C5.Numerical Methods Compatibility Mode

download C5.Numerical Methods Compatibility Mode

of 37

Transcript of C5.Numerical Methods Compatibility Mode

  • 8/10/2019 C5.Numerical Methods Compatibility Mode

    1/37

    DYNAMIC OF STRUCTURES

    CHAPTER 5

    NUMERICAL EVALUATION OF

    DYNAMIC RESPONSE

    Department of civil engineering, University of North Sumatera

    Ir. DANIEL RUMBI TERUNA, MT;IP-U

    1

  • 8/10/2019 C5.Numerical Methods Compatibility Mode

    2/37

    NUMERICAL METHODS

    A. Time Stepping Method

    For inelastic system with a linier viscous damping, the equation ofmotion can be written as

    ( ) ( )1)(, tpuufucum s =++ &&&&

    The applied force is given by a set of discrete values)(tp

    .0),()( Ntoitptp i == The time interval

    )2(1 iii ttt = +

    2

  • 8/10/2019 C5.Numerical Methods Compatibility Mode

    3/37

    TIME STEPPING METHODS

    The equation (1) can be given at time

    3iisii pfucum =++ &&&

    where iisis kufitimeatforceresistingtheisf =;

    At the time interval eq.(1) lead to1+i

    :i

    for linier elastic system

    ( ) ( )41111 ++++ =++ iisii pfucum &&&

    3

  • 8/10/2019 C5.Numerical Methods Compatibility Mode

    4/37

    TIME STEPPING METHODS

    Fig.1 Notation for time stepping methods

    ipp

    t

    op 1p 2p

    1+ip

    ot 1t 2t it 1+it

    it

    u

    t1u

    2u

    1+iu

    1t 2t it 1+it

    it

    iu

    4

  • 8/10/2019 C5.Numerical Methods Compatibility Mode

    5/37

    TIME STEPPING METHODS

    The three(3) important requirement for a numerical procedure are:

    CONVERGENCE

    as the time step decreases, the numerical solution should approachthe exact solution

    STABILITYthe numerical solution should be stable in the presence ofnumerical round-off errors

    ACCURACYthe numerical solution should provide result that are close enoughto the exact solution

    5

  • 8/10/2019 C5.Numerical Methods Compatibility Mode

    6/37

    TIME STEPPING METHODS

    They are several methods of time stepping procedures :

    Methods Based on Interpolation of the Excitation Function

    6

    Finite Diffrence Methods

    Newmarks Methods

    Houmbolt Methods

    Wilson Methods

  • 8/10/2019 C5.Numerical Methods Compatibility Mode

    7/37

    Methods Based on Interpolation of Excitation

    ( ) )5(ii

    i pt

    pp

    +=

    )6(1 iii ppp = +

    In the time intervals , the excitation function is given by

    where

    1+ ii ttt

    7

    1+ip

    ipp

    t

    op

    ot it 1+it

    it

    ( )p ip

  • 8/10/2019 C5.Numerical Methods Compatibility Mode

    8/37

    8

    Methods Based on Interpolation of Excitation

    The diffrential equation of the system without damping at the time canbe given as

    )7(ii

    i pt

    pkuum

    +=+

    &&

    The response over the time interval is the sum of threeparts

    ( )uit0

    1. Free vibration due to initial conditions (displacement and velocityat )

    iu iu&

    0=

    2. Response to step force with zero initial conditions, andip

    3. Response to ramp force with zero initial conditionsii tp /

  • 8/10/2019 C5.Numerical Methods Compatibility Mode

    9/37

    ( ) ( ) )8(sin

    cos1sincos

    +++=

    in

    n

    i

    i

    n

    i

    n

    n

    i

    ni

    ttk

    p

    k

    puuu

    &

    Methods Based on Interpolation of Excitation

    9

    The solution of this diffrential equation is

    At gives the displacement and velocity at timeit= 1+iu 1+iu& 1+i

    ( ) ( )

    ( )[ ] ( )[ ]ininin

    iin

    i

    in

    n

    i

    inii

    tttk

    ptkp

    tu

    tuu

    +

    ++=+

    sin1cos1

    sincos1&

    (9)

  • 8/10/2019 C5.Numerical Methods Compatibility Mode

    10/37

    10

    Methods Based on Interpolation of Excitation

    ( ) ( )

    ( ) ( )[ ]in

    in

    i

    in

    i

    in

    n

    i

    ini

    n

    i

    ttk

    p

    tk

    p

    tu

    tuu

    +

    ++=+

    cos1

    1

    sin

    cossin1 &&

    (10)

    These equations can be rewritten after substituting Eq.(2) as recurrenceformula:

    )11(11 ++ +++= iiiii DpCpuBAuu &

    )12(11 ++ +++= iiiii pDpCuBuAu &&

  • 8/10/2019 C5.Numerical Methods Compatibility Mode

    11/37

    11

    Methods Based on Interpolation of Excitation

    These formula also apply for damped system with the following coeficients:

    +

    =

    tteA DD

    tn

    cossin1 2

    =

    teB D

    D

    tn

    sin1

    +

    +

    =

    tt

    te

    kC D

    tn

    D

    D

    t

    tn

    n

    cos2

    1sin1

    2121

    2

    2

    +

    +

    =

    tt

    te

    kD D

    tn

    D

    D

    t

    tn

    n

    cos2

    sin122

    11 2

  • 8/10/2019 C5.Numerical Methods Compatibility Mode

    12/37

    12

    Methods Based on Interpolation of Excitation

    =

    teA Dntn

    sin1 2

    +

    +

    +

    =

    t

    tt

    te

    tkC DD

    ntn

    cos1

    sin11

    11

    22

    +

    =

    tte

    tkD DD

    tn

    cossin1

    11

    2

    = tteB DDtn

    sin

    1cos

    2

  • 8/10/2019 C5.Numerical Methods Compatibility Mode

    13/37

    13

    Methods Based on Interpolation of Excitation

    ( )tp

    mmkgm /det2533.0 2=

    mmkgk /10=

    05.0=

    kgp,

    .sec,t

    6.0/sin10 ttp =

    1.0 6.0

    5

    66.810

    8095.0cos5871.0sin275.619691.0 2 ===== tte DDnDtn

    006352.001236.009067.08129.0 ==== DCBA

    1871.01709.07559.05795.3 ==== DCBA

  • 8/10/2019 C5.Numerical Methods Compatibility Mode

    14/37

    14

    Methods Based on Interpolation of Excitation

    iiiiiiii uAuuuBDpCppt &&1+

    0.0 0.000 0.0000 0.0318 0.0000 0.0000 0.0000 0.0000

    0.1 5.000 0.0618 0.0550 0.0848 0.9354 0.0258 0.03180.2 8.660 0.1070 0.0635 0.2782 3.0679 0.1849 0.22740.3 10.00 0.1236 0.0550 0.4403 4.8558 0.5150 0.63360.4 8.660 0.1070 0.0318 0.4290 4.7318 0.9218 1.13390.5 5.0000.6 0.0000.7 0.0000.8 0.000

    0.9 0.000 0.0000 0.0000 -0.6272 -6.9177 -0.6160 -0.75771.0 0.000 0.0000 0.0000 -2.5171 -1.2432

  • 8/10/2019 C5.Numerical Methods Compatibility Mode

    15/37

    15

    iiiiiiii uuBuuApDpCpt && +1

    0.0 0.000 0.0000 0.9354 0.0000 0.0000 0.0000 0.0000

    0.1 5.000 0.8544 1.6201 -0.1137 0.0318 0.7071 0.93540.2 8.660 1.4799 1.8707 -0.8140 0.2274 2.3192 3.06790.3 10.00 1.7088 1.6201 -2.2679 0.6336 3.6708 4.85880.4 8.660 1.4799 0.9354 -4.0588 1.1339 3.5771 4.73180.5 5.0000.6 0.0000.7 0.0000.8 0.000

    0.9 0.000 0.0000 0.0000 2.7124 -0.7577 -5.2295 -6.91771.0 0.000 0.0000 0.0000 -1.2432 -2.5171

    Methods Based on Interpolation of Excitation

  • 8/10/2019 C5.Numerical Methods Compatibility Mode

    16/37

    Central Difference Method

    The central difference expression for velocity and acceleration at time arei

    16

    ( )21111 2

    2 t

    uuuu

    t

    uuu iiii

    ii

    i

    +=

    = ++ &&& (13)

    Substituting Eq.(13) into Eq.(3), gives

    ( ) ( ) ( ) iiii u

    t

    mku

    t

    c

    t

    mpu

    t

    c

    t

    m

    +

    =

    +

    + 21212

    2

    22

    (14)

    In this equation and are assumed known (from implementation ofthe procedure for the preceding time step).

    ( ) ii

    iiiii pkut

    uuc

    t

    uuum =+

    +

    + ++

    2

    2 112

    11

    iu

    1i

    u

    (15)

  • 8/10/2019 C5.Numerical Methods Compatibility Mode

    17/37

    Central Difference Method

    or

    17

    (16)

    where

    ii puk

    1 =+

    (17)

    (19)

    ( )

    +

    =t

    c

    t

    mk

    2

    2

    ( ) ( ) iiii u

    t

    mku

    t

    c

    t

    mpp

    +

    = 212

    2

    2 (18)

    The unknown is then given by1+iu

    k

    pu ii

    1 =+

    or iiii buaupp = 1

    (20)

  • 8/10/2019 C5.Numerical Methods Compatibility Mode

    18/37

    Central Difference Method

    The values and are required to determine

    18

    For , from Eq. (13) we obtain

    (21)

    (20)

    0u

    Solving for from the first equation and substituting in the second gives

    ( )0

    2

    001 2 u

    t

    tuuu &&

    +=

    1u 1u

    0=i

    ( )2101

    011

    0

    2

    2 t

    uuuu

    t

    uuu

    +=

    = &&&

    1u

    The initial displacement and initial velocity are given, and the

    equation of motion at time 0

    0u 0u&

    00 =t

  • 8/10/2019 C5.Numerical Methods Compatibility Mode

    19/37

    Central Difference Method

    19

    (24)

    (23)

    The specific requirement for stability

    m

    kuucpu 0000

    =

    &&&

    1