Cairn Cross 02

download Cairn Cross 02

of 12

Transcript of Cairn Cross 02

  • 7/24/2019 Cairn Cross 02

    1/12

    T H E F A T E O F R E S I D U A L S O L V E N T I N D R Y I N G C O A T I N G S : C A N I T G E T

    T R A P P E D A N D H O W ?

    Ri c h ar d Al l an C a i m c r oss , D r e xe l Un i ve r s i ty , Ph i lad e l p h ia , PA

    A b s t r a c t

    A c om m on goa l i n i n d u str ia l d r y in g o f p o l ym e r so l u t i on c oa t i n gs i s to r e d u c e th e re s id u a l so l ve n t

    content RS C) to a spec i f ied leve l . Industr ia l dryers cons is t of a ser ies of zon es op erated at d i f ferent a ir

    te m p e r atu r e s an d a i r f l owr ate s to m e e t th e RS C sp e c i f i c a t i on s , an d to p r od u c e d e fe c t - f r e e c oa t i n gs . A

    c om m on ob se r vat i on i s th a t, wh e n d r y i n g a t a c on s tan t te m p e r atu re , th e r e s id u a l so l ve n t c on te n t p la te au s

    and the drying rate e ffec t ive ly drops to zero. Often the RSC can be reduced by further increas ing the

    tem p e r atu r e. In h om oge n e ou s p o l ym e r so l u t i on s ab ove th e g las s t r an s it ion te m p e ratu r e o f th e p o l ym e r ,

    th e ob se r ve d p l a te au i n RS C i s ac c u r ate ly p r e d i c te d b y F i c k i an d i f fu s ion wi th a c on c e n tr a t ion -d e p e n d e n t

    d i f fu s i o n c o e f f i c i e n t . W e h a v e d e v e l o p e d a s im p l e m o d e l w h i c h p r ed i ct s th e d ep e n d e n c e o f R S C o n

    temperature , coa t ing th ickness , an d th e d i f fus ion propert ies of the solut ion . In th is case , so lv ent i s

    re tained by the d i f fus iona l res i s tance to mass transfer , and the d i f fus ional res i s tance can be low ered b y

    increas ing tem perature .

    H owe ve r , th e r e ar e n u m e r ou s c l a i m s th a t th e RS C c an a l so b e r e d u c e d b y u s i n g m i l d e r d r y i n g

    cond i t ions , e .g . low er ing air f low, low er ing temperature or part ia l ly saturating the a ir wi th solven t vapor .

    S u c h b e h av i or i s an o m a l ou s an d c an n ot b e p r e d i cte d b y F i c k i an d i f fu s ion ; w e c a l l th i s b e h av i or

    anom a lou s sk i n n i n g .

    W e h a v e m e a s u re d a n o m a l o u s s k i n n i n g in P M M A / a c e t o n e c o a t in g s a n d h a v e

    d e ve l op e d a n on -F i c k i an m od e l wh i c h p r e d i c t s th e an om al ou s b e h av i or .

    I n t r o d u c t i o n

    D r y i n g P e r i o d s

    Fi gu r e 1 d e p i c ts an i n d u s tr i al c oa t i n g sys te m c on s i s t i n g o f a c oa t i n g s ta t ion an d tw o z on e s o f a i r

    i m p i n ge m e n t d r y i n g ove n s ; so m e d r y i n g a lso oc c u r s b e tw e e n th e c oa t i n g s ta t i on and th e d r y in g ove n s i n

    a r eg i on o f u n c on tr o ll e d , s l ow d r y in g . T h e gr ap h i n F i gu r e 1 d e p i c t s typ i ca l p r o f i le s o f ove n an d c oa t in g

    temperatures , drying rate , and res idual So lvent in the coat ing as the co at ing p asses from the coa t ing

    stat ion through the drying ovens . Th e trends in coat ing tem perature , drying rate, and res idual so lvent

    exhib i t 4 character is t ic drying per iods that are often observ ed in drying o f po lym er solut ion coat ings: 1)

    wa rm-up , 2) near ly-con stant rate drying, 3) fa l l ing-rate drying, and 4) d i f fus iona l p lateau .

    T h e

    w a rm u p p e r i o d

    corresponds to the in i t ia l trans ients that occur as the co at ing enters a new

    d r y i n g z on e . In th is p e r i od e vap or at ive c o o l i n g i s o f te n s i gn i f ic an t an d c an e ve n c au se a d r op in c oa t i n g

    temperature. The

    nea r l y con s t a n t r a t e

    per iod corresponds to a per iod of rapid drying, where the drying

    rate i s control led by mass transport in the drying gas and the solvent concentrat ion i s near ly uni form

    through the coat ing. Du r ing the near ly-constan t rate per iod , the rate of heat transfer to the coat ing i s

    b a l an c e d b y th e r a te o f e vap or at ive c oo l i n g su c h th a t th e c oa t i n g te m p e r atu r e an d d r y in g r a te r e m ai n

    near ly constant . H ow ever , as so lvent con centrat ions fa l l , the internal res is tance to so lvent transport by

    di ffus ion r i ses and a fa l l ing-rate per iod ensues .

    8 5

  • 7/24/2019 Cairn Cross 02

    2/12

    Initial

    Transients

    Constant

    R a t e

    Per iod

    Fal l ing R a t e

    Per iod

    Fal l ing R a t e

    Per iod

    c

    0

    .=

    o 0.8

    g

    1.1,.

    E

    = 0 .6

    e ~

    0 . 4

    o

    m

    .~ 0 2

    I / 1

    R Y I N G

    R T E

    100

    90

    80

    l 70 . . . .

    tO

    6

    o

    I i f f u s i o n a l

    4

    I P l a t e a u s

    I 3 o ~

    F- -4... \ 0

    . I L 0

    o . . . .. . s . v . . v . . v . .. .. . v

    ~ ' . . . . . . . " : ' " " ' ~ " " : : " : ' " : ~ " ~ " . . . .. . . .. . . .. . . .. ' ~ ' ' ~ " ' > ' ~

    :

    . . . .. . . . .. : " : ' . . . . . . . ? . : : ? ' . - ~ - : " ~ . . . . . . . I . . . . . . ~ : " . ' : . :- - ' . '? - : - : . : .' . ~. . . . . ~ : - - : " . ' : . : - : - : ~ . . . . . . ' : : ': ' . - : - :- : - : ' ? : - - ': ' : : '. ' - ' .. . . . . _ " _ ' ~ - " : ~ - : - : : - : '_ ' ~. . . . . . . . .

    . . . . . . . : . . .. . .. . . . . . ' ~ " ~ : ~ , . : , ' . ~ ' " ~ : : . : ' % - - ' - - ; . - : - - .. : i - - - - .~ , . ; ~ : . . . ~ .: - - : - : :: . ' -. .. .. . . ,< ,. ., -, -; ~. .- :- -' ,- ,~ , ~ ~

    , , -

    Z O N E Z O N E

    Figure 1.

    Schemat ic o f a two-zone indus tr ia l d ryer wi th typ ica l p rof i les o f tempera ture d ry ing ra te

    and residual solvent con tent along the dryer length.

    he fa l l ing ra te per io d corresponds to a per iod in which d ry ing becomes d i f fus ion cont ro l led and

    drying rates asym ptotically approach zero. In this period the solvent concentrat ion at the surface of the

    coating drops sharply to reach equ il ibrium with the solvent vapor in the drying gas and there is typica lly

    a steep gradient in solvent concentrat ion near the surface of the coating. In poly me r solution coatings

    the fal l ing rate period dominates because the diffusion coefficient for solvent transport through a

    poly me r drops by several orders of ma gnitude as solvent departs . An other characteris t ic feature often

    observed in drying of poly me r solution coatings is a diffusional plateau. A di f fus iona lp la teau

    correspond s to the later part of the fal ling rate period wh ere the dryin g rate becom es negl igible while a

    signif icant amo unt of residual solvent remains in the coating.

    The d urat ion and magnitude o f each o f these periods during drying of a polym er solut ion coa t ing

    depend on the operating condit ions and phys ical propert ies of the coat ing. Ho wev er, in polymer

    solut ion coat ings , the internal res is tance to mass transfer caused by a d if fus ion coeff ic ient that drops

    several orders of m agnitude during drying leads to a fa l l ing rate period and a d if fus ional p lateau that

    controls the f inal res idual solvent . H ence in des ign o f dryers and choice of operat ing con dit ions , i t i s

    important to understand the relat ionship betw een dif fus ional res is tance and residual solvent . The

    dif fus ional res is tance can be reduced by rais ing d if fus ion coeff ic ients for exam ple by rais ing

    temperature) , changing solvents , or reducing f i lm thickness .

    8 6

  • 7/24/2019 Cairn Cross 02

    3/12

    D i f f u s i o n i n P o l y m e r - S o l v e n t S o l u t i o n s

    Du ring drying, so lvent must 1) d i f fuse to the surface of the coat ing, 2) evaporate into the

    d r y i n g gas , an d 3 ) b e c on ve c te d aw ay fr om th e c oa t i n g su r fac e b y th e d ry i n g gas . T h e ra te o f

    e vap or at ion an d r e m ova l f r om th e c oa t i n g su r face i s typ i c a l l y d e sc r i b e d b y a m ass t r ans fe r c oe f f i c i e n t

    formulat ion:

    E - C ( p s ,~ ~ - P s , - )

    1 )

    R T

    W here E i s the evaporation rate, k i s a m ass transfer coeff ic ien t , p s ~ . - f i s the part ia l pressure of so lvent in

    the gas at the coat ing surface , an dp s ,~ i s the part ia l pressure of so lv ent in the drying gas . The so lvent

    partia l pressure in the gas at the coat in g su rface i s in equ i l ibr ium with the solv ent in the coat ing at the

    surface; th is equi l ibr ium is often descr ibed us ing the solvent ac t iv i ty at the coat ing surface:

    P s u y - P s v p a

    2 )

    Where the vapor pressure , Ps v ap i s on ly a funct ion of temperature and the ac t iv i ty , a , i s on ly a funct ion

    of so l ve n t c on c e n tr a t ion .

    The mass transfer coeff ic ient , so lvent vapor pressure , and solvent ac t iv i ty comprise the external

    res i s tance to so lvent transport. The external res i s tance determ ines drying rate in the warm-up per iod and

    constant rate per iod . In the fa l l ing-rate per iod , the solven t part ia l pressure at the coat ing surface

    becomes near ly equal to the solvent part ia l pressure in the drying gas , and the value of the mass transfer

    coeff ic ien t bec om es unimp ortant . The ma ss transfer coeff ic ie nt i s re lated to the intens i ty of the a ir f low

    in the dryer and proport ional to the heat transfer coeff ic ie nt in the drying ga s . In the fa l l ing rate per iod

    the heat transfer coeff ic ien t i s often important becau se the rate o f chan ge o f temperature of the coat ing i s

    d ic tated by the heat transfer coeff ic ient .

    1 . E 0 5

    A

    N

    l = 1 . E 0 6

    .1

    C

    ~ 1 . E 0 7

    m

    Q

    0 1 E 0 8

    C

    0

    m

    1 . E 0 9

    1

    1 C

    1 . E 1 0

    0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 5 0 . 6

    S o l v e n t M a s s r a c t io n

    Figure 2 .

    Con c e n tr a t ion an d te m p e r atu r e d e p e n d e n c e o f th e d if fu s i on c oe f f i c i e n t for p o l y v i n y l

    ace tate )-to luene solut ions .

    8 7

  • 7/24/2019 Cairn Cross 02

    4/12

    onstant Rate Model

    Heat F lo w = Ev ap o r a t iv e Co o l in g

    I

    Lumped Parameter Model

    Temperature Solvent Con c. niform

    th r o u g h Coating

    d T/d t = H ea t F lo w - Ev ap o r a t iv e Co o l in g

    Diffusion Transport Mod el

    I n tern a l Ex tern a l M ass Tr an s f e r

    Resistances

    Pa r t ia l D i f feren t ia l eq u a t io n s f o r Cs T

    R e s i d u a

    Solvent

    Constant

    R a t e

    Model

    / umped

    \ k P a r a m e t e r M o d e l

    \ ~ ~ / Diffusion

    T i m e

    Figure 3.

    Hierarchy o f mathem atical models for predict ing drying of polymer solut ion coat ings (a)

    f low diagram indicat ing model complexi ty and (b) schematic of residual solvent

    predictions from different models.

    As discussed above, the internal diffusional resistance to mass transfer normally controls the

    f inal residual solvent in a dr ied polym er solut ion coat ing. In homogeneo us polym er solut ions above

    glass-t ransit ion temperature o f the polymer, solvent f lux is normally descr ibed by Fic k 's Law:

    J s - - D d Cs

    (3)

    dx

    W he re js is the flux of solvent in the x direction, D is the mutu al diffusion coefficient, and

    Cs

    is the

    solvent concentration. The diffusion coefficient

    D Cs, T)

    is a material pro perty that cha racterizes the rate

    at wh ichso lven t can mov e through the polymer. As show n in Figure 2, the diffusion coeff ic ient is a

    strong function of concen tration and temp erature [Zielinski 1992]. The steep drop of diffusion

    coeff icients a t low solvent concentration is a dom inant cause o f excessive residual solvent in drying

    polymer-solvent coat ings. The diffusional resis tance is proport ional to the square of the coat ing

    thickness an d inversely propo rtional to the diffusion coefficient. So, as residual solven t drops in the

    falling rate period, diffusion al resistance rises sharply and cau ses the diffusional plateau.

    M a t h e m a t i c a l M o d e l s o f Dr y in g Co a t in g s

    Figure 3 depicts a hierarchy of drying models in terms of the com plexi ty of the model and the

    amount of physical property data needed to solve the models . This sect ion reviews br ief ly the s tandard

    models that have been used to predict residual solvent in drying polyme r coat ings.

    L u m p e d P a r a m e t e r M o d e l s

    In lumped param eter models , the solvent concentration and temperature are assumed uniform

    throug h the coating thickness. This leads to substantial simplification of ma ss and energy balances on

    the coating and neglects the diffusional resistance to drying. Con stant rate drying models further

    simplify the mathem atical problem b y assum ing a pseudo-steady s ta te ; then the coat ing temperature is

    determined from a balance of the ra te o f heat t ransfer from the gas phase and the ra te of evaporat ive

    cooling due to evaporation. In a constant-rate model, the residual solvent content decreases linea rly to

    zero as show n in Figure 3b. A constant-rate m odel is applicable to the start of drying, but loses accurac y

    if diffusional resistance becom es significant or if the solvent activity chang es significantly. Con stant

    rate models are mo st accurate for drying of particulate system s such as sand and clay [van Brakel 1980].

  • 7/24/2019 Cairn Cross 02

    5/12

    Lum ped parameter mo dels a re accura te fo r a longer por t ion of the dry ing t ime than cons tan t ra te

    mod els , because they al low for changes in coating temp erature, solvent vapo r pressure, and solvent

    activity. Lum ped param eter models are useful for predict ing init ia l drying in the nearly-constant rate

    period [Gutoff 1996]

    F i c k i a n D i f f u si o n M o d e l s

    By far , the most successful drying models for predict ing residual solvent in binary polymer-

    solvent coatings have been diffusion models . In these models , solven t transport occurs by diffusion

    using Fick 's Law (equation (3)) with a concentrat ion and temperature dependent diffusion coefficient .

    Conservation o f mass and en ergy in the coating-substrate system leads to coupled equations for

    evolution of the temperature , solvent concentrat ion, an d coating thickness. Diffusion mod els require

    solving a non-l inear part ia l differential equation subject to f lux boun dary condit ions at the surfaces o f

    the coating. Becau se the coating and substrate are thin, the temperatm'e evolution can typically be

    predicted by a lumped-parameter model, because temperature variat ion in coating/substrate is often

    small ( i.e . less than 1 C). The result ing equations can be solved nume rically using Finite Difference or

    Finite Element techniques, which require a s ignif icant amount of expert ise to apply to these problems.

    Never the less , d i f fusion dry ing models have been so lved by many researchers fo r many b ina ry

    polymer solution coatings with good comparison to experimental measurements [e .g. Yapel 1988,

    Caimcross 1995 , Pr ice 1997 2000 , Alsoy 1998] . W ith advances in comput ing speed and

    perform ance, i t is now possible to solve a com plete transient diffusion m odel for drying of a binary

    polym er so lut ion coa t ing on a persona l com puter in less than one minute . The pr imary cha l lenge in

    apply ing these mo dels i s de te rmin ing accura te va lues o f the phys ica l p roper ties needed in the models .

    Extension of the Fickian diffusion models to mult icomponent systems (i .e . two or more solvents

    or two or more polymers ) requires addit ional phys ical parameters that are diff icult to measure. There is

    not currently agreement about the correct equations to describe dependence of diffusion coefficients on

    comp osit ion in mu lt icomp onent sys tems [Also y 1999, Zelinski 1999]. This wil l l ikely be an area of

    signif icant research effort in the futu re.

    N o n F i c k i a n M o d e l s

    The Fickian diffusion models discussed above are based on concentrat ion gradients being the

    only driving force for solvent diffusion. How ever, in solutions with polym ers that pass through a glass

    transit ion during drying, s tresses develop that can also contribute to solvent transport . Stresses aris ing

    due to swel l ing in g lassy po lym er coa t ings have been shown to cause anomalous so lven t transpor t in

    so~ t ion expe r im ent s - lead ing to so-ca lled Case I I d i f fusion [Thomas W indle 1980 1982 , Fu

    Dum ing 1993]. There a re cur ren t ly a couple of compet ing approaches for modify ing the d i f fus ion

    mod els to account for the effect of passing thro ugh a glass transit ion. One appro ach is to modify the

    concen trat ion-depend ence of the diffusion coefficient in the glassy region [Haj Rohm dane 20 01].

    An other appro ach is to develop a new con sti tut ive equation for the solvent transport which includes a

    stress-driven diffusion term; then an addit ional equation is required to determ ine how the stress in a

    coa t ing deve lops and re laxes dur ing dry ing [Caimcross Dum ing 1996 , Vin jamur 2001 , Edwards 1998

    1999].

    8 9

  • 7/24/2019 Cairn Cross 02

    6/12

    Figure 4.

    0

    m

    o a

    IJI .

    w

    w

    m

    O 8

    e~

    o 4

    0

    D

    ~

    0 2

    m

    0

    1 2 3 4 5

    T i m e s

    Predictions of residual solvent content versus t ime for poly(vinyl acetate)- toluene

    coat ings dr ied at a ser ies of different oven tem peratures using a diffusion model solved

    with the f mite eleme nt method. At long times, the residual so lvent reaches a di f fus ional

    p l a t eau and the only effect ive wa y to reduce the residual solvent is by increasing

    temperature. [Vadapalli , 2001 ]

    Exam ples o f Predic t ions from ry ing M ode ls

    Goa ls o f ry ing M ode ls

    The models discussed above have been used to accurately predict residual solvent levels in

    drying coatings. In addition to predicting residual solvent, drying mode ls can also predict defects

    relevant to coat ing processes . The key issue is developing a mathematical expression for the onset o f

    defects, wh ich can be evaluated based on results from the model. Fo r example, Ca imc ross et al. (1995)

    predicted onset of bl ister defects due to solvent boil ing; when ever the tem perature o f the coat ing was

    higher than the bubble-point temperature o f the coat ing (at i ts current com posi t ion) , the d rying model

    indicated formation o f blister defects. Such a criterion does not accou nt for the rate of bubb le growth,

    but merely indicates the ini t ia t ion o f bubble form ation. The predict ions m atched q ual i tat ively with

    experimental results . Caimcross e t al . (1995) and Price and Caim cross (2000) used the mathem atical

    model of bl is ter formation as a constraint on the choice of acceptable operat ing condit ions and used a

    drying model to determine the opt imal condit ions to m inimize the residual solvent while avoiding bl is ter

    defects.

    There are other measures of dryer performance that can be predicted by drying models; for

    exam ple energ y usage, suscep tibility to vap or explosion, and overall econom ics. Au st et al. (1997) used

    the lower explosion l imit as a constraint on vapor concentrat ions predicted from a d rying model t o

    develop additional dryer design heuristics. The limitations impos ed by explosion limits favor highe r air

    velocities.

    g o

  • 7/24/2019 Cairn Cross 02

    7/12

    1 . 4 x 1 0 4

    1 . 2 x 1 0 4

    E

    0

    ,br

    c(u

    >

    .m .

    0

    ( n

    r a m

    0

    . l

    ( /)

    G)

    r

    1 0 4 '

    8 x 1 0 5,

    6 x I 0 5 '

    4 x 1 0

    P s e u d o - S t e a d y S t a t e

    . , ,

    M o d e l

    T r a n s i e n t

    D i f f u s i o n M o d e l

    3 1 0 3 2 0 3 3 0 3 4 0 3 5 0

    T e m p e r a t u r e K

    Figure 5 . Com p ar i son o f p r e d ic t i on s o f r e s id u a l so l ve n t a t lon g t i m e i .e . i n th e d i f fu s i on a l p l a teau )

    ve r su s ov e n te m p e r atu r e for a p se u d o-s te ad y-s ta te d i f fu s ion m od e l an d a c om p l e te

    tr an si e nt d i ffu s i on m od e l . Pr e d i c ti on s for a p o l y v i n y l ac e ta te )- to l u e n e c oa t i n g wi th 100

    l .tm dry f i lm th ickness [Vad apal l i , 20 01 ]

    A p h i l o sop h i c a l goa l o f m od e l i n g i s to a i d in d e ve l op i n g i n tu it i on ab ou t th e a f fec t o f op e r a t i n g

    parameters on dryer performance and to reduce the number of exploratory exper iments required to

    d e s i gn / op t i m i z e a d rye r. W i th a l l m o d e l s , i t i s n e c e s sar y to tak e i n to ac c ou n t th e p h ys i ca l p h e n om e n a

    th at ar e n o t i n c l u d e d i n th e m od e l wh e n ap p l y i n g th e c on c l u s i on s o f th e m od e l to p r ac ti c a l p r oc e s se s .

    P r e d i c t i o n s o f R e s i d u a l S o l v e n t a t V a r i o u s O p e r a t i n g C o n d i t i o n s

    Fi gu r e 4 d i sp l ays p r e d i c t ion s o f re s i d u a l so lve n t m ass o f so l ve n t p e r m a ss o f c oa t i n g ) i n a d r y i n g

    p o l y v i n y l ac e ta te ) -to l u e n e c oa t i n g i n a s i n g l e -z on e d r ye r u s i n g a F i c k i an d i f fu s ion d r y i n g m od e l .

    Po l y v i n y l ac e ta te ) h as a g l a s s t r an s it ion te m p e r atu r e o f ab ou t 32 C an d F i c k i an d i f fu s i on h as b e e n ~

    sho wn to be accurate in th is system at the temperatures cons idered here . The predic t ions sh ow that as

    the oven temperature increases the drying rate and f inal res idual so lvent content decrease monotonical ly .

    In addi t ion , a l l the predic t ions sho w a d i f fus ional p lateau in the fa l l ing rate per iod wh ere the drying rate

    b e c o m e s n e g l i g i b l e I t i s apparent from these predic t ions and others that once a d i f fus ional p lateau i s

    reached, the only e ffec t ive w ay to reduce the res idual so lvent i s by increas ing the a ir and coat ing)

    temperature.

    The mode l predic t ions a l so show that the pr ior temperature h is tory does not affec t the res idual

    solven t leve l in the d i f fus ion al p lateau i .e . it does n ot matter ho w quiCkly the temperature was raised to

    the f inal temperature , the res idual so lvent leve l in the d i f fus ional p lateau only depends on the f inal

    91

  • 7/24/2019 Cairn Cross 02

    8/12

    0 . 0 9

    C

    o 0 . 0 8

    g 0 0 7

    ~ 0 0 6

    I ~ 0 . 0 5

    u_ 0 04

    0 .0001 0 .001 0 .01 0 .1 1

    V e l o c i t y a c r o s s c o a ti n g m / s )

    Figure 6 .

    Exper imen ta l m easu remen t o f t r app ing sk inn ing in PMM A-ace ton e coa t ings d r ied in a

    Hig h Airf low Dryin g Experiment . The dry f i lm th ickness is approxim ate ly 15 ~tm and

    th e d ry ing tempera tu re i s 50 C. [Vin jamur 2001 ]

    temperature) . Becau se the d iffusion mod els require s ignif icant computat ional effor t , a s impler metho d

    was d evelope d to est imate the res idual so lvent level us ing a pseud o s teady-s ta te m odel (PSS). In the

    PSS model , the d iffusional res is tance to solvent t ransport to the coat ing surface was assumed to be

    contro l led by a th in low-concen tra t ion layer near the coat ing surface; below th is layer , the solvent

    concentra t ion prof i le was presum ed to be fa ir ly f iat . Beca use the PSS mod el assume s a s teady-s ta te

    profi le , the model can only predic t the res idual so lvent content a t long t imes and cannot determine how

    long i t takes to get there . F igure 5 shows a comparison b etw een predic t ions from the PSS mod el and a

    transient d iffusion model . The PSS m odel consis tent ly predic ts a h igher res idual so lvent level , but

    reproduce s the t rends accura te ly . Con sequently , the PSS m odel could be used as a rough, quick

    calcula t ion of what ove n temperature is neede d to achieve a desired res idual so lvent content .

    A n o m a l o u s S k i n n i n g

    A cla im com mo nly reported in the drying l i te ra ture is tha t rapid drying can lead to formation o f a

    skin that t raps solvent with in the coat ing . Furtherm ore i t is of ten c la imed that s lower drying can avoid

    the skin and resul t in lower f inal res idual so lvent levels; we wil l refer to th is observat ion as anomalous

    s nning becau se i t is contrary to in tu i tion - i .e . in anomalous skinning, low er dr iv ing force leads to

    higher so lvent removal . The predic t ions in F igures 4 and 5 dem onstra te a type of sk inning wh ere the

    res idualsolvent content s tops changing (on pract ica l t ime scales) while there is s t i l l s ignif icant res idual

    solvent in the coat ing , but the resul ts in F igures 4 and 5 are not anomalous.

    Ho we ver , F ick ian d ry ing mode ls (w i thou t chemica l reac t ions o r phase t rans it ions) canno t p red ic t

    anom alous sk inning as def ined above - i .e . even though Fick ian d iffusion models predic t the d iffusional

    pla teaus d isplayed in Figure 4 , the res idual so lvent a lways decreases when the drying condit ions become

    mo re severe . Indeed, despi te the num erous c la ims o f anom alous skinning, there are very few

    experim enta l s tudies dem onstra t ing i t, and a ll of the reported exp erimen ta l resul ts of anom alous

    skinning show a very s l ight affec t , with in the range of experimenta l error [Powers & Coll ier 1990] .

    9 2

  • 7/24/2019 Cairn Cross 02

    9/12

    R e c e n t l y V i n j a m u r C a i m c r o s s ( 2 0 0 1 2 0 0 2 ) m e a s u r e d a n o m a l o u s s k in n i n g i n p o l y ( m e t h y l

    m e th ac r y l a te ) -ac eton e c oa t i n gs . PM M A i s a g l a s sy p o l yr ne r at r oom te m p e r atu re an d i s we l l k n ow n for

    an om al ou s d i f fu s ion b e h av i ou r i n sor p t ion e xp e r i m e n ts . F i gu r e 6 sh ows m e asu r e d r e s id u a l so l ve n t

    c on te n t i n PM M A-a c e ton e c oa t i n gs d r y i n g i n a H i gh A i r f l ow D r y i n g E xp e r i m e n t th a t e n ab l e s ac c u rate

    c on tro l o f th e d r y in g gas f l owr ate. In th e se e xp e r i m e n ts , th e r e s id u a l so l ve n t r e ac h e d a m i n i m u m at an

    i n ter m e d i a te a i r ve l oc i ty o f 0 .01 m / s an d b e c am e s i gn i f ic an t l y h i gh e r a t h i gh e r a ir ve l oc i t i e s .

    Vi n jam u r (2001) a l so d e ve l op e d a m od e l o f n on -F i c k i an so l ve n t tr an sp or t i n p o l ym e r c oa t i n gs

    wh ich pass through a g lass trans i t ion dur ing drying. In essen ce the mod e l accoun ts for ho w stress

    gr ad ie n ts in th e g l as sy p o l ym e r c on tr ib u te to so l ve n t t r an sp or t. T h e n o n -F i c k i an m od e l p r e d i c t s

    an om al ou s sk i n n i n g as sh ow n i n F igu r e 7 . At h i gh gas f l owr ate s th e c oa t i n g te m p e r atu r e r i se s r ap i d ly to

    th e ove n te m p e r atu r e an d a th i n low-c on c e n tr a t i on l aye r for m s a t th e su r fac e o f th e c oa t in g . T h i s l ow-

    c on c e n tr a t ion l aye r d e v i a te s s i gn i f i c an t l y f r om w h at i s p r e d i cte d b y F i c k i an d i f fu s i on m od e l s , b e c au se

    th e c on c en tr a t ion p r o f i l e sh ow s a s i gm oi d a l sh ap e ; i n a F i ck i an m o d e l , th e c on c e n tr a t ion gr ad ie n t a l ways

    b e c om e s s te e p e r towar d s th e c oa t i n g su r fac e .

    At l ow gas f l owr ate s , th e c oa t i n g te m p e r atu r e r i se s m o r e s l ow l y to th e ove n te m p e r atu r e an d th e

    surface layer of low concentrat ion i s th icker; th is l eads to lower overal l res idual so lvent content at low

    a i r fl ows . Vi n jam u r ' s m od e l m a tc h e s q u a l ita t i ve ly wi th e xp e r im e n ta l m e asu r e m e n ts o f an om a l ou s

    sk i n n i n g i n PM M A-ac e ton e c oa t i n gs .

    C h a l l e n g e s t o D r y i n g M o d e l s

    M ath e m at i c a l m od e l s ar e an e f fe c t i ve w ay to p r e d ic t d r y i n g b e h av i or o f p o l ym e r so l u t i on

    c oat i n gs. W h i l e d e ve l op i n g an d so l v i n g a fu n d am e n ta l d i f fu s i on -b ase d m od e l o f d ry i n g r e q u ir e s

    s i gn i fi c an t e xp e r t i se i n n u m e r i c a l m e th o d s , th e r e su lt i n g m od e l s c an b e so l ve d q u i c k l y on s tan d ard

    p e r son a l com p u te r s . T h e m ai n b ar r ie r to ap p l y i n g th e se m od e l s to m an y p r ac t ic a l c oa t i n g p r oc e s se s i s

    th e s ign i f ic an t n u m b e r o f p h ys i c a l p r op e r ti e s n e e d e d i n th e m od e l s . For b in ar y p o l ym e r so l u t i on s , th e r e

    are publ i shed methods to predic t the d i f fus ion propert ies , but to obtain accurate predic t ions requires

    sop h i s t ic a te d te c h n i q u e s for m e asu r i n g d i f fu s i on c o e f f i c ie n ts .

    Fu r th e rm or e , m an y p r ac ti c a l sy s te m s ar e m u l t i com p on e n t , w i th s e ve r a l so l ve n ts , p o l ym e r s , an d

    ad d i t ive s . Ap p l y i n g b i n ar y m od e l s to m u l t i c om p on e n t sys te m s h as som e t i m e s b e e n su c c e s s fu l , b u t th e re

    are m an y c ase s wh e r e m u l t i c om p on e n t d i f fu s i on i s i m p or tan t , an d th i s is an ac t ive r e se ar ch ar e a . Al so ,

    m a n y c oa t i n gs c on ta i n c u r i n g c om p on e n ts , an d i t i s n o t d i f f ic u l t to au gm e n t m ath e m at i c a l m od e l s o f

    d r y in g to i n c lu d e c u r i n g r e ac t ion s . H o we v e r , th e r e l a ti on sh ip b e tw e e n e x te n t o f r e ac t ion an d

    c on c e n tr a t ion -d e p e n d e n t d i f fu s ion c oe f f i c i e n ts ar e n o t we l l e s tab li sh e d .

    9 3

  • 7/24/2019 Cairn Cross 02

    10/12

  • 7/24/2019 Cairn Cross 02

    11/12

    in this paper. Prior collaboration with Peter Price from 3M w as also a critical part of developing the

    material presented here.

    L i t e r a t u r e C i t a t i o n s

    Alsoy, S., and J.L. Duda, 1998 , Drying of Solvent Coated Polymer Films, Drying Technology, 16 p

    15-44.

    Alsoy, S. , and J .L. Duda, 1999, Modeling Multicomponent Drying of Polymer Films, AIChE Journal,

    4 5 p

    896-905.

    Aust, R., F. Durst, and H. Raszillier, 199 7, Modeling a Multiple-zone Air Imping emen t Dryer,

    Chem ical Engineering and Processing, 36 p 469-487.

    Caimcross , R.A., and C.J . Dum ing, 19 96, Modeling Drying of Viscoelastic Polymer Coatings, AIChE

    J., 42 p 2415-2425.

    Caimcross, R.A., S. Jeyadev, R.F. Dun ham, K. Evans, L.F. Francis, and L.E . Scriven, 1995, M odeling

    and Design of an Industrial Drye r with Convective and Radiant Heating, J. Ap plied Polymer

    Science, 58 p 1279-1290.

    Edwards, D.A., 1998 , Tra pp ing Skinning in Polymers: Theoretical Predictions, Chem ical Enginee ring

    Communications, 166 p 201-216.

    Edwards, D.A., 1999, Skinning During Desorption of Polymers: Asym ptotic Analysis, SIAM J.

    Applied Math, 59 p 1134-1155.

    Fu, T.Z., and C.J. Durning, 1993 Num erical Simulation of Case II Transport, AIC hE J., 39 p 10 30-

    1044.

    Gutoff, E.B., 1996 , Mo deling Solvent Drying on Coated W ebs Including the Initial Transient, Drying

    Technology, 14 p 1673-1693.

    Hadj Rom dhane, I ., P.E. Price, C.A. Miller, P.T. Benson, and S. W ang, 2001, Dryin g of Glassy

    Polym er Film s, Industrial & Engineering Chemistry Research, 40, p 3065-3075

    Powers, G.W., and J.R. Collier, 1990 , Experimental M odelling of Solvent-Casting Thin Polym er

    Films, Polym er Engine ering and Science, 30 p 118-123.

    Price, P.E., and R.A. Caim cross, 2000, Optim ization of Single-Zone Drying of Polym er Solution

    Coatings Usin g M athem atical Mo deling, J. App lied Polym er Science, 78 p 149-165.

    Price, P.E., S. W ang, and I.H. Rom dhane, 1997 , Extracting Effective Diffusion Parameters from

    Drying Experiments, AIC hE J., 43 p 1925-1934.

    Thomas, N.L., and A.H. W indle, 198 0, A Deform ation Mo del for Case II Diffusion, Polymer, 21 p

    613-619.

    Thomas, N.L., and A.H. W indle, 19 82, A Theory of Case II Diffusion, Polymer, 23 p 529-542.

    Van Brakel, J., 1980, M ass Transfer in Conv ective Drying, Adv ances in Drying, p 217-267.

    Vadap ali, V., 2001, Sim plified M ethod for Predicting Residual Solvent Con tent in Polym er Coatings,

    M asters Thesis, Drexel U niversity.

    Vinjamur, M., Trapping Skining: An Anomalous Drying Behavior of Polymer Solvent Systems, Ph.D.

    Thesis, Drexel University.

    9 5

  • 7/24/2019 Cairn Cross 02

    12/12

    Vinjamur, M., & R.A. Caimcross, 2002 , Expe rimental Investigations of Trapping Skinning, J.

    Applied Polym er Sc ience, 83, 2269-2273.

    Vinjamur, M., & R.A . Caimcross, 200 1, A High Airflow Drying Experimental Set-up to Study Drying

    Behavior of Polymer Solvent Coatings, Drying Technology, 19, p 1591-1612.

    Yapel, R.A ., 198 8, A Physical Mo del of the Drying of Coated Films, Masters Thes is, University o f

    Minnesota.

    Zielinski, J.M., and B.F. Hanley, 199 9, Practical Friction-Based A pproach to Mo deling

    Mu lticompo nent Diffuion, AIChE Journal, 45, p 1-12.

    Zielinski, J.M., and J.L. Du da , 1992 Predicting Polymer/Solvent D iffusion C oefficients Using Free-

    Volum e Theory, AIChE Journal, 38, p 405-415.

    9