c ı í ƒ g r Identification of Nonlinear Stochastic Systems...

6
5¯XE£))Œ! F9XrO º' 1,2 § ¿˘ 1,2 1. ¥I˘Œ˘X˘˜§ X:¢¿§ 100190 2. ¥I˘I[Œ˘˘˜¥%§ 100190 ` : X·LkmS\! 5Œ f (·) ¿U\¯D(§ øX5 ARX (NARX) X§ §£ª2a˜y§ /25 ARX X' NARX X5Xaq§ 6L ımS\§ §3?U' 'ØŒ f (·) ! §F9XO§ ¿y² §r5' '¥O¢~§ [(Jn'' c: 5 ARX X§ 4ƒ{§ gO§ r5' Identification of Nonlinear Stochastic Systems: Strongly Consistent Estimates for Function Values, Gradients and System Orders Wenxiao Zhao 1,2 , Han-Fu Chen 1,2 1. Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, P. R. China 2. National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences, Beijing 100190, China. Abstract: The system, for which the current output is a nonlinear function f (·) of its past inputs and outputs of a fixed period of time superimposed by a random noise, is called the nonlinear ARX (NARX) system. It greatly extends the linear ARX systems and describes a large class of dynamic phenomena. Similar to the linear case, the most remote past input and output the current output will depend on, define the system order. The system order of NARX systems may change from place to place. The paper proposes the estimates for the values of f (·), its gradients, and orders and proves the strong consistency of the estimates. A numerical example is demonstrated, which is consistent with the theoretical analysis. Key Words: Nonlinear ARX system, recursive local least squares estimator, order estimation, strong consistency. 1 ˜ü\ü (SISO) 5 ARX X§ y k+1 = f (y k ,··· ,y k+1-M ,u k ,··· ,u k+1-M )+ε k+1 , (1) ¥ u k y k 'OX\§ ε k ˜D (§ f (·) ·5Œ§ M · f (·) Œ.' X (1) L2a˜y§ X5X! Hammerstein XA~§ ˇCc 5E£˜Øı5' l5Œ f (·) w§ yk'z'ºŒz{ºŒ z{üa' ºŒz{ˇ~b f (·)= f (·)§ ¥ θ ºŒ§ X˜Œ|XŒk«/ (ºŒ§ lØ f (·) E£=zØ θ O§ ~ X [12][16]ºŒz{ˇ~b5ŒL ık&E§ O f (·) 3?¿‰:§ ~ X [3][4][15][17]' '3ºŒ/e§ Œ f (·) 3?¿‰:Œ! F9XE £' Ø5X5§ gºŒE£˜/J Lı§X AIC! BIC ˜u&EOK Email: [email protected], [email protected]. d I [ g , ˘ ˜ 7 ] ˇ § 8 1 O 61273193§ 61134013§ 61104052§ 91130008. gE£{ [1] O2ƒ! ¯%CºŒ 4{ [5][7][8]' ¢S§ Ø5X XgºŒrO [7]' Ø5X5 § ˜ff' e¡{ü0X (1) ºŒE£9O'' 'z [3][4][15][17] ˜X (1) ºŒE£' {u k ,y k } N k=1 Œ8§ ϕ * R 2M ‰:§ 'z [15] E¡zXŒ £Direct weight optimization, DWO/ {5O f (·) 3 ϕ * :' P f (·) 3 ϕ * :O b f N (ϕ * )§ b f N (ϕ * ) 5|§ b f N (ϕ * ) , w 0 + N X k=1 w k y k , (2) ¥ w N =[w 0 w 1 ··· w N ] T ze¡ Œ§ J N (w, ϕ * ,f ) , E f (ϕ * ) - b f N (ϕ * ) · 2 . (3) du f (·) § /(3) ˆ{ƒ^' be f (·) Æu ,Œa F § DWO E£{?=ze¡ 44zK§ w N , argmin w max gF J N (w, ϕ * ,g). (4)

Transcript of c ı í ƒ g r Identification of Nonlinear Stochastic Systems...

  • 5ÅXÚE£))¼ê!FÝ9XÚ��r�O

    ë©ö 1,2§¿Æ 1,2

    1. ¥IÆ�êÆXÚÆïÄ�§XÚ:¢�¿§�® 100190

    2. ¥IÆ�I[êÆ��ÆïÄ¥%§�® 100190

    Á : XÚ�ÑÑ´L�kmSÑ\!ÑÑ�5¼ê f(·)¿U\ÅD(§ù��XÚ�5ARX (NARX)XÚ§§£ã�2�aÄ�y§�/í25 ARXXÚ©NARXXÚ��Ú5XÚaq§6L�õ�mS�Ñ\ÚÑѧ§3?UØÓ©�©Ñé¼ê f(·)�!§�Fݱ9XÚ���O§¿y²

    §�r5©©¥ÑO¢~§�[(JÚnة۬ܩ

    'c: 5 ARXXÚ§4íÛÜ��¦{§�g�O§r5©

    Identification of Nonlinear Stochastic Systems: Strongly ConsistentEstimates for Function Values, Gradients and System Orders

    Wenxiao Zhao1,2, Han-Fu Chen1,2

    1. Key Laboratory of Systems and Control, Academy of Mathematics and Systems Science,Chinese Academy of Sciences, Beijing 100190, P. R. China

    2. National Center for Mathematics and Interdisciplinary Sciences,Chinese Academy of Sciences, Beijing 100190, China.

    Abstract: The system, for which the current output is a nonlinear function f(·) of its past inputs and outputs of a fixed period oftime superimposed by a random noise, is called the nonlinear ARX (NARX) system. It greatly extends the linear ARX systemsand describes a large class of dynamic phenomena. Similar to the linear case, the most remote past input and output the currentoutput will depend on, define the system order. The system order of NARX systems may change from place to place. The paperproposes the estimates for the values of f(·), its gradients, and orders and proves the strong consistency of the estimates. Anumerical example is demonstrated, which is consistent with the theoretical analysis.

    Key Words: Nonlinear ARX system, recursive local least squares estimator, order estimation, strong consistency.

    1 Úó

    ÄüÑ\üÑÑ (SISO)5 ARXXÚ§

    yk+1 = f(yk,· · · ,yk+1−M , uk,· · · ,uk+1−M )+εk+1, (1)Ù¥ uk Ú yk ©OXÚ�Ñ\Ñѧεk °ÄD

    (§f(·)´�5¼ê§M ´ f(·)ê�®þ.©

    XÚ (1)L�2�aÄ�y§±ºX5XÚ!HammersteinXÚ�ÙA~§ÏCc5ÙE£ïÄÉ�éõ'5©l5¼ê f(·)�ï�ªw§yk©z©ëêz{Úëê

    z{üa©ëêz{Ï~b� f(·) = f(·, θ)§Ù¥θëê§'Xļê�|ÜXê½k«/�Ú�(�ëê§lé f(·, θ)�E£=zé θ��O§~X [12][16]¶ëêz{Ï~Øb�5¼êLõ�k�&E§��O f(·)3?¿½:�§~X [3][4][15][17]©�©3ëêï�/e§¼ê f(·)3?¿½:�¼ê!Fݱ9XÚ��E£©

    é5XÚ5`§�gÚëê�E£ïĤJ

    ©´LÚ�õ§'X AIC!BIC �Äu&EOK��

    Email: [email protected], [email protected]ó��I[g,ÆÄ7]ϧ 81O

    Òµ61273193§61134013§61104052§91130008.

    gE£{ [1] ÚO2��¦!Å%C�ëê�4í{ [5][7][8]©¢Sþ§é5XÚ±Ó��XÚ�gÚëê�r�O [7]©�é5XÚ5`§'ïÄffåÚ©e¡·{ü0�XÚ (1)ëêE£9��O�Ü©ó©

    ©z [3][4][15][17]ÄXÚ (1)�ëêE£©�{uk, yk}Nk=1êâ8§ϕ∗ ∈ R2M ½:§©z [15]�E¡�`z�Xê£Direct weight optimization,DWO¤�{5�O f(·)3 ϕ∗:�©P f(·)3 ϕ∗:��O f̂N (ϕ∗)§f̂N (ϕ∗)þÿÑÑ�5|ܧ

    f̂N (ϕ∗) , w0 +N∑

    k=1

    wkyk, (2)

    Ù¥ wN = [w0 w1 · · · wN ]T `ze¡þØ�¼ê����þ§

    JN (w, ϕ∗, f) , E(f(ϕ∗)− f̂N (ϕ∗)

    )2. (3)

    du f(·)§¤± (3)Ã{�¦^©be f(·)áu,¼êa F§DWOE£{?Ú=ze¡�4�4`z¯K§

    wN , argminw

    maxg∈F

    JN (w, ϕ∗, g). (4)

  • ©z [3]ÄÄu DWO{�ëêE£§ [15]ØÓ:3uOK¼ê�ÀJ§[15]æ^þØ�¼ê§ [3] æ^¦�OØ�u,½�VÇ4��{5�O�Xê§=

    wN , argminw

    P{|f(ϕ∗)− f̂N (ϕ∗)| > δ

    }. (5)

    ©z [3][15]Ñ´Äu�½��Nþ�`z{§"yéN →∞{ì?5�?Ø©©z [4]æ^k.Ñ\§¿3D(k.ÚXÚêÑ\Ñѽ�b�

    ^e§�EÄuؼê�4í{§¿y² f(ϕ∗)��OS�´VÇÂñ�©©z [17]�EÄu*Ü��Å%C{§¿y²�OS�r/

    Âñ� f(·)3½:�¼ê©b� f(·) ��ëY§FݼêP Of(·)§

    |^�VÐm§é?¿¿©�� ² > 0 ±9 ϕ ÷v‖ϕ− ϕ∗‖ < ²kXe'X¤áµ

    |f(ϕ)− f(ϕ∗)| = O (‖ϕ− ϕ∗‖) ,|f(ϕ)− f(ϕ∗)− Of(ϕ∗)T (ϕ− ϕ∗)| = O

    (‖ϕ− ϕ∗‖2

    ).

    §éëêE£5`§Fݼê��O±�Ñ

    5¼ê3½:�ÛÜ5�.§lJpï�

    �°Ý§ù¯K3©z [3][4][15][17]¥¿?Ø©d§þã©zb� f(·)��®§Cc5§é f(·)��E£ïĤJØäZy§X5z{ [2]!o¼êþ{ (Lipschitz number approach, [10])!CĽ{ (False nearest neighbors approach, [11])!b�u�{[13][14] �©8c§ù{"yî�nØ©Û¶õ'5E£ f(·)��§vkÓé¼ê f(·)lëêzï�½ëêï��Ý?1E£¶,§¤Ä

    5¼ê f(·)��3�½Â (½£8m)´�©é5XÚ5`§Nõ¹e f(·)��Uó:�CzUC§·e¡ü~fµ

    ~ 1 ©¡� ARXXÚµ

    yk+1 = f1(yk,· · · ,yk+1−M , uk,· · · ,uk+1−M )+εk+1, (6)

    Ù¥

    f1(yk, · · · , yk+1−M , uk, · · · , uk+1−M )

    =

    a(1)1 yk+· · ·+a(1)p1 yk+1−p1 +b(1)1 uk+· · ·+b(1)q1 uk+1−q1 ,

    if [yk, · · · , yk+1−M , uk, · · · , uk+1−M ]T ∈ X1,...

    a(s)1 yk+· · ·+a(s)ps yk+1−ps +b(s)1 uk+· · ·+b(s)qs uk+1−qs ,

    if [yk, · · · , yk+1−M , uk, · · · , uk+1−M ]T ∈ Xs,

    Xi, i = 1, · · · , spØ�÷v⋃s

    i=1 Xi = R2M©XÚ3Xi�� (pi, qi)§§3�mþvkÚ��©

    ~ 2 kóÀA5XÚ

    yk+1 = f2(uk, uk−1, uk−2) + εk+1, (7)

    Ù¥

    f2(uk, uk−1, uk−2) =

    ukuk−1uk−2, if uk > 1,

    ukuk−1, if − 1 ≤ uk ≤ 1,uk, if uk < −1.

    du uk ¤? ØÓ§XÚ��ØÓ©

    éXÚ (1)§8vkw�ÓÄ5¼ê�!¼êÚFÝE£�©Ù§AO/§é5¼

    ê3ØÓó:kØÓ��ïÄvk©�©�éþ

    ã¯K§31�!Äuؼê�EÛÜ��¦

    {ÚÛÜ&EOK§̂ ±�OXÚ�5¼ê3

    ½:��!¼ê±9Fݶ31n!§(ÜXÚ�

    ê¼5§y²�!¼ê±9FÝ�O�r5¶

    31o!ÏLý~f�y{9nØ�k�

    5¶�§31Ê!o(Ú?Ø©

    êÆÎÒµP (Ω, F ,P)Ä�VÇm§Bm Rm þ� Borel-σê©þ x(m) = [x1 · · ·xm]T �îAp�êP ‖x(m)‖§ÎÒÿÝ ν(·)��C�êP ‖ν(·)‖var©éKS� {aN}N≥1 Ú {bN}N≥1§ÎÒ aN ∼ bN ¿3��~ê c1 Ú c2§¦� c1bN ≤aN ≤ c2bN é?¿ N ≥ 1Ѥá"2 ÛÜ&EOKÚÛÜ��¦{

    5¿�XÚ (1)¥¼ê f(·)�½Â R2M§½Â£8þ ϕk(M, M)Ú?¿½: x∗(2M)Xeµ

    ϕk(M, M) , [yk · · · yk+1−M uk · · ·uk+1−M ]T , (8)x∗(2M) , [x∗1, · · · , x∗2M ]T . (9)

    é?¿ 1 ≤ p ≤ M Ú 1 ≤ q ≤ M§½Âϕk(p, q) , [yk · · · yk+1−p uk · · ·uk+1−q]T , (10)x∗(p, q) = [x∗1, · · · , x∗p, x∗M+1, · · · , x∗M+q]T . (11)�¼ê f(·)3: x∗(2M)�� (p0, q0), 1 ≤ p0 ≤

    M, 1 ≤ q0 ≤ M§ù´f(x∗(2M)) =f

    (x∗1, · · · , x∗p0 ,xT (M − p0),x∗M+1,· · · ,x∗M+q0 ,xT (M − q0)

    ), (12)

    Ù¥ x(M − p0)Ú x(M − q0)´ RM−p0 Ú RM−q0 ¥�?¿þ©

    Xeb�µ

    A1) f(·)3 x∗(2M)��ëY¿÷v∂f

    ∂x∗p06= 0, ∂f

    ∂x∗M+q06= 0.

    P f(·) 3: x∗(2M) ?�FݼêOf(x∗(2M)) ,

    [∂f∂x∗1

    · · · ∂f∂x∗M∂f

    ∂x∗M+1· · · ∂f∂x∗2M

    ]T©

    db�^�

    Of(x∗(2M)) =

    ∂f

    ∂x∗1· · · ∂f

    ∂x∗p00 · · · 0︸ ︷︷ ︸M−p0

    ∂f

    ∂x∗M+1· · · ∂f

    ∂x∗M+q00 · · · 0︸ ︷︷ ︸M−q0

    T

    . (13)

  • é5XÚ§A1)Ú (13)w,¤á©,¡§é¿©�C x∗(2M) �: x(2M)§|

    ^�VÐm�

    f(x(2M))

    ≈f(x∗(2M))+Of(x∗(2M))T (x(2M)−x∗(2M)). (14)

    d (13)Ú (14)§XJ�� f(·)3: x∗(2M)¼êÚFÝ��O¿�ä ∂f∂x∗i

    , i = 1, · · · , 2M ´Ä"§Ò±�OѼê3½:��§Ï�E3

    ½:�ÛÜ5�.´E£¯K�'©

    3�E{c§·Ú\^µ

    A2) À� bk = 1kδ§Ù¥ δ ∈(0, 12(2M+1)

    )¶À�

    w(·) é¡�VÇݼê§3 0 < ρ < 1¦�� ‖x‖ → ∞ k w(x) = O (ρ‖x‖)§∫R2M w(x)xx

    T dx > 0©�êâ8 {ϕk(M, M), yk+1}Nk=1©é?¿½

    (p, q), 1 ≤ p ≤ M, 1 ≤ q ≤ M§3½: x∗(2M)�EXe\���¦{µ

    θN+1(p, q)

    =[θ0,N+1(p, q) θT1,N+1(p, q)

    ]T

    , argminθ0(p,q)∈Rθ1(p,q)∈Rp+q

    N∑

    k=1

    wk(x∗(2M))(yk+1 − θ0(p, q)

    − θ1(p, q)T (ϕk(p, q)− x∗(p, q)))2

    , (15)

    Ù¥ wk(x∗(2M))½ÂXeµ

    wk(x∗(2M))=1

    b2Mkw

    (1bk

    (ϕk(M, M)−x∗(2M)))

    . (16)

    ½Âþµ

    Xk(p, q) ,[

    1ϕk(p, q)− x∗(p, q)

    ]. (17)

    ´d (15)ª¤½Â�\���¦{§�Ý

    ∑Nk=1 wk(x

    ∗(2M))Xk(p, q)Xk(p, q)T ÛÉkOúªµ

    θN+1(p, q) =

    (N∑

    k=1

    wk(x∗(2M))Xk(p, q)Xk(p, q)T)−1

    ·(

    N∑

    k=1

    wk(x∗(2M))Xk(p, q)yk+1

    ). (18)

    ?ÚÚ\Xe�OK¼êµ

    LN+1(p, q) , σN+1(p, q) + aN · (p + q), (19)

    Ù¥

    σN+1(p, q) ,N∑

    k=1

    wk(x∗(2M))(yk+1−θ0,N+1(p, q)

    −θ1,N+1(p, q)T (ϕk(p, q)−x∗(p, q)))2

    , (20)

    {aN}N≥1 ü N ª u à ¡ � � S�§ {θ0,N+1(p, q)}N≥1 Ú {θ1,N+1(p, q)}N≥1 ´d{ (15)����OS�©���O½ÂXeµ

    (pN+1, qN+1) , argmin1≤p≤M1≤q≤M

    LN+1(p, q). (21)

    5P 1 ±þ{¥� w(·)~¡Ø¼ê§~�ؼêkpdݼê§d

    wk(x∗(2M)) =1

    (2π)M1

    b2Mkexp

    {−1

    2

    M∑

    i=1

    (yk+1−i − x∗i

    bk

    )2

    −12

    M∑

    j=1

    (uk+1−j − x∗M+j

    bk

    )2 .

    5P 2 d (16)ª§e ϕk(M, M)C x∗(2M)§{ (15)éA��Ò§K�§Ï¡{ (15)|^½: x∗(2M)/C�0êâ�ÛÜ��¦{©|^ݦ_úª§´{ (18)±�¤4í/ª©(16)ª� bk ~¡Ú©²;�ÛÜ5�O{' [9]§(16)¥�ÚëêXêâþ�O\

    UC§²;�ÛÜ5�O{Ú~§Ï

    Ã{4íO©

    5P 3 d (15)ª��� θ0,N+1(p, q)Ú θ1,N+1(p, q)©O f(·)3½:�¼ê9ÙFÝ��O©(19)¤½Â�OK¼êÀ5XÚ'OK¼ê (X AIC�) 35/e�í2§üö�«O3u (20) ª¥�ؼê§Ï¡ (19)ÛÜ&EOK©

    3©Û{Âñ5c§·?ÚÚ\^©

    d§Äk½Âþµ

    Φ1(ϕk(M,M))

    , [f(yk, · · · , yk+1−M , uk, · · · , uk+1−M ) yk · · · yk+2−M ]T ,Φ2(ϕk(M,M))

    , [0 uk · · ·uk+2−M ]T ,Φ(ϕk(M, M)) , [Φ1(ϕk(M,M))T Φ2(ϕk(M, M))T ]T ,ξk+1 , [εk+1 0 · · · 0 uk+1 0 · · · 0]T .

    lXÚ (1)L«G�m/ªµ

    ϕk+1(M, M) = Φ(ϕk(M, M)) + ξk+1. (22)

    ?ÚXeb�µ

    A3) 3 RM þ�þê ‖ · ‖ν ±9~ê 0 < λ <1, c1 > 0, c2 > 0±9 γ > 0§¦�

    ‖Φ1(x)‖ν≤λ‖s‖ν+c1M∑

    i=1

    |ti|γ+c2, ∀ x ∈ R2M , (23)

    Ù¥ s , [s1 · · · sM ]T ∈ RM , t , [t1 · · · tM ]T ∈RM , x , [sT tT ]T ∈ R2M©

    A4) Ñ\&Ò {uk}k≥0 ÕáÓ©Ù�ÅS�§÷v 0 < E|uk|γ < ∞§kVÇݼê fu(·)§fu(·)3 RþëY�©

  • A5) D( {εk}k≥0 ÕáÓ©ÙÅS�§Eεk =0, 0 < Eε2k < ∞§kVÇÝ fε(·)§fε(·)3 RþëY�¶{uk}k≥0Ú {εk}k≥0pÕá©

    A6) E‖Y0‖ < ∞§Ù¥ Y0 , [y0, y−1, · · · , y1−M ]T©|^Ýê�'(ا ±y²5X

    Ú!Hammerstein XÚ�Ñ÷v^ A3)©d (22) §{ϕk(M, M)}k≥0 �u (R2M , B2M )�ê¼ó©Äu±þb�§ê¼ó {ϕk(M,M)}k≥0ke¡5©Ún 1 ([17])XJ A3)-A6)¤á§Kk

    (i) {ϕk(M, M)}k≥0 AÛH{ê¼ó§ =3(R2M , B2M )þ�VÇÿÝ PIV(·)±9~ê c1 > 0Ú 0 < ρ1 < 1§¦� ‖Pk(·)−PIV(·)‖var ≤ c1ρk1§Ù¥ Pk(·) ϕk(M,M)�©Ù�Ñ�VÇÿÝ©

    (ii) PIV(·)kVÇݼê fIV(·)§fIV(·)3 R2M þ�©

    (iii) {ϕk(M, M)}k≥0´ α-·Ü�§·ÜXêP{α(k)}k≥0§¿3~ê c2 > 0Ú 0 < ρ2 < 1§¦� α(k) ≤ c2ρk2©

    5P 4 H{5�yê¼ó�ìC²5§·Ü¿XÅS��ìCÕá5©'½Â!5ë [9]©

    3 E£{�r5

    |^ {ϕk(M,M)}k≥0�H{5Ú·Ü5¿(Ü·ÜÅL§�4½n§éÛÜ��¦

    {�e¡ü(Ø©

    Ún 2 XJ A1)-A6)¤á§¿ fIV(·)3: x∗(2M)��ëY§Ké?¿ ² > 0k

    1N

    N∑

    k=1

    wk(x∗(2M))(f(ϕk(M,M))− f(x∗(2M))

    − Of(x∗(2M))T (ϕk(M, M)− x∗(2M)))

    =1

    2(1− 2δ)b2N

    R2Mw(x)xT

    ∂2f

    ∂x∗(2M)2xdx · fIV(x∗(2M))

    + o(b2N ) + o

    (1

    N12−²bMN

    )a.s. (24)

    1N

    N∑

    k=1

    wk(x∗(2M))(ϕk(M, M)− x∗(2M))(f(ϕk(M,M))

    − f(x∗(2M))− Of(x∗(2M))T (ϕk(M, M)− x∗(2M)))

    =1

    2(1− 3δ)b3N

    R2Mw(x)xxT

    ∂2f

    ∂x∗(2M)2xdx · fIV(x∗(2M))

    + o(b3N ) + o

    (1

    N12−²bM−1N

    )a.s. (25)

    N−1∑

    k=1

    wk(x∗(2M))εk+1 = O(N

    12+Mδ+²

    ), a.s. (26)

    N−1∑

    k=1

    wk(x∗(2M))(ϕk(M,M)− x∗(2M))εk+1

    = O(N

    12+(M−1)δ+²

    ), a.s. (27)

    ½Âµ

    AN (1, 1) =1N

    N∑

    k=1

    wk(x∗(2M)),

    AN (1, 2) =1

    N1−δ

    N∑

    k=1

    wk(x∗(2M))(ϕk(M, M)− x∗(2M))T ,

    AN (2, 1) =AN (1, 2)T ,

    AN (2, 2) =1

    N1−2δ

    N∑

    k=1

    wk(x∗(2M))(ϕk(M, M)− x∗(2M))

    · (ϕk(M, M)− x∗(2M))T .Ún 3 XJ A1)-A6)¤á§¿ fIV(·)3: x∗(2M)��ëY§Kk

    [AN (1, 1) AN (1, 2)AN (2, 1) AN (2, 2)

    ]−→

    N→∞fIV(x∗(2M))

    ·[1 00 11−2δ

    ∫R2M w(x)xx

    T dx

    ]> 0 a.s. (28)

    ½n 1 XJ A1)-A6)¤á§¿ fIV(·)3: x∗(2M)��ëY§KéÛÜ��¦{k

    θN+1(M, M)−[f(x∗(2M)) Of(x∗(2M))T

    ]T −→N→∞

    0 a.s.

    (29)

    y²µl (18)ª�

    θN+1(M, M)−[f(x∗(2M)) Of(x∗(2M))T

    ]T

    =

    (Nk∑

    i=1

    wi(x∗(2M))Xi(M,M)Xi(M, M)T)−1

    (Nk∑

    i=1

    wi(x∗(2M))Xi(M,M)ξi+1

    )

    =[N−δ 0

    0 I

    ] [AN (1, 1) AN (1, 2)AN (2, 1) AN (2, 2)

    ]−1 [BN (1)BN (2)

    ], (30)

    Ù¥

    ξi+1 , εi+1 + f(ϕi(M,M))− f(x∗(2M))− Of(x∗(2M))T (ϕi(M, M)− x∗(2M)),

    BN (1) =1

    N1−δ

    N∑

    k=1

    wk(x∗(2M))(f(ϕk(M, M))−f(x∗(2M))

    −Of(x∗(2M))T (ϕk(M, M)−x∗(2M))+εk+1),

    BN (2) =1

    N1−2δ

    N∑

    k=1

    wk(x∗(2M))(ϕk(M, M)− x∗(2M))

    ·(f(ϕk(M, M))−f(x∗(2M))

    − Of(x∗(2M))T (ϕk(M, M)−x∗(2M))+εk+1).

    |^Ún 2�[BN (1)BN (2)

    ]−→

    N→∞

    [00

    ]a.s.

    2(ÜÚn 3Ò½n(ؤ᩠¥

  • ½n 2 XJ A1)-A6)¤á!fIV(·)3: x∗(2M)��ëY§¿ {aN}N≥1÷v

    N1−4δ

    aN−→

    N→∞0,

    aNN1−2δ

    −→N→∞

    0, (31)

    Ù¥ δ > 0÷vb�^ A2)§KÛÜ&EOK�����O´r�§=

    (pN , qN ) −→N→∞

    (p0, q0) a.s. (32)

    y²µ½n�y²ÌÉ©z [6]'u5XÚ�gE£'(Ø�éu©·�ÑÌg´©

    ∑N

    i=1 wi(x∗(2M))Xi(M, M)Xi(M, M)T

    ��A� λ(M,M)min (N)§|^Ún 3�

    λ(M,M)min (N) ∼ N1−2δ. (33)

    5¿ p, q, p0, q0 þ��ê§y (32) y² {(pN , qN )}N≥1 �?¿4:Ñ�u (p0, q0) =©b� (p′, q′) ´ {(pN , qN )}N≥1 �4:§l3 {(pN , qN )}N≥1 �f�§P {(pNk , qNk)}k≥1§¦� (pNk , qNk) −→

    k→∞(p′, q′)©5¿� {(pN , qN )}N≥1 ±9

    (p′, q′)þ��ê§l3K > 0¦�

    (pNk , qNk) = (p′, q′), ∀ k ≥ K. (34)

    y (p′, q′) = (p0, q0)§·y²±en«¹þØUu)µ(i) p′ < p0¶(ii) q′ < q0¶(iii) p′ + q′ >p0 + q0©ÄkÄ (i)©be p′ < p0§â��O�½Â§

    w,k

    0 ≥ LNk+1(p′, q′)− LNk+1(p0, q0).

    ,¡§�

    LNk+1(p′, q′)− LNk+1(p0, q0)

    =σNk+1(p′, q′)− σNk+1(p0, q0) + aNk(p′ + q′ − p0 − q0)

    ≥λ(M,M)min (Nk)(

    c +aNk

    λ(M,M)min (Nk)

    (p′ + q′ − p0 − q0))

    ,

    Ù¥ c > 0© |^ (33) ¿5¿� (31)§ ÒkLNk+1(p

    ′, q′)−LNk+1(p0, q0) −→k→∞

    ∞©þãgñÒ�yp′ ≥ p0©aq/±y² q′ ≥ q0±9 p′+q′ ≤ p0 +q0§?� (32)© ¥

    5P 5 aN � CN1−3δ§Ù¥ C > 0~ê©d½n1 Ú½n 2 §|^{ (15) Ú (21)§±Ó��¼ê f(·)3½:�!¼ê±9FÝ�r�O©

    4 ý~f

    ÄkóÀAXÚ

    yk+1 = f(uk, uk−1, uk−2) + εk+1, (35)

    Ù¥

    f(uk, uk−1, uk−2)

    =

    b(1)1 uk + b

    (1)2 uk−1 + b

    (1)3 uk−2, if uk > 1,

    b(2)1 uk + b

    (2)2 uk−1, if − 1 ≤ uk ≤ 1,

    b(3)1 uk, if uk < −1,

    Ù¥¤këê b(j)i þ� 1§{uk}k≥1Ú {εk}k≥1

    pÕá� iidÅS�§©OÑl©Ù N (0, 22)ÚN (0, 0.12)©w,XÚ (35)3ØÓ½ÂþkØÓ�©b���þ. 4§Ä: ϕ∗ = [0.5 0.5 0.5 0]T©Äuêâ8 {uk, yk+1}N=2000k=1 Úëê δ = 0.01§¿À�aN = 0.01N1−3δ§ã 1± N = 2000 σN (q)ÚLN (q), q = 1, 2, 3, 4 �Cz§ã 2 ± b

    (2)1 Ú

    b(2)2 ��OS�©lã 1Úã 2§¤k�OÑÂñ�ý©

    1 1.5 2 2.5 3 3.5 450

    60

    70

    80

    90

    100

    σ N(q

    )

    1 1.5 2 2.5 3 3.5 490

    100

    110

    120

    130

    L N(q

    )

    ã 1: σN (q)Ú LN (q)

    0 500 1000 1500 2000−2

    −1

    0

    1

    2

    3

    4

    ã 2: b(2)1 Ú b(2)2 ��OS�

    5 o(

    �©ÄÅ5XÚ�ëêE£§ÏL�

    EÛÜ��¦{ÚÛÜ&EOK§¿(ÜXÚ�

    ê¼5§ÓѼê f(·)3½:�!¼ê±9FÝ�r�O©

    �©�'b�´XÚ��þ.®§XÛ

    �Kù^§´��\ïÄ�¯K¶éëêE

  • £5`§Äuؼê��E§E£{¢S|^�´

    ½:C��ÛÜêâ§Ï|^�êâþ�!Âñ

    Ý�ú§XÛ)ûùJK§U¬éE£±9

    '¯KåÈ4^¶�©(J�émXÚ§4

    Å5XÚ�E£§8cïÄé�!äk]Ô5¶

    �©�E��E£{Ø´4í�§XÛ�O��4

    íE£{§3¢!3�¸eAO¶d§

    �©¤�(Ø´êâþªuá�ìCÂñ5§¢

    Sêâþ k§êâþk�5XÚE£§

    ��\ïÄ©

    ë©z

    [1] H. Akaike, “A new look at the statistical model identi-fication,” IEEE Trans. Automatic Control , Vol. 19, pp.716–723, 1974.

    [2] M. Autins, M. Biey, and M. Haslerl, “Order of discretetime nonlinear systems determined from input-outputsignals”, Proceedings of IEEE International Symposiumon Circuits and Systems, pp. 296–299, 1992.

    [3] E. W. Bai and Y. Liu, “Recursive direct weight optimiza-tion in nonlinear system identification: A minimal prob-ability approach,” IEEE Trans. Automat. Contr., vol. 52,no. 7, pp. 1218–1231, 2007.

    [4] E. W. Bai, R. Tempo and Y. Liu, “Identification of IIRnonlinear systems without prior structural information,”IEEE Trans. Automatic Control, Vol. 52, No. 3, pp. 442–453, 2007.

    [5] H. F. Chen, Stochastic Approximation and Its Applica-tions. Dordrecht, The Netherland: Kluwer, 2002.

    [6] H. F. Chen and L. Guo, “Consistent estimation of theorder of stochastic control systems”, IEEE Trans. Auto-matic Control, Vol. 32, pp. 531–535, 1987.

    [7] H. F. Chen and L. Guo, Identification and StochasticAdaptive Control, Boston, MA: Birkhäuser, 1991.

    [8] H. F. Chen and W. X. Zhao, “New method of order es-timation for ARMA/ARMAX processes”, SIAM J. Con-trol and Optimization, Vol. 48, pp. 4157–4176, 2010.

    [9] J. Fan and I. Gijbels, Local Polynomial Modeling andIts Applications. London, U.K.: Chapman & Hall/CRC,1996.

    [10] X. He and H. Asada, “A new method for identify-ing orders of input-output models for nonlinear dynamicsystems”, Proceedings of the American Control Confer-ence, San Francisco, USA, pp. 2520–2523, 1993.

    [11] M. B. Kennel, R. Brown, and H. Abarbanel, “Deter-mining embedding dimension for phase-space recon-struction using geometrical construction”, Physical Re-view, Vol. 45, pp. 3403–3411, 1992.

    [12] B. Ninness and S. J. Henriksen, “Bayesian system iden-tification via Markov chain Monte Carlo techniques,”Automatica, Vol. 46, No. 1, pp. 40–51, 2010.

    [13] P. Peduzzi, “A stepwise variable selection procedurefor nonlinear regression methods”, Biometrics, Vol. 36,pp. 510–516, 1980.

    [14] J. Roll, I. Lind, and L. Ljung, “Connections between

    optimisation-based regressor selection and analysis ofvariance”, Proceedings of the 45th IEEE Conference onDecision and Control, pp. 4907–4914, San Diego, USA,2006.

    [15] J. Roll, A. Nazin and L. Ljung, “Nonlinear systemidentification via direct weight optimation,” Automatica,Vol. 41, No. 3, pp. 475–490, 2005.

    [16] T. Schon, A. Wills and B. Ninness, “System identifica-tion of nonlinear state-space models,” Automatica, Vol.47, No. 1, pp. 39–49, 2011.

    [17] W. X. Zhao, H. F. Chen, and W. X. Zheng, “Recur-sive identification for nonlinear ARX systems based onstochastic approximation,” IEEE Trans. Automatic Con-trol, Vol. 55, No. 6, pp.1287–1299, 2010.