPrgPgs/events/2011/BCS/talk... · Outline Motivations for GaAsBi/GaAsN Type‐II SLS Study Objectives Calculation

Band alignment‐ Bi N AlloysBand alignment Bi, N Alloys

General Band alignment of GaAs1‐xBix (x=0~0.05) , GaAs1‐yNy (y=0~0.05), y yand GaAs

E (GaAs) = 1 424 eVGaAs BiGaAs NGaAs GaAs Eg(GaAs) = 1.424 eVGaAs1‐xBixGaAs1‐yNyGaAs GaAs

July 16th, 2010University of Michigan Electrical Engineering and Computer Science 10

Page 11: Calculation of minibandstructure balanced type II GaAsBi ...mctp/SciPrgPgs/events/2011/BCS/talk... · Outline Motivations for GaAsBi/GaAsN Type‐II SLS Study Objectives Calculation

Band alignment ‐ Strain effectBand alignment  Strain effect

Strain effect on band alignment

⁄  

g GaAsBi: Compressive strain / GaAsN: Tensile strain

Pseudomorphically grown on a (100)‐oriented substrate

⁄         

CB moving upward

Eg(GaAs) = 1.424 eVGaAsBi

GaAsNGaAs GaAs

CB moving downward

Heavy hole band

Light hole bandLight hole band

y

July 16th, 2010University of MichiganElectrical Engineering and Computer Science 11

Heavy hole bandHH and LH separated

Page 12: Calculation of minibandstructure balanced type II GaAsBi ...mctp/SciPrgPgs/events/2011/BCS/talk... · Outline Motivations for GaAsBi/GaAsN Type‐II SLS Study Objectives Calculation

Electronic Structure CalculationElectronic Structure Calculation

Coupled Schrödinger – Poisson Equation[4]p g q

Generate V(x) and ρ(x) Solve the Schrödinger equation for Ei and Ψi

Compute N(Ei) assuming Fermi distribution

Calculate charge density

Generate band profile from the charge 

density

Compare with V(x)

DONE

Solving Schrödinger equationC l l bb d i h l i Calculate subband structure in the superlattice

Transfer matrix approach[5] used 

July 16th, 2010University of MichiganElectrical Engineering and Computer Science 12

[4] C. H. Fischer IV, Ph.D. dissertation. University of Michigan (2004)[5] E. Anemogiannis, E. N. Glytsis, and T. K. Gaylord, IEEE Journal of Quantum Electronics 29, 2731 (1993)

Page 13: Calculation of minibandstructure balanced type II GaAsBi ...mctp/SciPrgPgs/events/2011/BCS/talk... · Outline Motivations for GaAsBi/GaAsN Type‐II SLS Study Objectives Calculation

Miniband structure of SLSMiniband structure of SLS

Miniband of GaAs0 96Bi0 04 / GaAs0 979N0 0210.96 0.04 / 0.979 0.021

Layer thicknessGaAs0.96Bi0.04GaAs0.979N0.021

40 Å40 Å

# f l 25# of layers 25

Total thickness of SLS 100nm

Effective

GaA

s

GaA

s

band gap 1.0011 eV

July 16th, 2010University of MichiganElectrical Engineering and Computer Science 13

Page 14: Calculation of minibandstructure balanced type II GaAsBi ...mctp/SciPrgPgs/events/2011/BCS/talk... · Outline Motivations for GaAsBi/GaAsN Type‐II SLS Study Objectives Calculation

Transition energy of SLS

Transition energy range for different Bi composition

Transition energy of SLS

gy g pComposition of Bi and N: 0 ~ 5%

12

1.3

1.4

1.5

rgy

(eV

)

Bi(1%): 1.40 ~ 1.20eV

0.9

1

1.1

1.2

Tran

sitio

n E

ner

Bi(2%): 1.37 ~ 1.01eVBi(3%): 1.33 ~ 0.88eVBi(4%): 1.30 ~ 0.80eV

020

4060

80100

020

4060

80100

0.7

0.8

T

Bi(5%): 1.26 ~ 0.72eV

100

July 16th, 2010University of MichiganElectrical Engineering and Computer Science 14

Page 15: Calculation of minibandstructure balanced type II GaAsBi ...mctp/SciPrgPgs/events/2011/BCS/talk... · Outline Motivations for GaAsBi/GaAsN Type‐II SLS Study Objectives Calculation

Transition energy of SLS

Transition energy range for different Bi composition

Transition energy of SLS

1.6

gy g p

1

1.2

1.4

n E

nerg

y (e

V)

GaAs

0

500

50

0.8

Tran

sitio

n

GaAsBi/GaAsN SLS

100100

July 16th, 2010University of MichiganElectrical Engineering and Computer Science 15

Page 16: Calculation of minibandstructure balanced type II GaAsBi ...mctp/SciPrgPgs/events/2011/BCS/talk... · Outline Motivations for GaAsBi/GaAsN Type‐II SLS Study Objectives Calculation

ResultsResults

Thickness of individual layer vs. transition energy with 

1.6

0.8

y gydifferent N and Bi composition (t1,GaAsBi = t2,GaAsN)

1.2

1.4

rgy

(eV

)

1

0.9

h(um

)Bi: 1%

1

1.2

rans

ition

Ene

r

1 41.31.2

1.1

Wav

elen

gth

1eVBi: 2%

Bi: 3%

Bi: 4%

Bi 5%

20 0 60 80 1000.6

0.8

Tr

2

1.61.51.4Bi: 5%

20 40 60 80 1000.6

Thickness (A)

July 16th, 2010University of MichiganElectrical Engineering and Computer Science 16

Page 17: Calculation of minibandstructure balanced type II GaAsBi ...mctp/SciPrgPgs/events/2011/BCS/talk... · Outline Motivations for GaAsBi/GaAsN Type‐II SLS Study Objectives Calculation

Future workFuture work

Carrier transport simulationp Tunneling probability 

Carrier scattering probability via Monte‐Carlo simulation

D i l i i l d l l di i Determine electron transport in vertical and lateral directions

Radiative transitions Wavefunction overlap Wavefunction overlap

Optical absorption/recombination lifetimes

Compare with experimental data Material parameters, band offsets, etc, used in simulation

Experimental SLS structures

July 16th, 2010University of MichiganElectrical Engineering and Computer Science 17

Page 18: Calculation of minibandstructure balanced type II GaAsBi ...mctp/SciPrgPgs/events/2011/BCS/talk... · Outline Motivations for GaAsBi/GaAsN Type‐II SLS Study Objectives Calculation

ConlclusionsConlclusions

Electronic structure of GaAsBi/GaAsN superlattices were calculated for varying layer thickness and alloy composition

GaAsBi/GaAsN superlattices offer a wide range of effective bandgap( 0 7 1 4 V) f i b l d G Aenergy (~0.7 – 1.4 eV) for strain‐balanced structures on GaAs

Attractive for variety of optoelectronic devices, and need further experimental and theoretical research effortsexperimental and theoretical research efforts

This work is supported by the Center for Solar and Thermal Energy Conversion, an Energy Frontier Research Center funded by the Department of Energy Office of Basic Energy Sciences

July 16th, 2010University of MichiganElectrical Engineering and Computer Science 18

Frontier Research Center funded by the Department of Energy Office of Basic Energy Sciences