C-RAN: Moving baseband to the Cloud

108
CRAN Moving Baseband to the Cloud Matthew C.Valenti, West Virginia University Joint work with Peter Rost, Nokia Networks Aleksandra Checko, MTI Radiocomp

Transcript of C-RAN: Moving baseband to the Cloud

Page 1: C-RAN: Moving baseband to the Cloud

C-­‐RAN  Moving  Baseband  to  the  Cloud  Matthew C. Valenti, West Virginia University Joint work with Peter Rost, Nokia Networks Aleksandra Checko, MTI Radiocomp

Page 2: C-RAN: Moving baseband to the Cloud

2

•  Ma)hew  C.  Valen1,  Founder  and  Director  •  Brian  Woerner,  Professor  and  Dept.  Chair.  •  Natalia  Schmid,  Professor  •  Daryl  Reynolds,  Associate  Professor  •  Vinod  Kulathumani,  Associate  Professor  

Faculty  

Graduate  Students  Tools  and  Facili1es  

Research  Topics  

•  400-­‐core  cluster  computer.  •  Open  source  simula1on  soKware:  CML.  •  Web  portal  for  researchers:  WebCML.  •  USRP  soKware  radio  testbed.  

•  Salvatore  Talarico  (interference  modeling).  •  Terry  Ferre)  (physical-­‐layer  network  coding).  •  Mohammad  Fanaei  (distributed  detec1on).  •  Veeru  Talreja  (biometrics  in  the  cloud).  

•  Wireless  and  cellular  networks.  •  Coopera1ve  communica1ons.  •  Coding  and  modula1on.  •  Spread  spectrum  systems.  

•  Op1miza1on  of  frequency  hop  systems.  •  Wireless  sensor  networks    

•  Distributed  detec1on  •  Cloud  compu1ng.  

•  Cloud  radio  access  networks  •  Biometric  and  human  ac1vity  detec1on.  

WVU  Wireless  Communica1ons  Research  Lab  

Page 3: C-RAN: Moving baseband to the Cloud

Nokia AirScale Radio Access

3

Cloud  RAN   AirScale  Wi-­‐Fi  AirScale  Base  Sta6on      

Common  so9ware  supports  evolu6on  towards  unified  architecture  and  5G  

High  scalability      Enabler  for  efficient  resource  scalability.  Meets  the  requirements  of  next  genera6on  heterogeneous  access  

Evolu6onary      Combining  licensed  &    un-­‐licensed  spectrum  for  maximum  u6liza6on  of  radio  assets  

5G  readiness    A  founda6on  for  the  next  leap  of  spectral  efficiency,  peak  rates  &  latency  op6miza6ons  

Business  agility      Enables  new  services  and  business  opportuni6es  &  agility  to  run  shorter  so9ware  and  innova6on  cycles  

Page 4: C-RAN: Moving baseband to the Cloud

MTI Radiocomp

u  Primary focus: research and development of Remote Radio Heads (RRHs) for LTE, WCDMA, WiMAX and towards 5G

u  Global pioneer in the development and manufacturing of software-configurable and remotely tunable radio head systems

u  One of the world’s leading competence centers for CPRI, OBSAI, and JESD204A/B IPC controllers, core development, testing, and systems integration.

u  Research on 5G networks, including C-RAN and fronthaul u  Danish site of MTI Mobile u  http://www.mti-mobile.com/

4

Page 5: C-RAN: Moving baseband to the Cloud

PART I: INTRO TO C-RAN

5

Page 6: C-RAN: Moving baseband to the Cloud

Traditional Base Stations

u  Traditionally, all processing is done locally at the base station ª Power Amplifier (PA) ª RF ª Baseband ª Control Plane ª Transport

6 [1]. A. Checko et al, “Cloud RAN for Mobile Networks – A Technology Overview,” IEEE Comm. Surveys & Tutorials, First Quarter 2015.

RF cabling (co-axial)

Page 7: C-RAN: Moving baseband to the Cloud

Separating the RRH from the BBU

u  The modern trend is to separate the RF and baseband functionality ª Remote Radio Head (RRH)

•  RF and antenna (often integrated) •  Analog front-end •  Power amplifier

ª Baseband Unit (BBU) •  Baseband processing •  Implemented digitally

7 [1]. A. Checko et al, “Cloud RAN for Mobile Networks – A Technology Overview,” IEEE Comm. Surveys & Tutorials, 1Q 2015.

optical cable

Page 8: C-RAN: Moving baseband to the Cloud

The RRH / BBU Functional Split

8 [1]. A. Checko et al, “Cloud RAN for Mobile Networks – A Technology Overview,” IEEE Comm. Surveys & Tutorials, 1Q 2015.

Page 9: C-RAN: Moving baseband to the Cloud

Example RRH Systems

u  Alcatel-Lucent (now Nokia) Light Radio

9 http://www.lgsinnovations.com/solutions/broadband-wireless-network-light-radio

Page 10: C-RAN: Moving baseband to the Cloud

Example RRH Systems

10 Telecom Italia Demo MTI Radiocomp Demo

Page 11: C-RAN: Moving baseband to the Cloud

CPRI

u  Common Public Radio Interface u  Features:

ª Constant bit-rate up to 12 Gbps ª Transmission of I/Q samples

u  Maximum distance between RRH and BBU ª 40 km ª 0.1 ms latency (speed of light in a fiber) and no repeater needed

u  Other protocols for connecting RRH and BBU ª Open Base Station Architecture Initiative (OBSAI) ª Open Radio equipment Interface (ORI)

11

Page 12: C-RAN: Moving baseband to the Cloud

Required Rates for a CPRI-Based Fronthaul

12 [1]. A. Checko et al, “Cloud RAN for Mobile Networks – A Technology Overview,” IEEE Comm. Surveys & Tutorials, 1Q 2015.

Page 13: C-RAN: Moving baseband to the Cloud

Variability of Processing Load

u  Each BBU has its own load ª Depends on traffic in cell ª As a result, the load on the

different BBU’s is highly variable

13 [1]. A. Checko et al, “Cloud RAN for Mobile Networks – A Technology Overview,” IEEE Comm. Surveys & Tutorials, 1Q 2015.

offered processing load

original

Page 14: C-RAN: Moving baseband to the Cloud

The (Virtual) Baseband Hotel

u  Several Baseband Units can be co-located ª Creates a pool of BBU’s

or BBU Hotel ª BBU’s could still be

physically separated ª However, combining

BBU’s into a shared resource provides a statistical multiplexing gain

14 [1]. A. Checko et al, “Cloud RAN for Mobile Networks – A Technology Overview,” IEEE Comm. Surveys & Tutorials, 1Q 2015.

Page 15: C-RAN: Moving baseband to the Cloud

Fronthauls and Backhauls

u  The fronthaul connects the RRH’s to the BBU Pool u  The backhaul connects to Pool to the Network

15 [1]. A. Checko et al, “Cloud RAN for Mobile Networks – A Technology Overview,” IEEE Comm. Surveys & Tutorials, 1Q 2015.

fronthaul backhaul

Page 16: C-RAN: Moving baseband to the Cloud

C-RAN u  Aggressive use of virtual BBU pools is known as C-RAN u  RAN = Radio Access Network u  C = ?

ª Cloud ª Central ª Collaborative ª Cooperative ª Clean (i.e., Green)

16 [2]. China Mobile Research Institute, “C-RAN: The Road Towards Green RAN,” White Paper, 2010.

cloud group

Page 17: C-RAN: Moving baseband to the Cloud

Benefits of C-RAN u  Centralized processing exploits statistical multiplexing gain

ª  Processing resources provisioned for the average across the cloud group, not the peak requirement of any one cell

ª Adaptability to non-uniform and time-varying traffic u  Centralized management

ª  Easier HW/SW upgrades (and they are decoupled) ª  Support for multiple standards ª  Facilitates self-organizing networks (SONs)

u  Facilitates cooperative processing ª COMP and eICIC ª  Easier handoffs

u  Other applications and services can be integrated into the network edge

17

Page 18: C-RAN: Moving baseband to the Cloud

Perceived Benefits

u  Survey of Operator Motivations for C-RAN ª 86% : Cost savings ª 64% : Better interference management ª 57% : More effective traffic management ª 57% : Agility ª 41% : Low power consumption

18

Page 19: C-RAN: Moving baseband to the Cloud

19

Statistical multiplexing gain (processing)

RAN

RANaaS

RANaaS Interface RANaaS Hypervisor

u  Exploitation of temporal and spatial traffic fluctuations u  Efficiently use available resources, scale resource according to needs

(resource pooling, elasticity)

Page 20: C-RAN: Moving baseband to the Cloud

20

Customization benefits (flexibility)

RAN

RANaaS

RANaaS Interface RANaaS Hypervisor

u  Optimisation based on purpose, deployment, … u  Using software implementation rather than configuration (SON) u  Flexible software assignment over time and space

Page 21: C-RAN: Moving baseband to the Cloud

21

Performance improvement (cooperation) u  PHY processing approaches: Uplink

ª Local processing in BSs ª Distributed processing among BSs ª Central processing ª Hybrid local / distributed / central processing

local central

distrib.

RAN-CN

X2

C-RAN BS1

DET

DET

DEC

DEC

DEC

MAC RLC RRC

MAC RLC RRC

DET &

DEC

RF+ A/D FFT RE

Demap

RF+ A/D FFT RE

Demap

BS2

hybrid

Page 22: C-RAN: Moving baseband to the Cloud

Challenges of C-RAN

u  Requires significant infrastructure for fronthaul ª High throughput requirements ª Can be alleviated by data compression techniques

u  Timing pressures ª Data must be quickly transmitted over the fronthaul ª Processing must be done in real time and within a hard deadline ª Characterizing the performance of a system where missing the

deadline is oftentimes more limiting than the degradation of the channel itself (“computational” outage)

u  Virtualization technologies ª Need to efficiently share the computing resources in real time

22

Page 23: C-RAN: Moving baseband to the Cloud

C-RAN vs. DAS

u  C-RAN technology is reminiscent of Distributed Antenna Systems ª DAS systems also connect multiple antennas to a centralized BBU. ª Earlier DAS systems used the antennas to service a single cell, while in a

C-RAN system, each antenna placement corresponds to a different logical cell.

23 [3]. A. A. M. Saleh, A. J. Rustako and R. S. Roman, “Distributed Antennas for Indoor Radio Communications,” IEEE Transactions on Commun., vol. 35, pp. 1245-1251, Dec. 1987.

ª More advanced DAS systems used antennas to service different sectors.

ª C-RAN can be considered to be an evolution of DAS, whereby the antennas serve different cells rather than merely different sectors, and optical interconnects are used between RRH and BBUs.

Page 24: C-RAN: Moving baseband to the Cloud

Tidal Usage Patterns

u  Daily load depends on the base station location u  Peak traffic can be more than 10X that of off-peak traffic

24 Sources: www.manycities.org, and [2] China Mobile Research Institute, “C-RAN: The Road Towards Green RAN,” White Paper, 2010.

0  0.5  1  

1.5  2  

2.5  

0   6   12   18   24  

DL  data  

Time  (h)  

Traffic  in  New  York,  from  MIT/Ericsson  Lower  ManhaWan   Ridgewood  

0  

10  

20  

30  

40  

50  

0   6   12   18   24  

Load

 Time  (h)  

Data  from  China  Mobile  Office   Residen6al  

Page 25: C-RAN: Moving baseband to the Cloud

Tidal Usage Patterns

u  Example showing the migration of users at two different times. u  Statistical multiplexing gain is enhanced by joining cells with

disparate traffic patterns into the same cloud group

25

0 5 10 15 20 25 300

5

10

15

20

25

30

Distance [Km]

Dis

tanc

e [K

m]

0 5 10 15 20 25 300

5

10

15

20

25

30

Distance [Km]D

ista

nce

[Km

]

Page 26: C-RAN: Moving baseband to the Cloud

Switching off RRHs: Greener Networks

u  Under-utilized RRH’s can be switched off, thereby saving power u  This creates larger cells u  Particularly effective for dense deployments

26

0 5 10 15 20 25 300

5

10

15

20

25

30

Distance [Km]

Dis

tanc

e [K

m]

0 5 10 15 20 25 300

5

10

15

20

25

30

Distance [Km]D

ista

nce

[Km

]

Page 27: C-RAN: Moving baseband to the Cloud

Network Upgrades

u  Upgrades can be done for two purposes ª  Increasing coverage

•  Add more RRH to the existing network •  Need to also add the corresponding fronthaul link •  RRH’s are small and compact, since they have no baseband processing

27

ª  Increasing capacity •  Add more BBU to the pool •  If virtualized, translates to adding more

computational resources

BBU Pool

Page 28: C-RAN: Moving baseband to the Cloud

Upgrading and Maintaining BBUs

u  A failed compute server is easily swapped out u  Software easily upgraded when BBU hardware is centralized

ª Very little maintenance needed at the remote sites

u  Compute hardware and software upgrades are decoupled ª Different vendors for each?

u  Additional comm standards supported through software update ª New RRH typically only needed for new RF bands

28

Page 29: C-RAN: Moving baseband to the Cloud

The Cloud in C-RAN is Different than Cloud in General

29 [1]. A. Checko et al, “Cloud RAN for Mobile Networks – A Technology Overview,” IEEE Comm. Surveys & Tutorials, 1Q 2015.

Page 30: C-RAN: Moving baseband to the Cloud

BBU Hardware Architectures

u  Digital Signal Processor (DSP) vs. General-Purpose Processor (GPP) u  Tradeoff between using commodity GPP hardware, vs. special-

purpose DSP hardware.

30

Page 31: C-RAN: Moving baseband to the Cloud

LTE on a GPP?

u  Intel has developed the C-RAN LTE Base Station Architecture ª A complete LTE base station

with Intel Core i7 processor and software

ª Parallelizes baseband processing across multiple cores

ª No need to special-purpose hardware

ª Leverages unused CPU cycles to run other network applications

31 http://www.intel.com/content/www/us/en/communications/communications-c-ran-solution-video.html

Page 32: C-RAN: Moving baseband to the Cloud

RRH / BBU Functional Split: Partial Centralization

u  Rather than doing all L1 processing in the BBU Pool, some of the L1 processing can be done at the RRH.

u  Reduces the load on the fronthaul. u  Increases computational load at the RRH.

32 [1]. A. Checko et al, “Cloud RAN for Mobile Networks – A Technology Overview,” IEEE Comm. Surveys & Tutorials, 1Q 2015.

Page 33: C-RAN: Moving baseband to the Cloud

Source: www.ict-ijoin.eu 33

RRH / BBU Functional Split: Partial Centralization

RF

PHY

MAC

RRM

Netw. Mgmt.

Adm./Cong. Control

“Conventional” implementation of LTE

RF

PHY

MAC

RRM

Netw. Mgmt.

Adm./Cong. Control

C-RAN Implementation (BB-pooling)

Exe

cute

d at

BS

Centrally executed

Cen

trally

ex

ecut

ed

Executed at R

RH

Flexible Functional Split

Example: Partly centralised (inter-cell) RRM

Example: Joint Decoding

Page 34: C-RAN: Moving baseband to the Cloud

Source: www.ict-ijoin.eu 34

Tradeoffs

RF processing

A/D conversion / pre-processing

Lower PHY (incl. DET)

Upper PHY (incl. FEC)

MAC (incl. MUX, HARQ)

RLC (RB buffers, ARQ)

PDCP (ciphering)

RRC/C-Plane

Sche

dulin

g

Radio Access Point

EPC

Split A

Split C

Split D

High  centraliza1on  and  coordina1on  gains  

Strong  backhaul  and  implementa1on    requirements  

Achievable  gains   Efforts  and  cost  

Split B

be)er  

worse  

Level of centralization

Page 35: C-RAN: Moving baseband to the Cloud

Source: www.ict-ijoin.eu 35

Fronthaul technologies

Fiber  (CWDM/dark)  

mmWave  

μ-­‐Wave  

Sub-­‐6  GHz  

PON  

xDSL  

Metro-­‐op1cal  

Split  A  

Split  B  

Split  C  

Split  D  

10 1 10 2 10 3 10 4 10 5

10 -4

10 -3

10 -2

10 -1

10 0

Throughput [Mbps]

Late

ncy

(per

hop

, RTT

)[s]

Page 36: C-RAN: Moving baseband to the Cloud

Fronthaul Compression

u  To alleviate the demands on the fronthaul, compression can be used u  Standard compression techniques have limited success

ª Reduced sample rate and compressive sampling ª Non-uniform and vector quantization

u  Subcarrier compression ª Requires FFT/IFFT at the RRH ª Digital automatic gain control

u  Special attention should be paid to the random access channel (RACH)

u  Partial centralization can be considered a type of compression

36

Page 37: C-RAN: Moving baseband to the Cloud

Survey of Fronthaul Compression Techniques

37 [1]. A. Checko et al, “Cloud RAN for Mobile Networks – A Technology Overview,” IEEE Comm. Surveys & Tutorials, 1Q 2015.

Page 38: C-RAN: Moving baseband to the Cloud

Fronthaul optimization

u  Compression – up to 4:1, 3:1 u  With load-dependent functional splits (Split B and above) higher

bandwidth savings can be achieved on fronthaul ª Up to reaching user data level – compression: 2.5Gbps/150 Mbps =

16:1

u  Variable bit rate traffic fits packet-based transport solution

38

Page 39: C-RAN: Moving baseband to the Cloud

Shared Ethernet for cost-saving and flexibility ü  Widely deployed (reuse!)

ü  Dedicated links ü  Shared links

ü  Aggregation ü  Multiplexing gains on BBU and links

ü  Switching

39

!  Fronthaul cost savings vs problems with delays and synchronization !  Synchronous CPRI vs asynchronous

Ethernet !  Data delay: 100-400 us, ≈constant

BBU  Pool

GPS/1588  Slave

RRH

RRH

Sync  delivered  together  with  data  (CPRI)

Ethernet  network

Eth  switches

BBU  Pool

1588  Master

1588  Slave

RRH

CPRI2Ethgateway

RRH

CPRI2Ethgateway

1588  Slave

Page 40: C-RAN: Moving baseband to the Cloud

u  Timing is really important ª  Frequency of transmission ª Handover, coding, cooperative techniques,

positioning u  Requirements (4G)

ª  Frequency error LTE – A TDD/FDD: ±50 ppb ª  Phase error LTE-A with eICIC/CoMP: ± 1.5 - 5 μs, MIMO: 65 ns, positioning: ± 30 ns

u  Current solutions for timing distribution ª GPS ª  PHY layer clock – SyncEth ª  Packet-based timing

•  IEEE 1588v2 (PTP) ª Multiple

40

Timing in fronthaul

00 01 02

00 01 02

Device A

Device B

Page 41: C-RAN: Moving baseband to the Cloud

How to reduce queueing delays on a shared fronthaul? u  Preemption (switch upgrade required)

u  Source scheduling

A

BB A

A

BB A

No  scheduling  –  B  delay  non  deterministic

Scheduling  –  B  delayed  initially,  delay  deterministic

BBU  pool BBU  pool

A

B

A

AB B

B

Input  (high  priority)

Input  (low  priority)

Output  (no  preemption)

Output  (with  preemption)

Preemption

A

B

AB

AB B

Page 42: C-RAN: Moving baseband to the Cloud

SDO activities on fronthaul u  IEEE 1904.3

ª  Encapsulation and mapping of IQ data over Ethernet, ª  Fields need to be compatible with sync solution

u  IEEE 1914 Next Generation Fronthaul Interface ª  Architectures for fronthaul transport ª  Requirements for the fronthaul network ª  Functional split

u  IEEE 802.1, Time Sensitive Networking task force ª  Frame preemption (802.1Qbu) ª  Scheduled traffic (802.1Qbv) ª  Time-Sensitive Networking for Fronthaul (profile definition, 802.1CM)

u  IEEE 1588v2 (-2008) ª  Packet based solution for time reference delivery ª  A working group preparing a new version of the standard with an expected completion date of 31 December 2017

àcooperation between activities u  Study item in China Communications Standards Association (CCSA)

42

Page 43: C-RAN: Moving baseband to the Cloud

43

Multiplexing gains (transport network)

102 103 104 105 106 107100

101

102

103

no. o

f sup

porte

d iS

Cs

BH data rate [Mbps]

Split A.1, no muxSplit A.1, muxSplit B.1, no muxSplit B.1, muxSplit C, no muxSplit C, mux

Page 44: C-RAN: Moving baseband to the Cloud

Sharing BBU Pools By Multiple Operators u  The BBU pool is not necessarily owned and maintained by the

network operator. ª A large metropolitan pool could handle baseband processing for

multiple network operators. ª Each operator would be a different tenant in the BB hotel. ª BBU hosting is a new business model (RAN as a Service).

44

BBU Pool

Operator A Operator B

Page 45: C-RAN: Moving baseband to the Cloud

Enabling Tighter Inter-Cell Cooperation

u  Inter-cell cooperation is standardized in LTE-A ª eICIC: (enhanced) Inter-Cell Interference Coordination (R10) ª COMP: CoOrdinated Multi-Point (R11)

45

u  These features, as well as handover, require inter-cell communications ª  In a traditional architecture, done

using X2 interface u  In a C-RAN environment, inter-cell

coordination can be done without any additional latency ª Opportunities for tighter

coordination

[1]. A. Checko et al, “Cloud RAN for Mobile Networks – A Technology Overview,” IEEE Comm. Surveys & Tutorials, 1Q 2015.

Page 46: C-RAN: Moving baseband to the Cloud

PART II: FROM C-RAN TO VIRTUALIZED MOBILE NETWORKS

46

Page 47: C-RAN: Moving baseband to the Cloud

47

The cloudification of the network •  SaaS •  PaaS •  IaaS

•  On-demand •  Broad access •  Pooling •  Elasticity •  Measured

•  C-RAN •  RAN-Sharing •  SDN •  SDR

SQL

Mobile Network Radio Access NW Backhaul NW Core NW

ISP

•  NFV •  Soft-EPC •  SDN

Virtualisation / “Cloudification”

Communication Technology Information Technology

Page 48: C-RAN: Moving baseband to the Cloud

Cloud-Technologies u  Cloud computing will have a telecommunication

specialized branch ª  Telco-grade clouds, telco over cloud,… ª  Self-healing systems ª  Carrier grade operating systems and hypervisors ª  High availability clouds ª  Quick response control planes ª  ……………………………………………….

u  Container virtualization technology (virtualization of application layer)

u  HW assisted virtualization u  Low-level, OS/hypervisor internal enhancements to

overcome hypervisor limitations (e.g. interrupt latency optimization)

48

Page 49: C-RAN: Moving baseband to the Cloud

Source: www.ict-ijoin.eu 49

Integration in 3GPP LTE Architecture

Source: www.ict-ijoin.eu 49

RRH RRH

eNB

MME / S-GW MME / S-GW

eNB

eNB

S1 S1

S1 S1

X2

X2X2

Virtual eNB

MME / S-GW

Network Controller

X2

S1 S1

E-UTRAN

physical link

logical interface

Legend:

Transport NW

CRAN Data Center

Page 50: C-RAN: Moving baseband to the Cloud

Source: 5gnorma.5g-ppp.eu 50

Integration in 5G Architecture

Hardware  Resources  

Library  of  Network  Services  

Library  of  Network  Func1ons  

Service  Service  

Physical  

Resources  

Virtua

lized

 Re

sources  

Network  Cloud  Node  

Edge  Cloud    Node  

Physical  NF  

Virtualiza1on  layer  (Hypervisor)  

Compute  Storage  

Networking  

Compute  Storage  

Networking  

Virtualiza1on  layer  (Hypervisor)  

VNF    VNF    VNF    VNF    VNF    VNF    VNF    VNF    

Control   Data  

VNF    

VNF    

Service  

VIM  Agent  VIM  Agent  VIM  Agent  MANO-­‐F  Mgmt  &  Orch.  

MAN

O-­‐F  

VNF    

MAN

O-­‐F  

VNF    

VNF    

MAN

O-­‐F  

VNF    

MAN

O-­‐F  

Compute  Storage  

Networking  

VNF    

VNF    

PF  

Compute  Storage  

Networking  

Networking  

Compute  Storage  

SoKware  Resources  u  Software libraries

ª  functions ª  services

u  Hardware resources ª  computing, storage, networking ª  virtualized and physical NF

u  Edge and network clouds operate according to ETSI NFV principles

u  Physical network functions ª  SW and HW cannot be decoupled ª  SW highly embedded in the HW

Added

Page 51: C-RAN: Moving baseband to the Cloud

Source: 5gnorma.5g-ppp.eu 51

Integration in 5G Architecture

SDN-­‐  enabled  NW

SDN-­‐  enabled  NW

Edge-­‐Cloud

Bare-­‐metal

Edge-­‐Cloud

Central-­‐Cloud

VNFVNF

VNF

VNF

Controllers

Bare-­‐metal

VNF

MANO-­‐F

VIM  AgentVIM  AgentMANO-­‐F

VIM  AgentVIM  AgentMANO-­‐F

OrchestratorMANO-­‐F

NF  ManagerMANO-­‐F

ControllerSDM  Controller

NF  ManagerMANO-­‐F

SDM  Controller

u  Concrete illustration of network deployment and function placement

u  Shows mapping of functions to geographical locations

u  May be used to display per instance/per location properties ª  functions allocated ª  space demand ª  link capacity and latency

Page 52: C-RAN: Moving baseband to the Cloud

52

Functional Split Options

RF processing

A/D conversion / pre-processing

Lower PHY (incl. DET)

Upper PHY (incl. FEC)

MAC (incl. MUX, HARQ)

RLC (RB buffers, ARQ)

PDCP (ciphering)

RRC/C-­‐Plane  

Sche

dulin

g

Radio Access Point

EPC

Split A

Split D

Split C

Split B

CoMP INP

Joint detection

Joint decoding

ICIC Scheduling

Load balancing

HO

AC

RRM schemes

Page 53: C-RAN: Moving baseband to the Cloud

Decoupled Uplink and Downlink

u  Uplink and downlink don’t have to be serviced by the same RRH. ª Uplink serviced by closest RRH ª Dowlink serviced by the link with best SINR ª  Especially important in HetNet deployments

53

Downlink Uplink

[4] J. Andrews, “Seven Ways that HetNets Are a Cellular Paradigm Shift,” IEEE Comm. Mag., 2013

Page 54: C-RAN: Moving baseband to the Cloud

Decoupling the Control and Data Planes

u  Use high-powered microwave RRH for control information u  Lower-powered mmwave RRH for data transfer

u  Device-Centric Networks (“Cell-Less”)

54

Page 55: C-RAN: Moving baseband to the Cloud

Source: www.ict-ijoin.eu 55

Exemplary deployments: Stadium

Physical Architecture Description: u  Architecture based on a number of Rings equipped

with several RAP. Each Ring has a BH interface toward the EPC

u  All the Rings and the Macro eNB coordinated by EMS and CRAN.

Stadium Ring #1 placed on the roof top

iTN

EPC

RANaaS

macroeNB

S1iTN

J1

Stadium Ring #2 placed on the roof topStadium Ring #3 placed on the roof top

J2

MME S-GW P-GW

Small  Cell

Macro  eNB

Use Case Description:

u  Typical stadium: wide area (order of 50.000 m2) u  Average number of spectators: 40000.

•  very high density of RAPs that are connected through optical fibre in multiple rings

•  local processing capabilities are provided in order to allow for breaking out local traffic and thereby reducing the traffic towards the core network

General  Parameters Value

UE  density ~1  UE/m2

Small  Cells  Number 50  -­‐  300

Experienced    UE  DL+UL  Throughput 1.5  –  10  Mbps

Traffic  density 0.5  –  10  Mbps/m2

Page 56: C-RAN: Moving baseband to the Cloud

Source: www.ict-ijoin.eu 56

Exemplary deployments: Plaza

Physical Architecture Description: u  Random small cell deployment u  Random user deployment u  Static/Nomadic user u  Heterogeneous backhaul

Use Case Description: u  Exemplary typical town square of 50.000 m2. u  Number of users: range from 1000 (off-peak

hours) to 5000 (busy hours). u  Overall throughput in a square: from 1.5Gbps to

50Gbps (assuming 5% active UEs with 1.5-10 Mbps total throughput demand)

S1

J1

J2

General  Parameters Value Number  of  small-­‐cells 4-­‐10  (sparse  to  dense  deployment)

Number  of  UEs 15-­‐30  (lightly  to  highly  loaded  scenarios)

Radius  for  small  cell  dropping  in  a  cluster 50  m  (3GPP  TR  36.872  [1])  Random  Dropping

Radius  for  UE  dropping  in  a  cluster 70  m  (3GPP  TR  36.872  [1])  Random  Dropping

Minimum  distance  3GPP  TR  36.872  [1]

RAP-­‐RAP  20  m  UE-­‐RAP  5  m  Macro  eNB-­‐iSC  cluster  center  105  m

Backhaul  Capacity  /  Latency ~50  -­‐  100  Mbps,  1-­‐10ms  10  Gbps,  5μs

Page 57: C-RAN: Moving baseband to the Cloud

 

iSC

eNodeB

Local  RANaaS

S-­‐GW

RANaaS

X2S1

J1

iTN

Source: www.ict-ijoin.eu 57

Exemplary deployments: Inner-city

Physical Architecture Description: u  Regular small cell deployment u  Random user deployment with Slow/High mobility u  Heterogeneous backhaul

Use Case Description: u  existence of hotspots and high demand areas, or

coverage holes of the macro-cell layer u  Throughput: 10-15 Mbps (busy hour), assuming 10

MHz bandwidth. u  Layout: regular small cell deployment in a

hexagonal grid, which covers 1 Km2.

•  Urban scenario where high capacity is continuously provided through RAPs

•  Challenging scenario as each RAP needs to be connected to the backhaul network

•  Number of aggregation points and CRAN data centers instances must be optimised

General  Parameters Value Number  of  small-­‐cells 19  

Number  of  UEs 1-­‐3  UE  per  small  cell  (avg.)  

Small  cell  dropping     Regular  on  Hexagonal  Grid  

ISD   50  m  

UE  dropping  in  a  cluster   Random  dropping  

Minimum  distance   UE-­‐RAP  5  m  

Backhaul  Capacity  /  Latency   ~~50  -­‐  100  Mbps  /  1-­‐10ms  ;  10  Gbps  /  5μs  

Page 58: C-RAN: Moving baseband to the Cloud

Source: www.ict-ijoin.eu 58

Exemplary deployments: Indoor

Physical Architecture Description: u  Regular small cell deployment u  Random user deployment u  Nomadic user u  Wireline backhaul (optical fibre and ADSL)

Use Case Description: u  Large amount of active users (range

of 200-500) in one hall, with high communication activity.

u  System throughput: from 200 Mbps to 5 Gbps (assuming throughput demand of 1 – 10 Mbps)

J3J3

iSC iSC iSC iSC

iTNiTN

S1/X2/J1/J2/J3 J1/S1 S1/S5

RANaaS / iLGW

Indoor Deployment

iNC

iTN

MME / S-GW

wired physical link

wireless physical link

General Parameters Value Number  of  areas  per  floor 16  Areas;1  or  2  Floors Floor  height 6  m Area  size 15  m  X  15  m Hall  size 120  m  X  20  m Number  of  small  cells   2  (sparse)  /  4  (dense)  per  floor Small  cell  dropping Regular

Number  of  UEs 10  per  small  cell  (sparse)  5/10  per  small  cell  (dense)

UE  dropping Random ISD 60  m  (sparse)  /  30  m  (dense) Minimum  distance UE-­‐RAP  3  m

Backhaul  Capacity  /  Latency >100Mbps  per  RAP-­‐EPC  link  <1,  10,  and  50  ms

Page 59: C-RAN: Moving baseband to the Cloud

Enabling Higher-Layer Applications

u  With C-RAN, can move applications and services from the core network to the network edge ª RAN caching

u  Examples ª Voice-over-LTE ª LTE-Broadcast ª Content caching

59 [5] X. Wang et al, “Cache in the Air: Exploiting Content Caching and Delivery Techniques for 5G” IEEE Comm. Mag., 2014

Page 60: C-RAN: Moving baseband to the Cloud

60

C-RAN Plays Well with Mobile Edge Computing

Hotspots Cities Network-wide

• City applications • E.g. IoT applications deployed as

part of Smart City initiatives, or services for city residents and visitors

• Deployed at metro aggregation sites and baseband hotels

• Network-wide applications • E.g. essential network functions, and

ubiquitous services that require a consistent experience / performance

• Deployment in combination with Radio Cloud, or specific deployment patterns (e.g. Car2X along roads)

• Zonal applications • E.g. special services in stadiums,

exhibitions, malls, enterprise campuses

• Deployed in combination with Small Cell and Macro BTS (RRH, DAS)

Page 61: C-RAN: Moving baseband to the Cloud

LTE Broadcast and Content Caching u  LTE-Broadcast

ª  aka enhanced Multimedia Broadcast Multicast Services (eMBMS) and MBSFN Single Frequency Network (MBSFN)

ª  Special LTE subframes reserved for delivery of broadcast data ª  Same signal is transmitter from multiple base stations in an eMBMS area ª C-RAN facilitates the transmission of identical signals

61

BBU Pool

[6] S. Talarico and M.C. Valenti, “An accurate and efficient analysis of an MBSFN network, in Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), (Florence, Italy), May 2014.

Page 62: C-RAN: Moving baseband to the Cloud

Summary of C-RAN Deployment Scenarios

62 [1]. A. Checko et al, “Cloud RAN for Mobile Networks – A Technology Overview,” IEEE Comm. Surveys & Tutorials, 1Q 2015.

Page 63: C-RAN: Moving baseband to the Cloud

PART III: LTE CASE STUDY

63

Page 64: C-RAN: Moving baseband to the Cloud

LTE Case Study

64 [1]. A. Checko et al, “Cloud RAN for Mobile Networks – A Technology Overview,” IEEE Comm. Surveys & Tutorials, 1Q 2015.

Page 65: C-RAN: Moving baseband to the Cloud

LTE Releases

65 [7]. E. Dahlman, S. Parkvall, and J. Skold, 4G LTE / LTE-Advanced for Mobile Broadband, second edition 2014.

Page 66: C-RAN: Moving baseband to the Cloud

LTE Protocol Stack

66 [7]. E. Dahlman, S. Parkvall, and J. Skold, 4G LTE / LTE-Advanced for Mobile Broadband, second edition 2014.

Page 67: C-RAN: Moving baseband to the Cloud

LTE Time-Frequency Grid

67

Base  Sta1on  

UE  1me  

Downlink  Data  Stream  

50  49  

1  2  

3  

1  ms   1  ms   1  ms  

Resource  Block  (RB)  (12  subcarriers)  

1  ms  

Resource  Element  (RE)  

Page 68: C-RAN: Moving baseband to the Cloud

LTE Frame Structure

68 [7]. E. Dahlman, S. Parkvall, and J. Skold, 4G LTE / LTE-Advanced for Mobile Broadband, second edition 2014.

Page 69: C-RAN: Moving baseband to the Cloud

Downlink Arrangement

u  Downlink subframe divided into control and data regions. ª Control region is first 1 and 3 OFDM symbols of the subframe. ª Physical Downlink Shared Channel (PDSCH) is in the region

following the control region.

69 [7]. E. Dahlman, S. Parkvall, and J. Skold, 4G LTE / LTE-Advanced for Mobile Broadband, second edition 2014.

Page 70: C-RAN: Moving baseband to the Cloud

Baseband Processing for the Downlink

70 [7]. E. Dahlman, S. Parkvall, and J. Skold, 4G LTE / LTE-Advanced for Mobile Broadband, second edition 2014.

Page 71: C-RAN: Moving baseband to the Cloud

Code Block Segmentation

u  Maximum code block size is 6144 bits ª Maximum TB size is 75,376 bits. ª May need to segment into as many as 13 code blocks.

71 [7]. E. Dahlman, S. Parkvall, and J. Skold, 4G LTE / LTE-Advanced for Mobile Broadband, second edition 2014.

Page 72: C-RAN: Moving baseband to the Cloud

Turbo Coding

72 [7]. E. Dahlman, S. Parkvall, and J. Skold, 4G LTE / LTE-Advanced for Mobile Broadband, second edition 2014.

Page 73: C-RAN: Moving baseband to the Cloud

Rate Matching

73 [7]. E. Dahlman, S. Parkvall, and J. Skold, 4G LTE / LTE-Advanced for Mobile Broadband, second edition 2014.

Page 74: C-RAN: Moving baseband to the Cloud

Adaptive Modulation and Coding

u  The base station selects the highest Modulation and Coding Scheme (MCS) that can be supported at a 10% BLER

74

Page 75: C-RAN: Moving baseband to the Cloud

MCS Table

u  The selected MCS is one of 27 options u  Indicated by a 5-bit quantity u  Here,

ª  Imcs = MCS index ª Qm = modulation order ª C = number of code blocks ª Kr = number data bits per block ª η = spectral efficiency ª An allocation of 45 RB is assumed

75

Page 76: C-RAN: Moving baseband to the Cloud

76

MCS Adaptation Cloud RANaaS

RAP RAP

UE UE ...

...

Global scheduler

Local scheduler

... UE

PH

Y

PH

Y+

&

MA

C

HARQ

Multiplexing

Priority Handling

FEC

Modulation

Etc. U

L in

form

atio

n flo

w a

t eN

B RLC

PDCP

DL

information

flow at eN

B

Fronthaul interface

Scheduling / LA

u  Limited capacity and latency affect link adaptation conditions ª At the CRAN: outdated but global

channel state information (CSI) ª At the RAP: recent but local CSI

Page 77: C-RAN: Moving baseband to the Cloud

Hybrid-ARQ

77 [7]. E. Dahlman, S. Parkvall, and J. Skold, 4G LTE / LTE-Advanced for Mobile Broadband, second edition 2014.

Page 78: C-RAN: Moving baseband to the Cloud

Multiple Parallel HARQ Processes

u  8 stop-and-wait processes run in parallel

78 [7]. E. Dahlman, S. Parkvall, and J. Skold, 4G LTE / LTE-Advanced for Mobile Broadband, second edition 2014.

Page 79: C-RAN: Moving baseband to the Cloud

Baseband Processing for the Uplink

79 [7]. E. Dahlman, S. Parkvall, and J. Skold, 4G LTE / LTE-Advanced for Mobile Broadband, second edition 2014.

Page 80: C-RAN: Moving baseband to the Cloud

HARQ Timing u  Downlink

ª HARQ are asynchronous ª Retransmission can occur at any time ª Must be flagged with a 3-bit HARQ process ID

u  Uplink ª Retransmissions are synchronous ª Processes serviced in round-robin fashion: Sent once every 8 ms ª Transmissions flagged with a 1-bit new data indicator ª ACK/NACK indicator received within 4 ms

u  Key uplink timing constraint: ª Uplink must be processed and downlink ACK sent within 4 ms.

80

Page 81: C-RAN: Moving baseband to the Cloud

81

HARQ Timing

HARQ

 RTT  6mer  

subframe    

inde

x  

UE   RAP   CRAN  

BH  latency  

Air  int.  

RANaaS  processing  

+  frame  building  

Air  int.  BH  latency  

UL  DL  

UL  data  UL  data  

Latency  breakdown  

0  

1  

2  

3  

4  

5  

6  

7  

8  

9  

0  

1  

2  

3  

4  

5  

6  

7  

8  

0  

1  

2  

3  

4  

5  

6  

7  

8  

0  

1  

2  

3  

4  

5  

6  

7  

8  

UL  DL  9  

0  

1  

2  

3  

4  

5  

6  

7  

1  

2  

3  

4  

5  

6  

7  

8  

9  

UL  DL  

ACK/NACK  

ACK/NAC

K  expe

cted

 in  SF  n+

4  

ACK/NACK  

Added

Page 82: C-RAN: Moving baseband to the Cloud

http://www.ict-ijoin.eu/ @ict_ijoin (( 82 ))

RAN Timing Constraints Timer Purpose Min Max Default

PHY Subframe Physical subframe length 1 ms (fix) Frame Physical frame length 10 ms (fix)

MAC HARQ RTT Timer When an HARQ process is available

In FDD: 8ms

In TDD: FFS

RLC

t-PollRetransmit

For AM RLC, poll for retransmission @tx side (if no status report received) 5ms 500ms 45ms

t-Reordering For UM/AM RLC, RLC PDU loss detection @rx side 0ms 200ms 35ms t-StatusProhibit Prohibit generation of a status report @rx side 0ms 500ms 0ms

PDCP discardTimer

At UE side in UL.

Start at reception of PDCP SDU from upper layer.

Discard PDCP SDU / PDU if expiration or successful transmission

50ms Infinity

RRC

T300 RRCConnectionRequest.

If expire, reset MAC & signal RRC connection failure

100ms 2s

T301 RRCConnectionReestablishmentRequest

If expire, go to RRC_IDLE 100ms 2s

T304 RRCConnectionReconfiguration 50ms/100ms 2s/8s

T310 Detection of physical problem (successive out-of-sync from lower layers) 0ms 2s 1s

T311 RRC connection reestablishment (E-UTRA or another RAT). 1s 3s 1s

Page 83: C-RAN: Moving baseband to the Cloud

Turbo Decoding is Iterative

u  On the uplink, around 50% of compute load is due to turbo decoding.

u  Because a CRC is used to halt decoding, the load is directly proportional to the number of iterations

u  Operating with a higher SNR margin reduces the number of iterations

83 [8]. M.C. Valenti, S. Talarico, and P. Rost, “The role of computational outage in dense cloud-based centralized radio access networks,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), (Austin, TX), Dec. 2014.

Page 84: C-RAN: Moving baseband to the Cloud

Computational Load for Turbo Decoding

u  The load to decode a given transport block is:

u  Where: ª Load depends on SINR γ and the selected MCS ª C is the number of code blocks after segmentation ª Kr is the number of information bits in the rth code block ª  Ir is the number of decoding iterations for the rth code block

u  Load is in units of bit-iterations ª Relation between bit-iterations and CPU cycles is implementation

dependent, but fixed for a given architecture 84

Page 85: C-RAN: Moving baseband to the Cloud

Computational Outage

u  If a transport block is not decoded before the deadline, then a computational outage occurs

u  From a systems perspective, a computational outage is no different than any other kind of outage (e.g., due to fading or interference)

u  For a conventional (locally processed / non-pooled) system, a computational outage occurs when the following condition occurs C(γ) > Cmaxwhere Cmax is the maximum number of bit-iterations that can be supported within the deadline

u  The computational outage probability is the probability of this event

85

Page 86: C-RAN: Moving baseband to the Cloud

A Few Details About Computational Outage u  The deadline must account for

ª The time from receiving the uplink transmission until when the HARQ ACK/NACK signal must be sent. 3 msec

ª Delays in the fronthaul: 0.1 msec each way ª Other processing delays

u  Cmax should characterize ª The amount of computing resources available for turbo decoding, which

has the most variability. ª Other operations (typically of fixed complexity) should not be

incorporated into Cmax

86

0   1   2   3   4   5   6   7   0  

Page 87: C-RAN: Moving baseband to the Cloud

Scheduling Policy Influences the Load

u  MRS = max-rate scheduling ª Target 10-1 BLER after 8 iterations

u  CAS = computationally aware scheduling u  Target 10-1 BLER after just 2 iterations

87 [8]. M.C. Valenti, S. Talarico, and P. Rost, “The role of computational outage in dense cloud-based centralized radio access networks,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), (Austin, TX), Dec. 2014.

Page 88: C-RAN: Moving baseband to the Cloud

Conservative Scheduling Helps if Compute Limited u  Comparison

ª Unlimited compute power ª Compute limited

u  Channel model ª Block Rayleigh fading ª Perfect T-CSI ª No interference

u  Outages can be due to channel or compute effects

u  Outage probability with CAS is much lower when compute limited

88 [8]. M.C. Valenti, S. Talarico, and P. Rost, “The role of computational outage in dense cloud-based centralized radio access networks,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), (Austin, TX), Dec. 2014.

Page 89: C-RAN: Moving baseband to the Cloud

Influence on Throughput

u  Throughput is the rate of correct data transfer

u  Even though CAS has a lower peak rate, its throughput is better due to reduced occurence of compute outage

89 [8]. M.C. Valenti, S. Talarico, and P. Rost, “The role of computational outage in dense cloud-based centralized radio access networks,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), (Austin, TX), Dec. 2014.

Page 90: C-RAN: Moving baseband to the Cloud

Influence on the Required Complexity

u  Complexity required to correctly decode a transmission

u  MRS can be computationally costly because each retransmission must be processed

90 [8]. M.C. Valenti, S. Talarico, and P. Rost, “The role of computational outage in dense cloud-based centralized radio access networks,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), (Austin, TX), Dec. 2014.

Page 91: C-RAN: Moving baseband to the Cloud

Computational Outage in a C-RAN Environment

u  Computational resources are shared by the pool u  Let Ncloud be the number of RRH serviced by the pool u  A computational outage occurs when

u  where γi is the SINR at the ith RRH and Cmax is the available computing per RRH

u  By exploiting the statistical multiplexing gain, it may be possible to reduce Cmax --- but by how much?

91

Page 92: C-RAN: Moving baseband to the Cloud

Role of Interference u  The uplink SINR in a multi-cell network is

u  Where ª Yj is the jth RRH and Xj is the mobile served by it ª  gi,j is the fading gain between Xi and Yj

ª α is the path-loss exponent ª  s is partial-power control compensation factor (s=1 for full PC) ª  Γ is the SNR at the RRH

92

Page 93: C-RAN: Moving baseband to the Cloud

Local Processing vs. Centralized Processing

u  Example scenario ª N = 129 base stations (actual locations from UK) ª Ncloud = 8 in the center are considered ª Can be processed centrally (CP) or locally (LP)

u  Simulation parameters ª Mobile devices placed according to a Poisson Point Process (PPP) ª Density λ devices per km2

ª  Just one device serviced per cell (TDMA scheduling) ª α = 3.7 and s=0.1ª Γ = 20 dB

93

Page 94: C-RAN: Moving baseband to the Cloud

Sum Throughput as a Function of Compute Power

u  Fixed density of mobiles λ =0.1 per km2

u  Central Processing always outperforms Local Processing

u  CAS scheduling better than MRS when compute resources are constrained

94 [8]. M.C. Valenti, S. Talarico, and P. Rost, “The role of computational outage in dense cloud-based centralized radio access networks,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), (Austin, TX), Dec. 2014.

Page 95: C-RAN: Moving baseband to the Cloud

Effect of Mobile Density

u  Centrally processed u  Variable density of

mobile devices u  When constrained, MRS

degrades with increasing user density

95 [8]. M.C. Valenti, S. Talarico, and P. Rost, “The role of computational outage in dense cloud-based centralized radio access networks,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), (Austin, TX), Dec. 2014.

Page 96: C-RAN: Moving baseband to the Cloud

Considerations for LTE-Advanced

96

•  Can  combine  up  to  5  carriers  to  achieve  100  MHz  of  useful  bandwidth.  

Carrier  Aggrega1on  

Coordinated  Mul1point  

HetNets  &  Relaying  

Enhanced  Spa1al  Mul1plexing  

•  Be)er  support  for  small  cells.  •  Support  for  relays.  

•  Neighboring  base  sta1ons  simultaneously  transmit  to  the  same  UE.  

•  Up  to  8  layer  MIMO  on  the  downlink.  •  Up  to  4  layer  MIMO  on  the  uplink.  

BBU Pool

Page 97: C-RAN: Moving baseband to the Cloud

Towards a Theory for Computational Outage

u  The complexity of decoding can be modeled statistically u  Similar to modeling the channel statistically u  By using the statistical model, analytical insight can be obtained

without resorting to simulation 97

[9]. P. Rost, S. Talarico, and M.C. Valenti , “The complexity-rate tradeoff of centralized radio access networks,” IEEE Transactions on Wireless Communications, vol. 14, no. 11, pp. 6164-6176, Nov. 2015.

Page 98: C-RAN: Moving baseband to the Cloud

Outage Complexity u  Outage complexity is the amount of

computing power required to achieve a desired computational outage probability

u  Analogous to outage capacity u  Useful to plot as a function of the

cloud group size Ncloud

u  Can be used to rapidly determine compute power needed

98 [9]. P. Rost, S. Talarico, and M.C. Valenti , “The complexity-rate tradeoff of centralized radio access networks,” IEEE Transactions on Wireless Communications, vol. 14, no. 11, pp. 6164-6176, Nov. 2015.

Page 99: C-RAN: Moving baseband to the Cloud

Optimal Scheduling

u  The scheduling problem can be formulated as

where rk is the rate of the kth user, Ck is its offered computational load, and Cserver is the total available computing power

u  Optimal solution results in a water-filling algorithm u  A heuristic alternative solution is to simply pick the user with

highest complexity and back off its rate until the complexity constraint is satisfied

99

Page 100: C-RAN: Moving baseband to the Cloud

Benefits of Optimal Scheduling

u  Three approaches ª max-rate scheduling (MRS) ª scheduling with complexity

cutoff (SCC) ª scheduling with water filling

(SWF)

u  Cellular network ª 129 actual base stations ª λ = 1 device per km2

u  Variable Ncloud

100 [10] P. Rost, A. Maeder, M.C. Valenti, and S. Talarico, “Computationally aware sum-rate optimal scheduling for centralized radio access networks,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), (San Diego, CA), Dec. 2015.

Page 101: C-RAN: Moving baseband to the Cloud

Scheduling More Important As Network Densifies

u  Fix Ncloud = 10 u  Vary the user density u  Optimal scheduling

provides 20% higher throughput for highly dense networks

101 [10] P. Rost, A. Maeder, M.C. Valenti, and S. Talarico, “Computationally aware sum-rate optimal scheduling for centralized radio access networks,” in Proc. IEEE Global Commun. Conf. (GLOBECOM), (San Diego, CA), Dec. 2015.

Page 102: C-RAN: Moving baseband to the Cloud

The Economics of C-RAN

u  The costs of C-RAN are determined by ª Cost per RRH ª Cost per BBU server ª Cost for fronthaul / backhaul (per km)

102 [11]  P.  Rost,  I.  Berberana,  A.  Maeder,  H.  Paul,  V.  Suryaprakash,  M.C.  Valen6,  D.  Wubben,  A.  Dekorsy,  and  G.  FeWweis,  “Benefits  and  challenges  of  virtualiza6on  in  5G  radio  access  networks,”  IEEE  Communica-ons  Magazine,  vol.  53,  no.  12,  Communica6ons  Standards  Supplement,  pp.  75-­‐82,  Dec.  2015.

Page 103: C-RAN: Moving baseband to the Cloud

Economic Analysis: An Example

103

0 1 2 3 4 5 6 7 8 9 102.6

2.7

2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

Data center intensity [per sq-km]

CA

PEX

[MU

SD p

er sq

-km

]

DRANFull CRANCloud-RAN, 8 iterations

[11]  P.  Rost,  I.  Berberana,  A.  Maeder,  H.  Paul,  V.  Suryaprakash,  M.C.  Valen6,  D.  Wubben,  A.  Dekorsy,  and  G.  FeWweis,  “Benefits  and  challenges  of  virtualiza6on  in  5G  radio  access  networks,”  IEEE  Communica-ons  Magazine,  vol.  53,  no.  12,  Communica6ons  Standards  Supplement,  pp.  75-­‐82,  Dec.  2015.

Page 104: C-RAN: Moving baseband to the Cloud

Industry/research interest

u  NGMN u  Small Cell Forum u  Several EU projects

ª Mobile Cloud Networking (MCN) ª  IJOIN ª HARP ª Any many others

u  Major equipment vendors u  Ongoing prototyping and field trials by operators

104

Page 105: C-RAN: Moving baseband to the Cloud

Concluding remarks u  C-RAN is coming

ª  It can be implemented with current technology ª Trials are underway, products to follow

u  C-RAN is beneficial ª Creates opportunities for enhanced collaboration

u  C-RAN is green ª Reduces the computational load ª Opportunities to selectively turn off sites

u  C-RAN is challenging ª Trades benefit on the wireless side for increased demands on the

wired fronthaul

105

Page 106: C-RAN: Moving baseband to the Cloud

QUESTIONS?

106

Page 107: C-RAN: Moving baseband to the Cloud

107

Cited References [1]     A.  Checko,  H.L.  Chris6ansen,  Y.  Yan,  L.  Scolari,  G.  Kardaras,  M.S.  Berger,  and  L.  DiWmann,,  “Cloud  RAN  for  Mobile  Networks  –  A  

Technology  Overview,”  IEEE  Comm.  Surveys  &  Tutorials,  vol.  17,  no.  1,  pp.  405-­‐426,  First  Quarter  2015.  

[2]   China  Mobile  Research  Ins6tute,  “C-­‐RAN:  The  Road  Towards  Green  RAN,”  White  Paper,  2010.  

[3]   A.  A.  M.  Saleh,  A.  J.  Rustako  and  R.  S.  Roman,  “Distributed  Antennas  for  Indoor  Radio  Communica6ons,”  IEEE  Transac6ons  on  Commun.,  vol.  35,  pp.  1245-­‐1251,  Dec.  1987.  

[4]   J.  Andrews,  “Seven  ways  HeTNets  are  a  cellular  paradigm  shi9,”  IEEE  Communica6ons  Magazine,  2013.  

[5]     X.  Wang  et  al,  “Cache  in  the  Air:  Exploi6ng  Content  Caching  and  Delivery  Techniques  for  5G”  IEEE  Comm.  Mag.,  2014.  

[6]   S.  Talarico  and  M.C.  Valen6,  “An  accurate  and  efficient  analysis  of  an  MBSFN  network,  in  Proc.  IEEE  Int.  Conf.  on  Acous6cs,  Speech,  and  Signal  Processing  (ICASSP),  (Florence,  Italy),  May  2014.        

[7]   H.  Paul,  B.-­‐S.  Shin,  D.  Wübben,  A.  Dekorsy:  In-­‐Network-­‐Processing  for  Small  Cell  Coopera6on  in  Dense  Networks,  CLEEN  2013,  Las  Vegas,  USA,  September  2013.  

[8]   M.C.  Valen6,  S.  Talarico,  and  P.  Rost,  “The  role  of  computa6onal  outage  in  dense  cloud-­‐based  centralized  radio  access  networks,”  in  Proc.  IEEE  Global  Commun.  Conf.  (GLOBECOM),  (Aus6n,  TX),  Dec.  2014.  

[9]   P.  Rost,  S.  Talarico,  and  M.C.  Valen6  ,  “The  complexity-­‐rate  tradeoff  of  centralized  radio  access  networks,”  IEEE  Transac6ons  on  Wireless  Communica6ons,  vol.  14,  no.  11,  pp.  6164-­‐6176,  Nov.  2015.  

[10]   P.  Rost,  A.  Maeder,  M.C.  Valen6,  and  S.  Talarico,  “Computa6onally  aware  sum-­‐rate  op6mal  scheduling  for  centralized  radio  access  networks,”  in  Proc.  IEEE  Global  Commun.  Conf.  (GLOBECOM),  (San  Diego,  CA),  Dec.  2015.  

[11]   P.  Rost,  I.  Berberana,  A.  Maeder,  H.  Paul,  V.  Suryaprakash,  M.C.  Valen6,  D.  Wubben,  A.  Dekorsy,  and  G.  FeWweis,  “Benefits  and  challenges  of  virtualiza6on  in  5G  radio  access  networks,”  IEEE  Communica6ons  Magazine,  vol.  53,  no.  12,  Communica6ons  Standards  Supplement,  pp.  75-­‐82,  Dec.  2015.    

Page 108: C-RAN: Moving baseband to the Cloud

108

Additional References [12]     P.  Rost,  C.J.  Bernardos,  A.  De  Domenico,  M.  Di  Girolamo,  M.  Lalam,  A.  Maeder,  D.  Sabella,  D.  Wübben:  Cloud  Technologies  for  

Flexible  5G  Radio  Access  Networks,  5G  Special  Issue  of  IEEE  Communica6ons  Magazine,  Vol.  52,  No.  5,  pp.  68-­‐76,  May  2014.  

[13]   D.  Wübben,  P.  Rost,  J.  Bartelt,  M.  Lalam,  V.  Savin,  M.  Gorgoglione,  A.  Dekorsy,  G.  FeWweis:  Benefits  and  Impact  of  Cloud  Compu-ng  on  5G  Signal  Processing,  Special  Issue  "The  5G  Revolu6on"  of  the  IEEE  Signal  Processing  Magazine,  vol.  31,  no.  6,  pp.  35-­‐44,  November  2014.  

[15]   M.  Lalam,  T.  Lestable:  On-­‐Demand  Radio  Resource  Management  for  Mul--­‐Point  Turbo-­‐Detec-on  in  Dense  Small  Cell  Deployment,  submiWed  to  IWCPM  2015,  London,  June  2015.  

[16]      

J.  Bartelt,  P.  Rost,  D.  Wübben,  J.  Lessmann,  B.  Melis,  G.  FeWweis:  Fronthaul  and  Backhaul  Requirements  of  Flexibly  Centralized  Radio  Access  Networks,  IEEE  Wireless  Communica6ons  Magazine,  vol.  22,  no.  5,  pp.  105-­‐111,  Oct.  2015.  

[17]   H.  Paul,  J.  Fliege,  A.  Dekorsy,  In-­‐Network-­‐Processing:  Distributed  Consensus-­‐Based  Linear  Es-ma-on,  IEEE  Communica6ons  LeWers,  vol.17,  no.1,  pp.59-­‐62,  January  2013.      

[8]   B.-­‐S.  Shin,  H.  Paul,  D.  Wübben,  A.  Dekorsy:  Reduced  Overhead  Distributed  Consensus-­‐Based  Es-ma-on  Algorithm,  IWCPM  2013,  Atlanta,  USA,  December  2013.  

[9]   G.  Xu,  H.  Paul,  D.  Wübben,  A.  Dekorsy:  Fast  Distributed  Consensus-­‐based  Es-ma-on  (Fast-­‐DiCE)  for  Coopera-ve  Networks,  WSA2014,  Erlangen,  Germany,  March  2014.  

[10]   D.  Wübben,  H.  Paul,  B.-­‐S.  Shin,  G.  Xu,  A.  Dekorsy:  Distributed  Consensus-­‐based  Es-ma-on  for  Small  Cell  Coopera-ve  Networks,  BWA  2014,  Aus6n,  TX,  USA,  Dec.  2014.