By S.A. Wilson1

25
U. S. DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY ASSESSMENT OF CHEMICAL VARIABILITY IN THREE INDEPENDENTLY PREPARED BATCHES OF NATIONAL INSTITUTE FOR STANDARDS AND TECHNOLOGY SRM 2704, BUFFALO RIVER SEDIMENT By S.A. Wilson 1 Open File Report 93-692 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards nor with the North American Stratigraphic Code. Any' use of trade names is for descriptive purposes only and does not imply endorsement by the USGS. 1 U.S. Geological Survey, PO Box 25046, MS 973, Denver Co. 80225

Transcript of By S.A. Wilson1

Page 1: By S.A. Wilson1

U. S. DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

ASSESSMENT OF CHEMICAL VARIABILITY IN THREEINDEPENDENTLY PREPARED BATCHES OF NATIONAL

INSTITUTE FOR STANDARDS AND TECHNOLOGY SRM 2704,BUFFALO RIVER SEDIMENT

By S.A. Wilson1

Open File Report 93-692

This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards nor with the North American Stratigraphic Code. Any' use of trade names is for descriptive purposes only and does not imply endorsement by the USGS.

1 U.S. Geological Survey, PO Box 25046, MS 973, Denver Co. 80225

Page 2: By S.A. Wilson1

CONTENTS

Page

Introduction.................................................... 1Experimental.................................................... 2Results and Discussion .......................................... 3Conclusions..................................................... 6Acknowledgements................................................ 6Bibliography.................................................... 7

TABLES

Table l. Comparison of USGS values for SRM 2704-original withNIST certified or recommended concentrations ...........8

Table 2. Summary results for SRM 2704-original andSRM 2704-organic ....................................... 9

Table 3. Summary results for SRM 2704-organic and SRM 2704-organic/sterilized.................................... 10

APPENDICES

Appendix A. Analytical results for SRM 2704-original, analysisby ICP-AES, WDXRF, HG-AAS and CV-AAS .............. 11

Appendix B. Analytical results for SRM 2704-organic, analysisby ICP-AES, WDXRF, HG-AAS, CV-AAS ................. 13

Appendix C. Analytical results for SRM 2704-organic/sterilizedanalysis by ICP-AES, WDXRF, HG-AAS, and CV-AAS .... .20

Appendix D. Analytical data for SRM 2704-organic from second test group, analysis by ICP-AES, WDXRF, HG-AAS, and CV-AAS ........................................ 22

Page 3: By S.A. Wilson1

INTRODUCTION

Under a cooperative agreement between the National Institute for Standards and Technology (NIST) and the United States Geological Survey (USGS), a study was conducted to determine the total element concentrations in three batches of standard reference material SRM 2704, also known as Buffalo River Sediment (National Institute for Standards and Technology, 1990). All three batches of SRM 2704 discussed in this report were derived from the same supply of the standard. The different SRM designations used in this report are designed to identify the different treatment procedures.

The first batch, identified as SRM 2704-original represents the currently distributed material that is certified for 25 major and trace elements. This supply of the standard was radiation sterilized immediately prior to bottling to stabilize the inorganic constituents against potential bacterial/microbial degradation. The second batch identified as SRM 2704-organic represents a supply of the original material that was destined to be certified for organic contaminates. SRM 2704-organic was not sterilized due to concerns over possible organic compound degradation by radiation sterilization. Comparisons of total element concentrations for these two batches of SRM 2704 was requested in order to determine if bottles of SRM 2704-organic could be added to the reserves of SRM 2704-original and help extend the lifetime of this valuable international reference material. If between batch comparisons of total element concentrations showed significant differences, then valuable information could be obtained regarding the long term stability \ of elements in a nonsterilized material.

The third batch of SRM 2704 used in this study was identified as 2704-organic/sterilized. This batch represents a separate split of 2704-organic that had undergone radiation sterilization just prior to shipment of the samples. In this phase of the study a comparison was made between 2704-organic and 2704-organic/sterilized to determine if radiation sterilization has an effect on total element concentrations. Of particular interest was the effect radiation sterilization would have on potentially volatile elements such as, arsenic, cadmium, mercury, and selenium.

In addition to the between batch comparison studies cited above, analytical results from the analysis of SRM 2704-original were also examined to evaluate the accuracy of USGS procedures. Comparison of USGS results with NIST certified values would be used to determine if a statistically significant bias existed for specific elements using USGS analytical procedures.

Page 4: By S.A. Wilson1

EXPERIMENTAL

In phase one of the study, samples from SRM 2704-original and 2704-organic were randomly analyzed (in single job) to evaluate the between batch differences. Analytical results for SRM 2704-organic are based on the analysis of 25 individual bottles and 3 bottle duplicates (n=28). Results for SRM 2704- original are based on the analysis of 5 individual bottles and 2 bottle duplicates (n=7). Approximately 1 to 7 g of material from each bottle of SRM was transferred to 2-ounce glass bottles and dried for two hours at 110°C. Following the two hour drying time the bottles were immediately transferred to a desiccator to cool. After cooling the samples were removed from the desiccator, capped, and forwarded to the lab for analysis.

In phase two of the study, comparisons were made between 2704-organic and 2704-organic/sterilized. For this comparison, 5 bottles of SRM 2704-organic/sterilized were sampled along with 2 bottle duplicates (n=7). Results for 2704/organic were based on samples from 3 individual bottles (n=3). Samples were dried prior to analysis as described above. All total element concentrations are reported on a dry-weight basis.

All samples were analyzed using a combination of inductively coupled plasma-atomic emission spectrometry (ICP-AES), wavelength dispersive X-ray fluorescence spectroscopy (WDXRF), hydride generation-atomic absorption spectrophotometry (HG-AAS), and cold vapor-atomic absorption spectrophotometry (CV-AAS). The procedures used have been described in detail elsewhere (Arbogast, 1990; Baedecker, 1987; Crock, and others 1983) and will only be summarized here.

The ICP-AES procedure utilizes a 0.200-g sample which is transferred to a 30-mL teflon beaker and 50 jug of lutetium (Lu203 in 5 percent HC1 solution) added as an internal standard. The sample is digested to dryness overnight using concentrated HC1 (3 mL) , HNO3 (2 mL) , HC1O4 (1 mL), and HF (2 mL) . The residue is redigested using HC1O4 (1 mL) , and water at 150°C, and taken to dryness again. One milliliter of aqua regia is finally added to the container, and the sample is diluted to 10.00 g with 1 percent HNO3 . The solution is then analyzed for 40 elements simultaneously using a Jarrell Ash model 1160 spectrometer.

In WDXRF analyses, a 0.8000 ±0.004 g sample is ignited in a tared platinum crucible at 925°C for 45 minutes. The weight loss is reported as percent loss on ignition (% LOI). Ah 8.00 g charge of lithium tetraborate is then added to the crucible along with a 0.250 mL aliquot of a 50 percent solution of lithium bromide, which serves as a nonwetting agent. Up to 7 crucibles are then placed on an "automatic fluxer," and the entire unit inserted into a muffle furnace, where the sample is fused for 40

Page 5: By S.A. Wilson1

minutes at 1120°C. After the fusion is complete the fluxing unit is removed from the muffle furnace, and the molten samples poured into specially designed two-piece platinum molds. When cooled, the individual glass disc is analyzed for its major element constituents using a Phillips model 1606 X-ray spectrometer. Major element concentrations are determined using calibration curves compiled from approximately 70 international geologic reference materials.

In the analysis of arsenic and selenium, 0.25 g of material are transferred to a 30-mL teflon bomb and moistened with 1 mL of 1 percent HNO3 . The sample is digested overnight at 105°C using concentrated HNO3 (9 mL) , HC1O4 (6 mL) , and HF (10 mL) . Following overnight digestion, 25 mL of 50 percent (v/v) HCl is added to the container and the solution allowed to stand for 30 minutes. The solution is then transferred to a 60-mL polyethylene bottle and the mass adjusted to 54 g with deionized water. Samples are analyzed for arsenic and selenium using a Perkin Elmer 4100 and 303 atomic absorption spectrophotometers respectively. Both instruments are equipped with specially designed continuous-flow systems and the instruments are calibrated with commercially available aqueous standards. The procedure has a percent relative standard deviation (%RSD) of approximately 10 percent (Crock, J.G., and Lichte, F.E., 1982; Sanzolone and Chao, 1987).

Total mercury concentration in the three batches of SRM 2704 was determined using a cold vapor-atomic absorption spectrophotometric procedure (CV-AAS). In this procedure, (Kennedy and Crock, 1987) 0.100 g of sample is transferred to a 16 x 100-mm glass test tube and 0.5 mL of sodium dichromate (25 percent w/v) and 2 mL of concentrated nitric acid added. The tube is then transferred to an aluminum heating block and the sample digested for 3 hours at 110°C. Following digestion, the sample is cooled and the volume adjusted to 12 mL with deionized water. Samples are then analyzed on a Perkin Elmer model 303 atomic absorption spectrophotometer equipped with a USGS designed continuous-flow sample delivery system. Routine analysis of reference materials reveals that the method has a percent relative standard deviation of 10 percent.

RESULTS AND DISCUSSION

Prior to the comparison of between batch data, results from the USGS analysis of SRM 2704-original were compared with NIST certified values to evaluate the accuracy of USGS procedures. Results for 2704-original reported on a dry weight basis are presented in Appendix A. A summary of SRM 2704-original results along with NIST certified and noncertified values are reported in table 1. Using statistical guidelines published by NIST (Becker,

Page 6: By S.A. Wilson1

D., and others, 1992), USGS results were compared to certified values to test the hypothesis that the mean total element concentrations are equal at the 95 percent confidence level. Comparison of WDXRF results for 9 major elements with the corresponding NIST values reveals that we can accept the hypothesis that the mean concentrations are the same at the 95 percent confidence level. A similar conclusion is reached for major elements quantified by the ICP-AES procedure, except for titanium which shows a significant bias (low) compared to the NIST value.

Comparison of ICP-AES trace element results with the NIST certified values reveals that only in the cases of arsenic, chromium, and cobalt is the hypothesis that the means are equal rejected at the 95 percent confidence level. Arsenic is also found to be biased (low) by the HY-AAS technique, though this observed concentration compares favorably with the ICP-AES value. A comparison of USGS mercury results using the CV-AAS procedure with the NIST certified value reveals the mean values are equal at the 95 percent confidence level.

One explanation for the lower concentrations of arsenic by the ICP-AES and HG-AAS procedures is that the three batches of SRM 2704 used in this study were oven dried according to the NIST protocol prior to analysis. It is possible that at the drying temperature of 110°C, a portion of the arsenic was volatilized, leading to the lower concentrations observed in this study. Analysis of undried SRM 2704 was not possible under the guidelines of this study.

Comparison of NIST noncertified values with ICP-AES values shows general agreement except for cerium, where the USGS value appears to be significantly lower. Based on the good agreement between USGS and NIST total element concentrations, it is reasonable to assume that USGS analytical procedures provide an accurate estimation of total element concentrations in SRM 2704.

In phase one of the study, data from SRM 2704-original were compared against results for SRM 2704-organic to determine if significant differences in total element concentrations existed between the two batches of standards. Because it was unclear at the start of this study if SRM 2704-organic had ever been examined for homogeneity with respect to its inorganic constituents, a test was performed to evaluate the between- and within-bottle variability. The homogeneity evaluation for SRM 2704-organic was based on the analysis of 25 individual bottles and 3 bottle replicates (n=28). Individual results corrected to dry weight are reported in Appendix B. Results for ICP-AES and WDXRF analyses were evaluated using an analysis of variance (ANOVA). The ANOVA revealed no significant difference for between- or within-bottle total element concentrations at the 95 percent confidence level. Two exceptions were ICP-AES results for

Page 7: By S.A. Wilson1

aluminum and nickel. In the case of aluminum, conclusions based on ICP-AES results are not substantiated by the WDXRF data, which show no statistical difference in the data sets. In the case of nickel, even though the means are statistically different, the fact that both means fall within the NIST 95 percent confidence interval and that the relative difference in mean concentrations is less than 3 percent suggests that from a practical standpoint the values should be considered the same.

After establishing that no significant between-bottle differences existed for SRM 2704-organic, a comparison of total element concentrations was made between 2704-original and 2704- organic. Differences in mean total element concentrations were evaluated using a two sample t-test (Walpole, R.E. and Myers, R.H., 1989). A comparison of average total element concentrations is summarized in table 2 along with an indication if there was (Y) or was not (N) a statistical difference in mean total element concentrations at the 95 percent confidence level. Of the 26 trace elements evaluated, a total of 11 (42 percent) show a statistically significant difference in mean total element concentrations for the two batches of SRM 2704. Most notable are the difference observed for chromium, lead, and zinc by ICP-AES, arsenic by CV-AAS, and mercury by CV-AAS. Conclusions regarding the between batch differences for arsenic and mercury should be viewed with caution, because of the drying step used in the sample preparation and the possibility of element volatilization. While element volatilization is a distinct possibility, it should also be pointed out that the two batches were randomly combined and dried simultaneously under identical conditions. If volatilization did occur, it is reasonable to assume that all samples would be affected equally.

In the case of the major elements, where both ICP-AES and WDXRF results are available, conclusions regarding between batch differences are less definitive. For magnesium, phosphorous, and titanium, both ICP-AES and WDXRF results indicate that there is no statistical difference in the mean concentrations at the 95 percent confidence level. In case of aluminum, calcium, potassium, and sodium, conclusions regarding between batch differences in mean total element concentrations are unclear because of the conflicting statistical results. Only in the case of iron do both techniques indicate that the two batches are statistically different.

In phase two of the study samples of SRM-organic and SRM- organic/sterilized were compared to determine if radiation sterilization affects total element concentrations. In a separate experiment, samples from five bottles of SRM 2704-organic/ sterilized supplied by NIST were randomly analyzed along with samples from three bottles of SRM 2704-organic. A statistical summary of the data is presented in table 3 and individual values corrected to dry weight are presented in Appendices C and D.

Page 8: By S.A. Wilson1

Average concentrations and standard deviations for 2704- organic\sterilized represent a combination of between and within bottle results (n=7). Average concentrations and standard deviations for 2704-organic are based solely on the analysis of between bottle determinations (n=3). Comparison of mean total element concentrations for 2704-organic and 2704-organic/ sterilized using a pooled t-test reveals that for the majority (89 percent) of elements mean total element concentrations are considered equal at the 95 percent confidence level. Exceptions include sodium, magnesium, and calcium by ICP-AES, and potassium by WDXRF.

CONCLUSIONS

Comparison of analytical results for SRM 2704-original and SRM 2704-organic indicates that for the majority of elements there is no significant difference in mean total element concentration at the 95 percent confidence level. Where statistical differences do exist, the lower concentrations are normally associated with SRM 2704-organic, suggesting that unsterilized material can change over time. It is also apparent from the excellent agreement between USGS and NIST certified values for SRM 2704-original that once the material has been radiation sterilized it is stable over time. The effect of radiation sterilization on total element concentration on SRM 2704 is found to be negligible as evidenced by the similarity in analytical results for 2704-organic and 2704-organic/sterilized. This is especially significant for volatile elements such as mercury, arsenic, selenium, and cadmium. Before a final conclusion is reached regarding the between batch differences observed in this study, NIST scientists need to evaluate the magnitude of these difference with respect to the recommended confidence interval for each element.

ACKNOWLEDGEMENTS

This work was supported by NIST under contract order number 43NANB312718. Completion of this study could not have been possible with out the contributions of P. Briggs, D. Siems, J. S, Mee, P. Hageman, and E. Welsch.

Page 9: By S.A. Wilson1

BIBLIOGRAPHY

Arbogast , B.F., (ed.), 1990, Quality Assurance Manual for the Branch of Geochemistry, U.S. Geological Survey, 184 p.

Baedecker, P.A., (ed.), 1987, Methods of Geochemical Analysis, U.S. Geological Survey Bulletin 1770, 180 p.

Becker, D., Christensen, R., Currie, L., Diamondstone, B.,Eberhardt, K., Gills, T., Hertz, H., Klouda, G., Moody, J., Parris, R., Schaffer, R., Steel, E., Taylor, J., Watters, R., Zeisler, R., 1992, Use of NIST Standard Reference Materials for Decisions on Performance of Analytical Chemical Methods and Laboratories, NIST Special Publication 829, 27p.

Crock, J.G., and Lichte, F.E., (1982), An improved method for the determination of trace levels of arsenic an antimony in geologic materials by automated hydride generation-atomic absorption spectroscopy, Analytica Chimica Acta, 144, 223-33

Crock, J.G., Lichte, F.E., and Briggs, P.H., 1983Determination of elements in National Bureau of Standards' geologic reference materials SRM 278 Obsidian and SRM 688 Basalt by Inductively Coupled Argon Plasma-Atomic Emission Spectroscopy, Geostandards Newsletter, 7, 335-340

Kennedy, K.R., and Crock, J.G., 1987, Determination of mercury in geological material by continuous flow, cold-vapor, atomic absorption spectrophotometry, Analytical Letters, 20, 899- 908

National Institute for Standards and Technology, 1990Certificate, Standard Reference Material 2704, Buffalo River Sediment.

Sanzolone R.F. and Chao, T.T., 1987, Determination of seleniumin thirty-two geochemical reference materials by continuous- flow hydride generation atomic absorption spectrophotometry, Geostandards Newsletter, 11, 81-85.

Walpole R.E., and Myers, R.H., 1989, Probability and Statistics for Engineers and Scientists, 4th ed. MacMillan Publishing Company, New York, 765 p.

Page 10: By S.A. Wilson1

Table 1. Comparison of USGS values for SRM 2704-originalwith NIST certified or recommended concentrations

ElementAlAlCaCaFeFeK,K,MgMgNaNaP,P,SiTiTi

ElementAsAsBaCdCrCoCuHgMnNiPbV,Zn

ElementCeLaLiScSeSrThYb

USGSMethodICP

WDXRFICP

WDXRFICP

WDXRFICP

WDXRFICP

WDXRFICP

WDXRFICP

WDXRFWDXRFICP

WDXRF

MethodICP

HY-AASICPICPICPICPICP

CV-AASICPICPICPICPICP

USGSMethod

ICPICPICPICP

HY-AASICPICPICP

USGSAveragecone, %'6.146.192.652.624.084.141.952.011.231.200.600.560.100.10

29.150.400.46

t/q/q2020

4123

14316971.4

57544

15790

429

ua/a573249121.0

13692

NISTCertified3

STD20.030.120.020.010.030.010.010.010.020.010.010.01

<0.005<0.0050.120.02

<0.005

STD1.40.540.520.510.0581619

STD20.50.5

<0.5<0.0511

<0.5

cone, %6.11

2.60

4.11

2.00

1.20

0.547

0.0998

29.080.457

t/q/q23.4

4143.45

1351498.61.44

55544.1

16195

438

Recommended3cone.ua/q

722950121.1

1309.22.8

STD4

0.16

0.03

0.10

0.04

0.02

0.014

0.0028

0.130.018

STD0.8

120.2250.650.07

193.0

174

12

1 Average based on seven determinations2 One standard deviation3 See certificate for definition4 NIST's calculated 95 percent confidence interval

8

Page 11: By S.A. Wilson1

Table 2. Summary results for 2704-original and SRM 2704-organic

SRM 2704 original

ElementAl,Al,Ca,Ca,Fe,Fe,K,K,Mg,Mg,Na,Na,P,P,Si,Ti,Ti,LOI

As,As,Ba,Be,Cd,Ce,Co,Cr,Cu,Ga,Hg,La,Li,Mn,Nb,Nd,Ni,Pb,SC,

Se,Sr,Th,V,Y,Yb,Zn,

%%%%%%%%%%%%%%%%%

, %

^g/g^g/g^g/g^g/g^g/g^g/g/jg/g^g/gliq/qHq/q^g/g^g/gHq/q^g/gpg/g^g/gpg/g^g/g^g/g^g/gpg/gw/gpg/gfjg/g^g/gua/a

MethodICP

WDXRFICP

WDXRFICP

WDXRFICP

WDXRFICP

WDXRFICP

WDXRFICP

WDXRFWDXRFICP

WDXRFWDXRF

ICPHG-AASICPICPICPICPICPICPICPICP

CV-AASICPICPICPICPICPICPICPICP

HG-AASICPICPICPICPICPICP

Avq. 166224412110000

29009

2020

41223

5716

14397151

3249

5759

2944

157121

1369

90312

429

.14

.19

.65

.62

.08

.14

.95

.01

.23

.20

.60

.56

.10

.10

.14

.40

.46

.23

.3

.4

STD. 20.0.0.0.0.0.0.0.0.0.0.0.

<0.<0.0.0.

<0.0.

1.1.4.

<0.0.1.0.2.1.0.0.0.0.7.1.1.1.5.

<0.<0.1.1.0.0.

<6.8.

030302010301010102010101005005120200508

4025575025055553218505128856

SRM 2704 organic

Ayq. 36.6.2.2.3.4.1.2.1.1.0.0.0.0.

29.0.0.9.

1516

41223

5615

12892151.

3248

5638

3043

146121

1371089312

395

091666649906940022206158101023404616

0

STD. 20.0.0.0.0.0.0.0.0.0.0.0.

<0.<0.0.0.

<0.0.

1.0.5.

<0.<0.1.0.2.5.0.0.1.0.5.0.1.1.7.

<0.<0.1.0.0.0.0.8.

030302010202010101010101005005100200508

2625596505114172955051885317

Signif Diff.Y/N4NYNYYYYNNNNYNNNNNY

YYNNYNNYYNYNYYNNNYNNNNYNNY

Average based on 7 determinations2 One Standard Deviation3 Average based on 28 determinations4 Average values are (Y), or are not (N), significantly different

at the 95 percent confidence interval

Page 12: By S.A. Wilson1

Table 3. Summary results for SRM 2704-organic and 2704-organic/sterilized

SRM 2704organic

E lementAl, %Al, %Ca, %Ca, %Fe, %Fe, %K, %K, %Mg, %Mg, %Na, %Na, %P, %P, %Si, %Ti, %Ti, %LOI, %

AS, pg/gAS, pg/gBa, pg/gBe, pg/gcd, pg/gce, A*g/gGO, A*g/gcr, pg/gcu, pg/gGa, pg/gHg, A*g/gLa, pg/gLi, A*g/gMn, A*g/gNb, A*g/gNd, /jg/gNi, /jg/gPb, /jg/gsc, A*g/gse, pg/gsr, A*g/gTh, A*g/gv, A*g/gY, A*g/gYb, A*g/gZn, f/q/q

MethodICP

WDXRFICP

WDXRFICP

WDXRFICP

WDXRFICP

WDXRFICP

WDXRFICP

WDXRFWDXRFICP

WDXRFWDXRF

ICPHG-AASICPICPICPICPICPICPICPICP

CV-AASICPICPICPICPICPICPICPICP

HG-AASICPICPICPICPICPICP

Avq.'6.106.102.632.634.154.071.991.991.261.180.620.570.110.10

29.070.340.459.12

2217

41423

6015

12692151.0

2949

5859

2942

148121.0

1391095242

408

STD. 20.050.030.010.01

<0.0050.010.09

<0.0050.010.02

<0.015<0.005<0.005<0.0050.090.02

<0.005<0.005

1.21.12.60.60.072.20.32.02.90.20.080.70.230.50.90.38.7

<0.50.061.20.70.40.1

<0.52.3

SRM 2704 organic/ Signif.sterilized Different

Avq. 36.086.122.592.634.114.082.022.001.251.190.610.560.110.10

29.080.320.469.08

2017

40923

5815

12392151.1

2949

5779

2942

144121.1

1361094242

404

STD. 20.050.030.020.010.040.040.030.010.010.010.010.01

<0.005<0.0050.030.01

<0.0050.06

1.80.54.3

<0.5<0.51.0.41.440.70.170.50.24.70.50.81.84.7

<0.50.041.30.90.80.20.28.1

(Y/N1 4NNYNNNNYYNYNNNNNNN

NNNNNNNNNNNNNNNNNNNNNNNNNN

1 Average value based on 3 determinations2 One Standard Deviation3 Average value based on 5 determinations4 Values are (Y), or are not (N) significantly different at the 95

percent confidence interval

10

Page 13: By S.A. Wilson1

Appendix A

Results for

SRM-2704 original on dry weight basis, by IC

P-AE

S, WD

XRF,

HG

-AAS

, and

CV-AAS

ICP-AES

Sample

IDOrig-lA

Orig-lB

Orig-2

Orig

-3Orig-4

Orig-5A

Orig-5B

Sample

IDOrig-lA

Orig-lB

Orig

-2Or

ig-3

Orig-4

Orig-5A

Orig-5B

Sample

IDOrig-lA

Orig-lB

Orig

-2Orig-3

Orig-4

Orig-5A

Orig-5B

Sample

IDOrig-lA

Orig-lB

Orig

-2Orig-3

Orig-4

Orig-5A

Orig-5B

Al.

%6.12

6.13

6.13

6.20

6.10

6.15

6.15

Ag

ppm <2 <2 <2 <2 <2 <2 <2 Co

ppm 16 15 15 15 16 16 16 Mn ppm

567

574

572

591

573

574

575

Ca.

%

2.6

42.6

42.6

42.7

02

.63

2.6

52

.67

Fe,

4.0

74

.07

4.0

54.1

44.0

74.1

04.0

9

As

ppm 18 19 19 21 21 22 20

Crppm

143

142

141

144

140

146

144

Mo ppm

<2 2 2

<2

<2 2

<2

Au ppm

<8 <8

<8

<8<8

<8<8 Cu ppm

97

96

96

99

98

96

98

Nb

ppm 9 9 8 8

118 7

K. %

1.94

.94

.95

.98

.95

.95

1.

1.

1.

1.

1.

1.96

Ba ppm

408

419

411

416

408

409

413

Eu ppm

<2

<2

<2

<2

<2

<2

<2 Nd ppm

30

30

29

29

29

31

27

Ma.

% 1.23

1.22

1.23

1.25

1.20

1.23

1.24

Be

ppm

2 2 2 2 2 2 2

Gappm

16 15 15 15 16 15 16

Nippm

43 44 42 45 44 43 44

Na,

% 0.60

0.61

0.60

0.61

0.60

0.60

0.61

Bippm

<10

<10

<10

<10

<10

<10

<10

Hoppm

<4

<4<4

<4<4<£

<4

Pb ppm

161

149

156

158

153

155

167

P. %

0.10

0.10

0.10

0.10

0.10

0.10

0.11

Cd ppm

3 3 3 4 3 3 4

La

ppm

32 32 32 32 31 32 31

Sc ppm

12 12 12 12 12 12 12

11

Page 14: By S.A. Wilson1

i rH ro ro o> »* CN CN r-1 rH CN

g|CO C SJCM

Cs) 0|<ji

in r- ro o> I-H r-CN CN «* rH CN PI

CO 00 CO 00 CO 00 COo o o o o o o0000000

JCN CN CN CN CN CN CN

I ro ro ^t «* «* «* ro* CN CN CN CN CN CN CN

7O O O O O O O

i|i-4OCN|CN|i-Hi-HCN|Jro ro ro ro ro ro ro

r- r- t- r- r- vo r- r- r- r- r- r- r- r-

ooooooo

IrHrOrHCNICNIrHCNI

IcNI CN| CN| CN| CN| CN| CN|

;OOrHi-4O>OrH JO> O> O> O> CO O> O>

co »* vo vo vo r- 1- r- r- r- vo 1-

ooooooo

C«J

ooooooo Jo o o o o o oJrH rH rH rH rH rH rH

V V V V V V V

oo vo co r- r- vo r-

I O> O O CO 00 rH CO

4-JcoU

X 0c0)S4CU

(d 0EH 0

CO 0

CO

3-31 CUQft § WO (D

M CO

000^* ^* ^*

V V V

in vo inro ro rorH rH rH

«a1-4 rH CM

1 1 1

H H HM M MO O O

O^tV

00rorH

ro1

rt

Ll

0

ot

V

VOrorH

1 r(

L\

o

ot

V

VOrorH

rfin

1*HLj0

ot

V

inrorH

COin

1 r(

Li0

<*>)CO VO

Olcn o SHH

CO VO CN i-4 O> i-4 00o> o> o o o> o o>

ro ro ^< rH O> ro O> O> (J> O> CO O>

in in m m m in m

r- r- co r- r- vo r-

CUQ

ro ro ro f** r>l O f**

vo vo vo vo vo vo vo

< co rt corH 1-4 CNI ro »* in inI I I I I I I

<H '<H -iH -<H -<H -<H -<H

OOOOOOO

OHX I

I in in

0)co

IIO O O O O O O

Bl OJO O rH 1-4 O 1-4 < OJtN CN CN CN CN CN

O C (d

CO CU

CUQ

CO

A m < torHrHCNfO'S'inin I I I I I I IO<O<O*O<0>O<O<

<-) <-) -^ <-! ---l -H -H

Page 15: By S.A. Wilson1

Appendix B

Results for

SRM 2704-organic on dry weight ba

sis, by ICP-AES, WDXRF, HG

-AAS

, and CV-AAS

ICP-AES

Sample

IDORG-06

ORG-07

ORG-08

ORG-09

ORG-10

ORG-10B

ORG-11

ORG-12

ORG-13

ORG-14

ORG-15

ORG-16

ORG-17

ORG-18

ORG-19

ORG-20

ORG-20B

ORG-21

ORG-22

ORG-23

ORG-24

ORG-25

ORG-26

ORG-27

ORG-28

ORG-29

ORG-30

ORG-30B

&1, %

6.05

6.09

6.06

6.09

6.13

6.12

6.06

6.08

6.09

6.12

6.08

6.11

6.04

6.06

6.16

6.12

6.12

6.07

6.03

6.13

6.10

6.11

6.08

6.07

6.12

6.05

6.08

6.07

Ca.

%2.62

2.65

2.69

2.66

2.70

2.67

2.68

2.65

2.67

2.69

2.66

2.67

2.65

2.63

2.66

2.68

2.66

2.65

2.65

2.70

2.67

2.71

2.65

2.65

2.68

2.65

2.66

2.65

Fe,

%3.99

4.01

3.97

3.99

4.02

4.00

3.97

3.98

3.99

4.02

3.98

3.98

3.98

3.97

3.98

4.02

4.02

4.00

3.97

3.98

4.03

4.02

3.95

3.98

4.01

3.96

3.97

3.98

K. %

1.93

1.93

1.92

1.93

1.96

1.95

1.93

1.93

1.94

1.93

1.94

1.94

1.93

1.93

1.95

1.94

1.95

1.94

1.92

1.95

1.95

1.95

1.92

1.91

1.95

1.93

1.93

1.93

Ma, %

1.20

1.21

1.22

1.22

1.24

1.22

1.21

1.22

1.22

1.23

1.21

1.23

1.22

1.21

1.23

1.23

1.3

1.22

1.21

1.24

1.23

1.24

1.21

1.21

1.23

1.21

1.22

1.21

Na,

%0.

610.60

0.60

0.61

0.60

0.60

0.60

0.60

0.61

0.62

0.61

0.61

0.61

0.61

0.60

0.62

0.61

0.61

0.61

0.62

0.61

0.61

0.62

0.62

0.61

0.61

0.60

0.62

P, %

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

0.10

Ti

4X J.

r V

0.38

0.39

0.39

0.40

0.41

0.39

0.36

0.42

0.40

0.42

0.35

0.41

0.42

0.38

0.41

0.40

0.40

0.40

0.40

0.39

0.41

0.40

0.40

0.40

0.40

0.37

0.41

0.37

Page 16: By S.A. Wilson1

Appendix B

cont

.

ICP-AES

Sample

IDORG-06

ORG-07

ORG-08

ORG-09

ORG-10

ORG-IOB

ORG-11

ORG-12

ORG-13

ORG-14

ORG-15

ORG-16

ORG-17

ORG-18

ORG-19

ORG-20

ORG-20B

ORG-21

ORG-22

ORG-23

ORG-24

ORG-25

ORG-26

ORG-27

ORG-28

ORG-29

ORG-30

ORG-30B

Ag

ua/a

<2<2

<2

<2

<2

<2<2<2<2<2

<2

<2

<2

<2

<2

<2

<2

<2

<2<2

<2

<2<2

<2<2

<2

<2<2

As

ua/a

14 16 15 16 14 15 1416

1614

14 1416

1411

14

15 15 15 14

1514

13 14 13 15 16

16

Au

ua/a

<8

<8

<8

<8

<8

<8

<8

<8

<8

<8

<8

<8

<8<8

<8<8

<8

<8<8

<8

<8

<8

<8

<8<8

<8

<8<8

Ba

Beua

/a

ua/a

411

241

4 2

411

2413

2408

2425

2409

2412

2414

2421

2404

2410

2408

2415

2409

2414

2405

2415

2410

2419

2415

2419

2405

2411

2414

2406

2406

2405

2

Bi

Cd

Ceua

/a

ua/a

ua

/a<10

3 55

<10

3 56

<10

3 56

<10

3 56

<10

3 54

<10

3 58

<10

3 56

<10

3 60

<10

3 55

<10

3 58

<10

3 55

<10

3 54

<10

3 56.

<10

3 56

<10

3 58

<10

3 63

<10

3 55

<10

3 56

<10

3 56

<10

3 54

<10

3 56

<10

3 55

<10

3 55

<10

3 57

<10

3 57

<10

3 57

<10

3 57

<10

3 54

Page 17: By S.A. Wilson1

Appendix B

cont

.

ICP-AES

Samp

leID

ORG-

06ORG-07

ORG-08

ORG-09

ORG-10

ORG-10B

ORG-11

ORG-12

ORG-13

ORG-14

ORG-15

ORG-16

ORG-17

ORG-18

ORG-19

ORG-20

ORG-20B

ORG-21

ORG-22

ORG-23

ORG-24

ORG-25

ORG-26

ORG-27

ORG-28

ORG-29

ORG-30

ORG-30B

Co ua/a

15 16 15 15 16 15 16 16 16 16 15 15 15 15 1616

15 15 16

15 1416

15 15 15 15 16

15

Cr ua/a

130

128

127

125

130

128

131

129

129

131

128

129

130

129

131

125

126

125

127

134

132

130

123

128

127

126

127

125

Cu

ua/a

92 95 88 89 93 9189919191

91

100 97

89 928787

929796

92 9890

11088

95 9086

Eu ua/a

<2 <

2<2<2<2<2 2<2

<2 <2 <2<2<2<2<2<2<2<2

<2 <2

<2 <2 <2 <2

<2 <2 <2 <2

Ga ua/a

16 15 15 15 16 15 15 15 15 15 15 15 14 15 15 1

614 15 14 15 16

15 14 15 15 15 15 15

Ho ua/a

<4 <4 <4 <4 <4 <4 <4 <4 <4

<4

<4

<4

<4

<4

<4

<4

<4

<4

<4

<4

<4

<4

<4

<4

<4

<4

<4

<4

La ua/a

31 31 32 32 30 32 31 33

32

3231

31

31

32

3236

31

31 32

31

31

31

32

32

31

31

3230

Li ua/a

47 48 48 48 48 48 48 48

48

4848

48

47.

48

48

4948

47

48

48

48

48

48

47

48

47

4848

Page 18: By S.A. Wilson1

Appendix B

cont.

ICP-AES

Sample

Mn

ID

ua/a

ORG-06

563

ORG-07

561

ORG-08

558

ORG-09

559

ORG-10

571

ORG-10B

560

ORG-11

558

ORG-12

562

ORG-13

568

ORG-14

563

ORG-15

567

ORG-16

560

ORG-17

565

ORG-18

559

ORG-19

559

ORG-20

565

ORG-20B

559

ORG-21

564

ORG-22

562

ORG-23

568

ORG-24

562

ORG-25

565

ORG-26

560

ORG-27

558

ORG-28

568

ORG-29

567

ORG-30

562

ORG-30B

582

Mo ua/a

<2 <2 <2 <2 <2 <2 <2 2<2<2<2 2

<2

<2

<2 2 2

<2 3 2<2

<2

<2

<2

<2<2

<2

<2

Nb

ua/a 8 9 8 9 8 8 7 9 8 8 7 9 8 8 8 9 9 8 9 9 7 8 8 8 7 7 8 7

Nd

ua/a 29 31 31 30 30 30 30 32 30 30

28282830

30

3328

2930

29 30

302831

2928

2930

Ni

ua/a 43 43 41 43 44 44

4343 43 44

4344

44

43 44

43 42 43 42 44

43

42 42 52 43 43 42 42

Pb

ua/a

142

140

149

138

146

152

150

149

137

141

140

155

166

146

156

138

139

145

138

150

154

157

136

148

145

152

142

138

Sc

ua/a 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12

Sn

ua/a

<5 <5 <5 <5 <5 <5 <5

<5

<5

<5

<5

<5<5

<5

.<5<5<5<5<5<5<5

<5<5<5<5<5

<5

<5

Page 19: By S.A. Wilson1

OOOOOOOOOOOOOOOOOOOOOOOOOOOO WH »Tl»Tl»Tl»y1»Tl»Tl»Tl»Tl»Tl'Tl'Tl'Tl»Tl»Tl»y1»Tl»Tl»Tl»Tl»Tl»Tlhr1hr1tTl»Tl»Tlhr1hr1 n»O

TJ

-.5 ID M CO

tototojotototototoyoyoyototojotototototowwwxixi oooooooooooooooooooooooooooo I I I I I I I I I I I I I I I I I I I I I I I I I I I I UU(0(0(0(OtO(0(0(0(0(0(OHHHHI->l-»l->l->Ht-'HOOOO

coroco

aID 3aH- X

ao oft

AAAAAAAAAAAAAAAAAAAAAAAAAAAAL.

OOOOOOOOOOOOOOOOOOOOOOOOOOOOR.P)

H H HH H HHH H HHH HHHM H1Q H OVOVOOOHVOVOOHVOOVOOOOOOVOOVOOHOVOOOOOOK.S'

AAAAAAAAAAAAAAAAAAAAAAAAAAAAf HHHHHHHHHHHHHHHHHHHHHHHHHHHHloooooooooooooooooooooooooooor ooooooooooooooooooooooooooool

f OOOOOOvOOOOOvOvOOOOOOOvOOOVOOOOOOOOOOOOOOOOOvOvOvOOOOO OOt vOOO-~lOvOOOOOvOvOvOOvOOvOvOvOOOvOvOOOvOOOOvOvOvoF

ll

tOOJOJtOOJOJOJOJOJtOOJOJtOOJOJOJOJOJOJOJOJOJUJOJOJOJOJ COL HHOHHHtOHHHHtOtOHHHtOHtOHtOHIOHHHH Hf

IOIOIOIOIOIOOJOJIOIOIOIOIOOJIOIOIOIOIOIOIOIOIOIOIOIOIO tOl

*i(jCJ*i*iCJ*i*i*iCJCJCJ*iCJCJCJU)CJU)CJCJCJU)*i*iCJCJ U| HOOvOOOOOHOOOOvOvOOvOvOOOvOvOvOOOOOvOvOOOOOOO vO|

Page 20: By S.A. Wilson1

Appendix B

cont.

HG-A

AS and

CV-A

ASSample

As

se

HgID

uct/a

t/o/Q

ua/a

ORG-06

17

1.0

1.0

ORG-07

15

1.0

0.98

ORG-08

15

1.0

0.92

ORG-09

15

1.0

0.97

ORG-10

15

1.0

1.0

ORG-IOB

16

1.0

0.88

ORG-11

15

1.0

0.90

ORG-12

16

1.0

1.0

ORG-13

16

1.0

1.0

ORG-14

16

1.0

0.91

ORG-15

16

1.0

1.0

ORG-16

17

1.0

1.1

ORG-17

16

1.0

1.1

ORG-18

15

1.0

0.97

ORG-19

15

1.0

1.1

ORG-20

15

1.0

0.97

ORG-20B

16

1.0

0.94

ORG-21

15

1.0

0.96

ORG-22

15

1.0

1.0

ORG-23

16

1.0

1.0

ORG-24

15

1.0

1.0

ORG-25

15

1.0

0.95

ORG-26

16

1.0

0.88

ORG-27

16

1.0

1.4

ORG-28

16

1.0

0.94

ORG-29

16

1.0

1.1

ORG-30

16

1.0

0.92

ORG-30B

16

1.0

0.92

18

Page 21: By S.A. Wilson1

Appendix B

cont

.

WDXRF

Sample

IDORG-06

ORG-07

ORG-08

ORG-09

ORG-10

ORG-IOB

ORG-11

ORG-12

ORG-13

ORG-14

ORG-15

ORG-16

ORG-17

ORG-18

ORG-19

ORG-20

ORG-20B

ORG-21

ORG-22

ORG-23

ORG-24

ORG-25

ORG-26

ORG-27

ORG-28

ORG-29

ORG-30

ORG-30B

SiO,,

%62.3

62.5

62.2

62.5

62.4

62.4

62.6

62.5

62.6

62.5

62.6

63.0

62.6

62.3

62.8

62.5

63.0

62.6

62.3

63.0

62.6

62.4

62.5

62.5

62.6

62.4

62.3

62.5

Al,0,. %

11.6

11.7

11.6

11.6

11.7

11.7

11.7

11.6

11.6

11.6

11.6

11.6

11.6

11.6

11.7

11.6

11.7

11.6

11.6

11.7

11.7

11.7

11.6

11.6

11.6

11.7

11.5

11.6

Fe,0

,, %

5.77

5.82

5.81

5.78

5.82

5.80

5.81

5.81

5.81

5.81

5.79

5.85

5.78

5.82

5.81

5.78

5.81

5.76

5.81

5.83

5.83

5.79

5.78

5.81

5.80

5.79

5.76

5.76

MqO, %

1.97

2.01

2.00

1.99

1.99

2.01

2.01

1.98

1.98

1.99

1.98

1.98

1.97

1.97

1.98

2.02

1.99

1.96

1.98

2.00

1.99

1.98

1.98

2.00

2.01

1.98

1.98

1.99

CaO. %

3.67

3.70

3.70

3.70

3.71

3.69

3.70

3.69

3.70

3.68

3.71

3.69

3.68

3.69

3.71

3.68

3.69

3.70

3.69

3.70

3.70

3.71

3.70

3.68

3.69

3.68

3.67

3.70

Na,0

, %

0.75

0.78

0.79

0.81

0.78

0.79

0.79

0.78

0.79

0.80

0.77

0.79

0.78

0.78

0.78

0.77

0.78

0.78

0.77

0.75

0.79

0.78

0.80

0.78

0.79

0.78

0.78

0.80

K-,0.

% 2.39

2.40

2.42

2.40

2.40

2.41

2.40

2.40

2.40

2.41

2.40

2.40

2.41

2.41

2.41

2.41

2.40

2.42

2.40

2.42

2.40

2.42

2.40

2.39

2.40

2.40

2.39

2.39

TiO,,

%0.76

0.76

0.76

0.76

0.77

0.77

0.76

0.76

0.76

0.76

0.76

0.77

0.77

0.76

0.77

0.76

0.76

0.76

0.76

0.76

0.77

0.77

0.75

0.76

0.77

0.76

0.75

0.76

P,0<,

%0.23

0.23

0.24

0.23

0.24

0.24

0.24

0.24

0.23

0.23

0.24

0.23

0.23

0.23

0.23

0.23

0.23

0.23

0.23

0.23

0.24

0.23

0.24

0.23

0.24

0.23

0.23

0.23

MnO, %

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

.0.08

0.08

. 0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

0.08

LOI.%

9.20

9.23

9.30

9.18

9.34

9.23

9.19

9.20

9.08

9.11

9.20

9.14

9.24

9.12

9.04

9.05

9.17

9.16

9.04

9.16

9.10

9.18

9.15

9.07

9.09

9.20

9.03

9.20

Page 22: By S.A. Wilson1

co

sa co

1100 o o o o o

JrH oo o o> r- in in .Q S~-J*)1 ^ in in in CL,

_lo o o o o o oVl~~JCNCNCNCNCNCNCN H<JrHVOrHrHCNrOrH O DlrH rH rH rH rH rH tH 2

10 o o o o o o Jo o o CN o f-n o>

ICN ^ CN ro ^ oo r-

1CN CN CN CN CN CN CN

CO

?

O

IP) CN CN CN P> CN rH Iro ro P> ro ro ro ro

.J .......HOOOOOOO

JVD vo in in in vo in i oo o> o> oo o> o> oJCN CN CN CN CN CN CO CN CN CN CN CN CN CN

TO(fl

rH rH O O rH fH OrH H t-H f-H rH f-H f-H

O O CD CD OC3 O

in CN oo r- CN CN r-in in ^ ^ in ^

CTt CTt CTt CTl CTt

O CN CN rH rH rH rHvo vO vo vo vo vo vo.......

|o o o o o o oCN CN CN CN CN CM CNv v v v v v

1O O O O O O OJo o o o o o oIrH rH rH rH rH rH rHJV V V V V V V O

CN

§T) 0) N

JCN M CN CN CN CN CN 10 o o o o o oJrH rH rH rH rH rH rH

V V V V V V V

1 ^ ^ O VO VO CM 00J r> r- oo r- oo r- r-iin in in in in in in

J O> O O O O> rH rH

0) 4J TO

O O O O OO O J.......

fc!|eNCNCNCNCNCNCN

1r- oo r- r- oo r- r- 4OOCT>CT>CT>CT<CT>lin in ** ^ ^ ^ ^

rto o o o o o o J** *J* * ^* ^* ^* *! IV V V V V V V

(fl

0

^l1 Or> CN

co

<M

TO 4J

3 B)

I CM

VO vo vo vo vo vo vo

CN CN CN CN CN CN CN

rH CN rH O rH rH O

vo vo vo vo vo vo voCN CN CN CN CN CN V V V V V V

in in vo vo vo

J CN CN CN CN CN CN CN|V V V V V V V

Otvo o> vo vo r- vo in Vl-~Jrororororororo

CO O|rH rH rH rH rH rH rH

d^minvovoooooin co Dl

CN CN CN CN CN CN

X H o

0)S< S1

CO

CL, O

0) i-l ftQ6 I

CO

ft fO ft, 03rH CN CN ro ^ in inI I I I I I I

0) 0) 0) 0) 0) 0) 0)4J 4J 4J *1 4J 4J .pCO CO CO CO CO CO CO

ftQ

CO

< CQrH CN CN roI I I I

< CQ in in I I

0) 0) 0) 0) 0) 0) 0)4J 4J -P 4J 4J -P 4JCO CO CO CO CO CO CO

ftQ

CO

4* OQ rtj 0)rH CN CN ro ^ in inI I I I I I I^ ^ fc ^ ^ ^ ^0) 0) 0) 0) 0) 0) 0)4J 4J 4J 4J 4J 4J *1CO CO CO CO CO CO CO

ftQ

CO

rtj torH CN CN roI I I I

rt) to ^ in in

I I I

0)0) 0) 0) 0) 0) 0)4J 4J 4J 4J 4J 4JCO CO CO CO CO CO CO

Page 23: By S.A. Wilson1

Appen

dix

C

cont.

WD

XRF

S

ample

ID

Ste

r-1

Ste

r-2A

S

ter-

2B

S

ter-

3

Ste

r-4

Ste

r-5A

S

ter-

5B

Si0

2

62.2

62.1

62.3

62.2

62.2

62.2

62.3

A12

03

11.5

11.6

11.6

11.6

11.5

11.6

11.6

Fe2

03

5.8

0

5.7

9

5.8

7

5.7

9

5.8

0

5.8

4

5.9

3

MgO

1.9

8

1.9

7

1.9

9

1.9

7

1.9

6

1.9

9

1.9

9

CaO

3.6

9

3.6

8

3.7

0

3.6

9

3.6

8

3.6

9

3.6

7

Na2

O

0.7

6

0.7

4

0.7

6

0.7

6

0.7

6

0.7

4

0.7

7

«0

2.4

0

2.4

2

2.4

1

2.4

1

2.4

1

2.4

2

2.4

1

TiO

2

0.7

6

0.7

6

0.7

6

0.7

6

0.7

5

0.7

7

0.7

6

PA

0.2

4

0.2

4

0.2

4

0.2

4

0.2

4

0.2

3

0.2

4

MnO

0.0

8

0.0

8

0.0

8

0.0

8

0.0

8

0.0

8

0.0

8

LO

I

9.0

4

9.0

9

9.1

0

9.1

9

9.0

9

9.0

6

9.0

0

HG-AAS

Sample

IDSter-1

Ster-2A

Ster-2B

Ster-3

Ster-4

Ster-5A

Ster-5B

As 17

16

17

16

17

17

17

Se

ua/a

1.1

1.1

1.1

1.1

1.1

1.0

1.1

CV-AAS

Sample

IDSter-1

Ster-2A

Ster-2B

Ster

-3Ster-4

Ster-5A

Ster-5B

Hg

ua/a

1.2

0.93

1.1

0.95

0.96

1.4

1.0

21

Page 24: By S.A. Wilson1

Appendix D

Analytical results

for

SRK

2704

-org

anic

from se

cond

te

st

group, analysis by IC

P-AE

S, WDXRF, HG-AAS,

and

CV-A

AS

ICP-AES

Sample

IDOrgan-11

Organ- 19

Organ-27

Samp

leID

Organ-11

Organ-19

Organ-27

Sample

IDOrgan-11

Organ-19

Orga

n-27

Sample

IDOrgan-11

Orga

n- 19

Organ-27

Al% 6.1

6.2

6.1 Ag

ua/a

<2 <2 <2 Ga ua/a 15 15 15 Sn

ua/a 4.6

6.7

6.2

Ca%

2.6

2.6

2.6 As

ua/a

22 22 20

La ua/a 30 28 29 Sr ua/a 138

140

138

Fe%

4.2

4.2

4.2 Ba

ua/a 416

415

411

Li

ua/a 49 49 49

Ta ua/a

<40

<40

<40

K %2.1

1.9

2.0 Be ua/a 1.8

1.8

1.7

Mn

ua/a 584

588

582

Thua

/a 9 10 9

Mg

Na%

1.3

0.1.

3 0.

1.3

0.

Bi

ua/a

<10

<10

<10

Mo

ua/a

<2 <22.0

Uua/a

<100

<100

<100

% 62 62 62

Cd

ua/a 3.1

3.2

3.1

Nb ua/a 9 8 9

Vua

/a 96 95 95

P %0.11

0.11

0.11

Ce ua/a 62 58 60 Nd ua/a 29 28 30 y

ua/a 24 24 24

Ti%

0.36

0.33

0.33

Co

ua/a 16 15 15 Ni

ua/a 42 42 42 Yb

ua/a 2.2

2.2

2.6

Cr ua/a 124

126

128

Pbua

/a 142

144

158

Znua

/a 409

409

405

Cu ua/a 91 89 95 Scua

/a 12 12 11.

WD

XRF

S

ample

ID

Org

an- 1

1 O

rgan

-19

Org

an-2

7

SiO

2

62.0

62.4

62.2

A12

03

11.6

11.5

11.5

5.8

0

5.8

3

5.8

4

MgO

2.0

0

1.9

3

1.9

5

CaO

3.7

1

3.6

8

3.6

7

Na2

0

0.7

7

0.7

7

0.7

6

KjO

2.4

0

2.3

9

2.4

0

Ti0

2

0.7

6

0.7

5

0.7

6

PA 0.2

4

0.2

4

0.2

3

MnO

0.0

8

0.0

8

0.0

8

LO

I %9.1

9

8.9

8

9.0

0

HG

-AA

S an

d

CV

-AA

SS

ample

A

s S

e H

gID

ua/a

ua/a

ua

/a

Organ-11

16

1.1

1.1

Organ-19

17

1.0

0.94

Organ-27

18

1.0

1.0

22

Page 25: By S.A. Wilson1

Appen

dix

D

cont.

ICP

-AE

SS

ampl

eID

Inorg

-1In

org

-2In

org

-5

Sam

ple

IDIn

org

-5In

org

-1In

org

-2

Sam

ple

IDIn

org

-1In

org

-2In

org

-5

Sam

ple

IDIn

org

-1In

org

-2In

org

-5

WDX

RFS

ampl

eID

Inorg

-1In

org

-2In

org

-5

HG

-AA

SS

ampl

eID

Inorg

-1In

org

-2In

org

-5

Al % 6.1

6.1

6.2 A

gt/

g/g

<2 <2 <2

Eu

t/g

/g<2 <2 <2

Sc

t/g/g

12 12 12

Si0

2 %61.9

62.0

61.8

and

CV

-AA

SA

st/

g/g

23 22 23

Ca %

2.6

2.6

2.6 A

st/

g/g

25 28 26 Ga

t/g/g

15 15 16 Sn

t/g/g

6 7 5

A12

03

FeT

%11.7

5

11.6

5

11.7

5

Se

t/g/g

1.1

1.1

1.1

Fe %

4.2

4.2

4.3 B

apg/q

418

416

404

La

pg/g

29.

28 30 Sr

pg/q

137

134

138

O3

MgO

% .89

1.

.94

1.

.91

1.

Hg

pg/g

1.5

1.5

1.4

K %2.0

2.0

2.1 B

epg/g

1.8

1.7

1.7

Li

pg/g

50 50 51

Ta

t/g/

g<

40<

40<

40

CaO

% 97

3.

99

3.

97

3.

Mg

Na

% %

1.2

0.

1.2

0.

1.3

0.

Bi

ug/g

<10

<10

<10

Mn

t/g/

g58

858

559

8

Th

ug/g 9 10 10

Na2

0%

%64

0.7

567

0.7

765

0.7

5

62 60 62

Cd

t/g/g

3.6

3.4

3.7

Mo

t/g/g

<22.5

2.0

Ut/

g/g

<10

0<

100

<10

0

K20

%2.4

12.4

32.4

3

P %0.1

10

.11

0.1

1

Ce

t/g/g

62 58 58 Nb

t/g/g

7.9

9.1

9.4 V

t/g/g

95 95 97

TiO

z%

0.7

60

.77

0.7

6

Ti %

0.3

30

.33

0.3

7

Co

t/g/g

16 16 16 Nd

t/g/g

28 27 30 Yt/

g/g

24 24 25

P20

5 M

nO%

0.2

50.2

40

.24

Cr

t/g/g

142

137

138 Ni

t/g/g

42 42 44 Yb

t/g

/g2.3

2.8

2.3

LO

I%

0.0

80.0

80.0

8

Cu

t/g/g

96 99 99 Pb

t/g

/g15

016

015

8

Zn

t/g/g

433

441

439

%9

.12

9.1

29

.18

23