C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

39
C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors

Transcript of C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

Page 1: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 1

Chapter 4Bipolar Junction Transistors

Page 2: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 2

BJT I-V Relationships

• Ebers-Moll Model -Table 4.2

• Input and Output Characteristics

• SPICE parameters ----to I-V curvers

• Regions of Opertion

• Biasing the BJT

• Bias Stability

• Small Signal Models

• Single Transistor Amplifiers

Page 3: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 3

Output characteristicsE b e r s M o l l E q u a t i o n s

I = - I ( (E E S

Vn V

Vn V

B E

t

B C

t 1 1) )R C SI

I = - I ( (C C S

Vn V

Vn V

B C

t

B E

t 1 1) )F E SI

N o w L e t u s e x a m t h e e q u a t i o n s i n t h em o s t u s e f u l r e g i o n V B E > 4 n V t a n d V B C

< < 4 n V t , V t = 2 6 m V a t r o o m t e m p .

F O R W A R D B I A S

I B = - ( I C + I E )

I = - I ( ( - I (E E S

Vn V

E S

Vn V

B E

t

B E

t ) ) ) R C SI 1

I = - I ( ( (C C S

Vn V

Vn Vt

B E

t0 1 ) ) ) F E S

E

F E SI I

I = -C F EI

B-E and C-B Junctions

Page 4: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 4

Forward BiasI = -C F EI

I C = F / ( 1 -

F ) I B = F I B w h e r e

F =

F / ( 1 - F )

N o w r e p e a t i n g t h e e x e r c i s e w i t h V B C >4 n V t a n d V B E < < 4 n V t , V t

= 2 6 m V a t r o o mt e m p . W e c a n d e f i n e

R =

R / ( 1 - R )

B J T a r e t y p i c a l l y d e s i g n e d ( P r o c e s sE n g i n e e r e d ) t o k e e p

F > >

R a n d F I E S =

R I C S = I S

CUTOFF-both pn junctions are reversed biased

IE IES - RICS

IC ICS - FIES

VBE and VBC < 0 for npn BJT

Page 5: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 5

Ebers-Moll for computer/hand use 4.13

E b e r s M o l l r e a r r a n g e d

I E - I F - R I R w h e r e I = I (E E S

Vn V

B E

t 1 )

I C I R - F I F w h e r e I = I (C C S

Vn V

B Ct 1 )

V a l u eE q u a t i o n s f o r o b t a i n i n g a n u m e r i c a l s o l u t i o n

E m p e r i c a l I - V c u r v e s

C o m p u t e r m o d e l f o r s i m u l a t i o n

B a s e s f o r a s m a l l s i g n a l m o d e l f o r h a n dc a l c u l a t i o n s

Page 6: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 6

Ebers-Moll for computer/hand useE b e r s M o l l r e a r r a n g e d

I E - I F - R I R w h e r e I = I (F E S

Vn V

B E

t 1 )

I C - I R - F I F w h e r e I = I (R C S

Vn V

B C

t 1 )

1 s t q u a d r a n t o f i n t r e s t V B C > 0 , S i n = 1

V B E > 4 V t , V B C < < 0 A c t i v e L i n “ a m p ”

I I (C F E S

Vn V

B E

t ) ( )I IE B 1

V B E < 4 V t , V B C < < 0 O f f s w i t c h “ a m p ”

I E = I E S + R I C S , I C = I C S +

F I E S

I E = I E S + I S , I C = I C S + I S

“ D i o d e l e a k a g e c u r r e n t s ”

V B E > 4 V t , V B C > 4 n V t S a t . s w i t c hs h o u l d b e a v o i d e d s l o w r e c o v e r y ”

I I ( I (C F E S

Vn V

C S

Vn V

B E

t

B C

t ) )

I I ( I (E E S

Vn V

C S

Vn V

B E

t

B C

t ) )R

V B E > 4 V t , V B C 0 n o n s a t s w i t c h

i s p r e f e r e d .

S e e T a b l e 4 . 2 p p 2 3 5

Page 7: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 7

Example Using Table 4.2 Eqs

Example F = 0.995, R = 0.95, Si n= 1, IS = 0.1fA

Determine the transistor currents for VS = VBE = 0.4, 0.6, 0.7 andVCE = 1V.

VBC = VBE-1V = -0.6, -0.4 and -0.3 V respective.

ICS = IS/R = 0.1f (1.05) = 0.105fA

IB = -(IC + IB)

Tabulating

VS IC IE IB

0.4 480pA -483pA 2.4pA0.6 1.05uA -1.06uA 5.3nA0.7 49uA - 49.5uA 248nA0.9 108mA -108.5mA 543uA Note 200

Page 8: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 8

SPICE Example to VERIFY Table 4.2Simulation with SPICE “MODEL PARAMETERS”

IS IS 0.1 x10-15A

F BF fwd current gain 50-250

R BR rev current gain 10-.1VA VA Early voltage 10-200V

GENERAL FORMAT

Title card*** comment linesVBB 11 0 DC 0RB 11 1 330RC 22 2 220VCC 22 0 DC 1Q1 2 1 0 NPNSPEC* QXXXX c b e model_name optional area.MODEL NPNSPEC NPN ( SPICE parameters).DC VBB LIST 0.4 0.6 0.7 0.8 0.9.PRINT DC IC(Q1) IB(Q1) IE(Q1) V(1) V(1,2)*.PLOT*.PROBE.OPTIONS TNOM = 28.6.END

Page 9: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 9

Generating OTC Curves Ex 4.14 pp239

Page 10: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 10

Circuit Modeling of Regions

Page 11: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 11

Physical Base Currents

All of thesefactorscontribute to being < 1

Page 12: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 12

Example Region chk 4.12Given VBB = 2V, VCC = 10V, RB = 22K, RE =100, RC = 2K and F = 0.99 Determine theregion of operation and estimate the Base andcollector currents.

VBB = IB RB + VBE + RE (IB+ IC )

VCC = ICRC + VCE + RE (IB+ IC)

Observe 99 from F/(1-F)

VBB - VBE = IB RB + RE (IB+ IB )

VBB - VBE = 2-.7 =1.3 = IB(RB + RE(1+c)

IB = 1.3/(22k + 100 100) = 40.6uA

VCC - VCE = IB RC + RE (IB+ IB ) “TST for Sat”

IB = (VCC - VCE)/{ RC + RE (1+ )}

IB = (10-0.2)/{2k (99) + 100 x 100} 46mA

This is not consistent with the input equationthe “Active Lin Reqion”

IC = IB 99 x 40.6 = 4.0mA

VCE = VCEQ = VCC - { IB RC + RE (IB+ IB )}

VCEQ 10 - 4.0mA (2k + 100) = 1.6V

Since VCE is > 100-200mV. Thistransistor is biased to be anamplifier.

Page 13: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 13

Simple BJT Switch 4.12VCC = ICRC + VCE, VIN = IB RB + VBE

A switch has two stable Qpts

Logic 1: IB = 0, and VCE = VCC i.e5V

Logic 0 : IB must be such that VCE

= VCEsat i.e. 200mV

To ensure that VCE is small we assume = BF minimum

min IB = IC > (VCC -VCEsat)/RC

IB > (VCC -VCEsat)/( min RC )

RB < (VINmin - VBE)/IB = (VINmin - VBE)/{(VCC -VCEsat)/( min RC )}

EX Given VCC = 5V, RC = 500, VINmin = 4.5V,VCEsat = 200mV, min = 50. Now Assuming VBEsat =0.8V

RB < (4.5- 0.8V)/{ (5-0.2V)/( 50 x 500)}

RB < 185K

Page 14: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 14

Operating and Biasing Constraints

PDISS < IC VCE , VCEmax (Breakdown Voltage), Icmax

Qpt for BJT must be inside the PDISS Curve

IE + IC + IB = 0 Kirchoff Current law for BJT

IC = IB BF in SPICE The magic in transistors

Early Voltage VA or VA in SPICE terminology

Page 15: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 15

Fixed Biased Circuit pp236-54

Constaint Equations

VCE = VCE - IC RC

VB = VCC =IBRB + VBE

VCE & IC define the Qpt

Solving for RC and RB

RC = (VCC - VCEQ)/IC

RB = (VCC-- VBE)/IB

Now given that VCE & IC at the Qpt

at 4V and 6mA respectively.Fined RC and RB. VCC = 10V

RC = (VCC - VCEQ)/IC

RC = (10- 4)/6mA =1k ohm

RB = (VCC-- VBE)/ {IC/ }

RB = (10-- 0.7)/{6mA/200 }

RB = 310k

Page 16: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 16

Temperature Effects and RE pp239Collector dependency

IB and therefore IC are very dependent onTemp VBE vs. Temp –2mV/Co

Sol Add RE; IE RE drop > 3-5X VBE

Early effect – IC dependency on VCE- Reduces Voltage Gain

(1+VCE/VA)

iC = ISevBE/VT(1+VCE/VA)

iC = ISevBE/VT(1+VCE/VA)

Page 17: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 17

Analysis of Transistor DC Bias

RC = 2K, RB = 100k, =100Find the Operating Point

Step 1 IB

Step 2 IC

Step 3 VCE

RC = 5K, RB1 = 100K, RB2 = 50K, =100, RE = 3K

Find the Operating Point.Step 1 Thevenin Eqivalent VBB and RB

Step 2 IB = IE/(+ 1)

Step 4 IC IE = (VBB-VRE)/(RE+RB/(+ 1)

Step 5 VCE = VCC – IC - REIE

VBB = IBRB +VBE + IERE

Page 18: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 18

Self Biased with RE

Fixed Bias Constaint Equations

VCE = VCC- IC RC - IERE VCC- IC RC - ICRE

VBias = VCC =IBRB + VBE + IERE IBRB + VBE + ICRE

IC = IB = BF IB

VCE & IC define the Qpt

IC = VCC/( RC + RE)

Page 19: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 19

Self Biased with RE

Self biased Equations

IC = IB = BF IB

VCC = ICRC + VCE + IERE = ICRC + VCEQ + (IC + IB )RE

VCC ICRC + VCE + ICRE “VRE ICRE > 3-4X VBE i.e. 2.0V”

VBB = IBRB + VBE + (IC + IB )RE

VBB IBRB + VBE + ( IB )RE “RB < 0.1 IB RE”

Where RB = RB1||RB2 and VBB = VCC RB2/(RB1 + RB2)

Page 20: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 20

Self Biased Example

VCC ICRC + VCE + ICRE

VBB IBRB + VBE + ( IB )RE

Where RB = RB1||RB2 and VBB = VCC RB2/(RB1 + RB2)

VCE VCC -( ICRC + ICRE) = 12 - (4mA 1K + 2V) = 6V

RE 2V/4mA = 500 select 510.

VBB IBRB + VBE + ( IB )RE

= 20A 10K + 0.7V + 2V = 2.9V

RB = RB1 RB2/( RB1 + RB2) = 10 K andVBB = VCC RB2/( RB1 + RB2) = 2.9V

Example: Given BF = 200, VBE

= 0.7, IC = 4mA, VRE 2V, RC =1k, and VCC = 12V. Select RB

> 9 k and find VCEQ, RE, RB1

and RB2.

Page 21: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 21

Example Con’t

GB = GB1 + GB2 =1/10 K = 10-4 S

RB1 = RB2 ( 1 - VBB/VCC) = 2.9V

GB1 = GB2/(1 - VBB/VCC) = GB2 VCC/(VCC- VBB)

GB = 10-4 S = GB2 VCC/(VCC- VBB)+ GB2

GB2 = GB/( VCC/(VCC- VBB)+ 1) = 10-4/(2.32)

= 0.431x 10-4 S or RB2 = 23.2k Select 24K

GB1 = GB - GB2 = 10-4 S - 0.431x 10-4 = 0.569x 10-4 S

or RB1 = 17.57K Select 18KNow Chk RB = RB1||RB2 = 10.28K

Page 22: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 22

Bias Stability

Ensure Transistor CKT will work over the rangeof specified voltage, tempertature, and transistorvariation.

The desired input and output impedances, gainand bandwidth are maintained.

The maximum power hyperbola is note violated.

Page 23: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 23

Collector Current VariationW e m u s t r e m e m b e r t h a t I C O , o r B F , a n d V B E

a r e f u n c t i o n s o f T e m p e r a t u r e a n d p r o c e s s .

SI

I

I

IIC

C O

C

C O

SI

V

I

VVC

B E

C

B E

SI I

IC

F

C

F

N o w t h e t o t a l i n c r e m e n t a l c h a n g e i n c u r r e n t c a nb e w r i t t e n a s

I S I S V SC T I C O V B E F

Page 24: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 24

Collector Current VariationN o w w r i t i n g t h e i n p u t b i a s l o o p e q u a t i o n , s u b s i t u t i n ga n d s o l v i n g f o r I C .

V B B = I B R B + V B E + I E E R E ( 1 )

T h r o u g h m a n i p u l a t i o n o f t h e E b e r s - M o l l e q u a t i o n s

I C = F I B + (

F + 1 ) I C O w h e r e I C O ( 1 - R

F ) I C S

“ c o l l e c t o r c u r r e n t w i t h b a s e o p e n ”

I B = ( I C - ( F + 1 ) I C O ) /

F ( 2 )

F r o m I C + I B + I E = 0 w h e r e I E E = - I E

I E E = { ( F + 1 ) /

F } ( I C - I C O ) ( 3 )

S u b s t i t u t i n g ( 2 ) a n d ( 3 ) i n t o ( 1 ) a n d s o l v i n g f o r I C

IV V I R R

R RCF B B B E C O F B E

B F E

( ) ( ) ( )

( ) ( )

1

1

Page 25: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 25

Collector Current Variation

N o wS

I

I

I

I

R R

R R

R RR R

IC

C O

C

C O

F B E

B F E

B E

B

FE

( ) ( )

( ) ( )

( )

( )

1

1

k e e p i n g R B s m a l l a n d R E s m a l l

SI

V

I

V R RVC

B E

C

B E

F

B F E

( ) ( )1 “ U s i n g B - E l o o p ”

k e e p R E l a r g e a s p o s s i b l e

S

I I V V R R

R RI

C

F

C

F

F B B B E B E

B F E

( ) ( )

( ) ( )12

“ U s i n g B - E l o o p ”

“ N o t e d u e t o d e n o m i n a t o r S I i s f r e q u e n t l yn e g l e c t e d ”

Page 26: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 26

ExampleEX Given the selfbiased circuit and VBE = 0.7, IB =15uA “designed” at 27Co and shifts to , BF=255,BR=6, VA=75, IS=14fA, find the change in IC for Tempchange 27 to 50Co. From SPICE output curves ICO

=55.5fA, VBE = -0.03 V, and F = 30.

T h e T h e v e n i n e q u i v a l e n t v o l t a g e V B B = 2 . 7 9 a n d R B =R B 1 | | R B 2 = 7 . 6 7 K .

SI

I

I

I

R RR R

KKI

C

C O

C

C O

B E

B

FE

( )

( )

( . )

( . ).

7 6 7 5 1 07 6 7

2 5 5 5 1 01 5 2

SI

V

I

V R R Km SV

C

B E

C

B E

F

B F E

( ) ( ) . ( ) ( ).

1

2 5 5

7 6 7 2 5 6 5 1 01 8 5

S

I I V V R R

R RI

C

F

C

F

F B B B E B E

B F E

( ) ( )

( ) ( )102

I S I S V S f A m S u AC T I C O V B E F ( . ) . ( ) ( . )1 5 2 5 5 5 1 8 0 0 3 7 9

N o w V C E Q = I C ( R C + R E ) = 7 9 u A ( 1 . 5 1 K ) = 1 2 0 m V

Page 27: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 27

PSPICE.TEMP 27 50

Worst case analysis .WCASE

.model device_name NPN (BF=250 DEV 20 ...

.WCASE DC IC(Q1) YMAX HI VARY DEV DEVICESQ

BF = BF + DEV = 250 + 20 = 270 &

BF = BF - DEV = 250 - 20 = 230

* worst case analysis with PSPICEVCE 1 0 15VIB 0 2 60uAQ1 1 2 0 NPNBJT.model NPNBJT NPN(BF=250 DEV 20 VA= 75).DC DEC 0 0.001 15 IB 0 50u 10u.PROBE.END

Page 28: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 28

Small Signal Model pp 256

iC = ISevBE/VT(1+VCE/VA)

Model parameters can befound either1. analytically or2. graphically from exp. data

ac = hfe

Page 29: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 29

Small Signal Model pp257i C = I S e v B E / n V t ( 1 + V C E / V A ) e q - 4 . 2 7 a u g m e n t e d t o i n c l u d e t h e e a r l ye f f e c t .

I S a n d V A I N S P I C E

M o d e l p a r a m e t e r s c a n b e f o u n d a n a l y t i c a l l y

gI

V

I

n V

I

V

I

VmC

B E

C

t

C Q

t

B

B E

g rI

V

I

V

I

V

I

Vc e c eC

C E

C

C E

S

V

A

C

A

B En V t

1 /

N o w f r o m I b = i C / a n d e q - 4 . 2 7

g rI

V

I

V

I

n V

I

V

gb e b e

B E

B

B E

C

t

C Q

t

m 1 /

B

r = r b e = / g m T a b l e 4 . 3 p p 2 7 1 K n o w

Page 30: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 30

Small Signal Model Gain pp259-60

gm = ICQ /Vt , gce =ICQ/VA = 1/rce

vin is imposed across vbe and r

vout (gce + GC) + gm vbe where vbe = vin

Solving for vo/vin = - gm /(Gc + gce)

A - gm Rc Voltage Gain for Gc >> gce

See Ex 4.9 Application of ss models

Page 31: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 31

Application of Small Signal Model pp262Step 1 replace all Cs and DC power supplies if presentwith a short circuit.

Step 2 replace the BJT with the hybrid model.

Step 3 Analyze to find Ri , Ro or AV and Ai.

Step 4 Using DC analysis determine ICQ and assume ICQ

= IEQ. You must go to the data sheet for “Beta” or hfe.

Step 5 Solve for hybrid model parameters using ICQ =IEQ and Vt above.

Step 6 Insert the results of step 5 into the equations ofstep 3 above.

Step 7 Verify with SPICE.

Start by looking at example 4.9 and 4.10

Page 32: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 32

Small Signal Model with Re pp285

Ri = vb/ib = ? Assume rce can be neglected. ie = ib + ib

At e ve = gm(ve – vb) + ieRe and noting ib = (vb - ve)/r,

Solving for

Ri= vb/ib = r + ( + 1) Re or r + (gm r + 1) Re Note = gm r

Re YIELDS THE DESIRED AMP INPUT RESISTANCE!

Page 33: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 33

Small Signal Model with Re pp285

Av = vb/vo = ? Assume rce can be neglected. ie = ib + ib

At e; ve = gm(ve – vb) + ieRe and noting ib = (vb - ve) /r, voGC + gm vbe =0

Solving for Avc = vo/vb = vo/vin AND Ave = vo/ve = vo/vin

Avc = gm RC/[1 + gm Re] Ave = 1/[1 + gm Re]

THE PRICE OF RE IS REDUCED GAIN.THIS IS YOUR ENGINEERING TRADE OFF,

HIGHER RI BUT WITH LOWER GAIN.

Page 34: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 34

Common Collector pp290

Using previous equations

Ri = r + ( + 1) Re or r + (gm r + 1) Re Ave = 1/[1 + gm Re]

and Noting Re >> 1/gm

Ri= Rs + r + (gm r + 1) Re Re(gm r + 1) = Re ( + 1)

Ave = 1

Re MUST BE >> 1/ gm

AND Re ( + 1) should be > Rs + r

WHEN ONE SOLVES for Ro

Ro = 1/gm || RE|| (Rs+ r)/

Page 35: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 35

Re MUST BE >> 1/ gm

AND Re ( + 1) should be > Rs + r

WHEN ONE SOLVES for Ro

Ro = 1/gm || RE|| (Rs+ r)/

Observations regarding impedances and theTransistor

looking into the baseEmitter to gnd side resistors inc. by

looking into the emitterEmitter to base to gnd side resistors dec. by

Common Collector Con’t

Page 36: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 36

Small Signal Model Con’t Add CsQ n = W 2 / 2 D n i C =

F i C F

T F S P I C E

Cd Q

Vg

i

Vd en

B EF m F

C

t

J u n c t i o n C a p d u e B - E a n d C - B d i o d e s

C j e 2 C J E 0 f o r B - E

C j c C J C 0 / 2 = C f o r C - E

N o w t o t a l b a s e - e m i t t e r c a p a c i t o r s y m b o l i c a l l y i s

C = C j e + C d e 2 C J 0 +

F i C o r

C = 2 C J E + T F i C i n S P I C E m o d e l p a r a m e t e r s

N o w t o t a l c o l l e c t o r e m i t t e r c a p a c i t o r s y m b o l i c a l l y i s

C C J C / 2

Page 37: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 37

Small Signal Model Cuttoff fIc = gm v + (0- v) sC (1)

(v - vin )gx + v (g +s C + sC ) = 0 (2)

Or Ib = v (g + sC +sC ) (3)

hfe = Ic/Ib = {gm v - vssC }/{v (g + s(C + C )}

hfe = {gm - sC }/ {g + s(C + C )}

hfe(s) = [gm/ g]{1 - sC/ gm }/ {1 + s(C + C )/g}

We now have a pole a zero and a DC term gm/ g = 0 the “DC” small signal current BF pole @ g/(C + C ) = [gm/0] /(C + C ) In SPICE

gm = ICQ /Vt, C = TF (ICQ /Vt)+ 2CJE, C = CJC/2

Ic

THIS IS VERY IMPORTANTthe LINK BETWEENANALYSIS- THE SIMULATORand OUR MODEL. SPICEMODELS ARE 98% REALITYAND TRANSFERABLE.

Page 38: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 38

.model Q2N2222 NPN(Is=14.34f Xti=3 Eg=1.11 Vaf=74.03 Bf=255.9Ne=1.307+ Ise=14.34f Ikf=.2847 Xtb=1.5 Br=6.092 Nc=2 Isc=0 Ikr=0 Rc=1+ Cjc=7.306p Mjc=.3416 Vjc=.75 Fc=.5 Cje=22.01p Mje=.377 Vje=.75+ Tr=46.91n Tf=411.1p Itf=.6 Vtf=1.7 Xtf=3 Rb=10)* National pid=19 case=TO18* 88-09-07 bam creation

Small Signal Model Cuttoff f

0 dB

See Fig 4.73 pp 325 also. This slide presents a very key concept. In practice in broad band amplifier design one CANNOT expect to apply a transistor beyond T….

Page 39: C. Hutchens Chap 4 ECEN 3313 Handouts 1 Chapter 4 Bipolar Junction Transistors.

C. Hutchens Chap 4 ECEN 3313 Handouts 39

Small Signal Model EX 4.76This is what its is about

Understand and know for exam!!!

SPICE verification with 1kHz sine and Re = 0 and Re = 100 and selecting 0 = 100Use VBE =0.7 (high for this case), IC

IE 0.84mA and neglecting “Early effect”From model card for 2N2222 and hand analysis

gm = ICQ /Vt = 34mS, r =0/ gm = 3.7K

also C = TF (ICQ /Vt)+ 2CJE, C = CJC/2 can be calculated

RI = RB|| [r + (0+1)Re] 3.57K and 13.1K

Av = gm (RI/( RI + Rs) gm (RC||rl)/(1+ Regm) = -44.7V/V and –21.9V/V

Verify this with PSPICE See example.