Building Enclosure Fundamentals - Building...

29
Building Enclosure Fundamentals: A concise introduction Dr John Straube, P.Eng. University of Waterloo & RDH Building Science This short document introduces the technical aspects of building enclosures, with a focus on high-performance walls. The functions required of all building enclosures, commercial and residential, are presented followed by concise descriptions of control functions. Introduction The building enclosure is defined as the physical component of a building that separates the interior from the exterior: it is an environmental separator. In practise the building enclosure must provide the “skin” to the building, i.e., not just separation but also the visible façade. Unlike the superstructure or the service systems of buildings, the enclosure is always seen and is therefore of critical importance to owners, the occupants, and the public. The appearance and operation of the enclosure have a major influence on the interior environment and on factors such as comfort, energy efficiency, durability, and occupant productivity and satisfaction. To design a functional enclosure, the designer must understand what the environmental conditions on either side of the enclosure are. Climate, a measure of long-term weather, and extreme weather events (hurricanes, extreme cold days, etc.) can be quantified and classified. Two maps are provided below (Figure 1) for combined temperature and humidity and annual rainfall.

Transcript of Building Enclosure Fundamentals - Building...

BuildingEnclosureFundamentals:AconciseintroductionDrJohnStraube,P.Eng.UniversityofWaterloo&RDHBuildingScience

Thisshortdocumentintroducesthetechnicalaspectsofbuildingenclosures,witha

focusonhigh-performancewalls.Thefunctionsrequiredofallbuildingenclosures,

commercialandresidential,arepresentedfollowedbyconcisedescriptionsof

controlfunctions.

IntroductionThebuildingenclosureisdefinedasthephysicalcomponentofabuildingthat

separatestheinteriorfromtheexterior:itisanenvironmentalseparator.In

practisethebuildingenclosuremustprovidethe“skin”tothebuilding,i.e.,notjust

separationbutalsothevisiblefaçade.Unlikethesuperstructureortheservice

systemsofbuildings,theenclosureisalwaysseenandisthereforeofcritical

importancetoowners,theoccupants,andthepublic.Theappearanceandoperation

oftheenclosurehaveamajorinfluenceontheinteriorenvironmentandonfactors

suchascomfort,energyefficiency,durability,andoccupantproductivityand

satisfaction.

Todesignafunctionalenclosure,thedesignermustunderstandwhatthe

environmentalconditionsoneithersideoftheenclosureare.Climate,ameasureof

long-termweather,andextremeweatherevents(hurricanes,extremecolddays,

etc.)canbequantifiedandclassified.Twomapsareprovidedbelow(Figure1)for

combinedtemperatureandhumidityandannualrainfall.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

2

Figure 1: Climate and Rainfall Maps

EnclosureFunctionsIngeneralthephysicalfunctionofseparationrequiredofthebuildingenclosure

maybefurthergroupedintothreesub-categoriesasfollows:

1.Supportfunctions,i.e.,tosupport,resist,transferandotherwiseaccommodateallthestructuralformsofloadingimposedbytheinteriorandexteriorenvironments,

bytheenclosure,andbythebuildingitself.Theenclosureorportionsofitcanbean

integralpartofthebuildingsuperstructure,usuallybydesignbutsometimesnot.

2.Controlfunctions,i.e.,tocontrol,block,regulateand/ormoderatealltheloadingsduetotheseparationoftheinteriorandexteriorenvironments.Thislargelymeans

theflowofmass(air,moisture,etc.)andenergy(heat,sound,fire,light,etc.).

3.Finishfunctions,i.e.,tofinishthesurfacesattheinterfaceoftheenclosurewiththeinteriorandexteriorenvironments.Eachofthetwointerfacesmustmeetthe

relevantvisual,aesthetic,wearandtearandotherperformancerequirements.

Afourthbuilding-relatedcategoryoffunctionscanalsobeimposedonthe

enclosure,namely:

4.Distributionfunctions,i.e.,todistributeservicesorutilitiessuchaspower,communication,waterinitsvariousforms,gas,andconditionedair,to,from,and

withintheenclosureitself.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

3

Almostallenclosuresmustsatisfysupport,control,finishanddistributionfunctions.

However,onlythesupportandcontrolfunctionsmustbeprovidedovertheentiresurfaceoftheenclosure:controlandsupportfunctionsmustcontinueacrossevery

penetration,everyinterface,andeveryassembly.Thelackofthisrequired

continuityisthecauseofthevastmajorityofenclosureperformanceproblems.The

needforfinishanddistributionvariesovertheextentoftheenclosure.Itisrather

unlikelytofindanenclosurethatrequiresafinishontheinteriorandexterior

everywhere.Itisevenmoreunlikelytofindabuildingthatimposesthedistribution

functionontheenclosureoveritsentiresurface.

Thesupportfunctionisofprimaryimportance.Withoutstructuralintegrity,theremainingfunctionsareuseless.However,theindustryhasreachedahighlevelof

understandingandaccomplishmentinthisarea.Supportsystemshaveevolvedfrom

massiveelementspiercedatafewlocationstoefficientprimarystructuralsystems

(suchassteelorconcreteframes)withlightweightframedinfillandsheathing.The

trendtolightweightenclosuresislikelytocontinueasthedemandformore

resource-efficientbuildingsgrows.

Forphysicalperformance,themostcommonrequiredenclosurecontrolfunctionsinclude

• rain,• air,• heat,• vapour,• fire&smoke,• sound,• light(includingview,solarheat,anddaylight),• insects,• particulates,and• access.

Buttherearemanymore.Likesupport,thesecontrolfunctionsarerequired

everywhereforacceptableorgoodperformanceandhencecontinuityofthese

controlfunctions,especiallyatpenetrationsandconnections,iscriticaltoa

successfulenclosure.Themostimportantcontrolfunctionwithrespecttodurability

israincontrolfollowedbyairflowcontrol,thermalcontrol,andvapourcontrol.The

leveloffireandsoundcontrolrequiredvarieswithcoderequirementsandthe

owner’sdesires.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

4

Unlikethecontrolandsupportfunctions,whichrelyoncontinuitytoachieve

performance,thefinishfunctionisoptional,andmaynotbeneededinsomeareas.Forexample,abovesuspendedceilingsorinserviceorindustrialspaceswherethe

finishisoftendeemedunimportant.Exteriorfinishisoftentermed“cladding”,but

thetermisimprecise,sincecladdingsystemsandmaterialsoftenincludessome

controlfunctions(suchasUVcontrol,solarcontrol,impactresistance,etc.)while

alsodeliveringthefinishfunction.

Theservicedistributionfunction,abuildingfunctionoftenimposedontheenclosure,largelyservicestheadjacentinteriorspacesandonlyneedstobemet

wherethereisaserviceorutilitytobedistributed–largeproportionsofmost

enclosuresdonotneedtofulfillthisbuildingfunction.Thedistributionfunctionof

thebuildinghoweverusuallyimpactsthecontrol-relatedfunctions.Forexample,

serviceentrancespenetratetheentireenclosure,andpipes,ductsandwiresthat

runthroughinsulatedstudspacescanseriouslyreducetheperformanceof

insulationinstalledhere.

Confusionabouttheclassificationofthefunctionalrolesofenclosurecomponents

andmaterialsisfartoocommon,andthisconfusioncancauseseriousperformance

anddurabilityproblems.Forexample,

• vinylwallpaperisoftenappliedasafinish,butinfactfulfillsthecontrol-

relatedfunctionofvapourdiffusioncontrolandactsasalow-permeance

ClassIvapourcontrollayer.Thisunintentionalcontrolofdiffusioncan,and

toooftendoes,createseriousmouldproblemsinair-conditionedbuildings.

• drywallisoftenseenasfulfillingafinishfunction,butinfact,thepaintis

moreoftenthefinishandthedrywalloftenservesasacontrollayerforfire,

sound,andairflow.Ifadesignerorbuilderstopsthedrywallabovea

suspendedceilingbecauseafinishfunctionisnotneededhere,therequired

fire,sound,andairflowcontrolwillalsobemissing.

• athick,self-adhered,bituminousmembraneisoftenusedtodrainwaterand

controlairflowinhigh-performanceassemblies.However,thismembraneis

alsoaverylowpermeancevapourcontrollayer,andlocatingitonthe

outsideofallormostoftheinsulationinacoldclimatecanleadtodamaging

coldweathercondensation.

Fromamorepracticalpointofviewitisusefultodividethefunctionsofthe

enclosureintovarioussub-categoriestowhichwecanassignactualproductsand

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

5

sub-systemassemblies.Withrespecttothecontrolfunction,thesearetermed

controllayers.

Themostimportantandcommonlydefinedenclosurecontrolfunctionlayersare,in

approximateorderofimportance:

1. water/raincontrollayer(e.g.,drainageplane&gaporwaterproofing),

2. airflowcontrollayer(e.g.,anairbarriersystem),

3. thermalcontrollayer(e.g.,insulation,radiantbarriers,etc.),and

4. vapourcontrollayer(e.g.,vapourretarderorvapourbarrierasrequired).

Eachcontrol“layer”maybeasinglematerial,orasub-assemblyofmaterialsthat

togetherprovidethecontroldesired.Inmanycases,twoormoreofthecontrol

functionsareprovidedbyasinglematerialorlayer(e.g.,amembranemayprovide

waterandaircontrol,orsprayfoaminsulationmayprovidevapor,air,andthermal

control).

The“Perfect”EnclosureFigure2showsanidealizedenclosurewiththefourcontrollayerslabelled,along

withcladding,supportandinteriorfinishfunctionlayers.

Figure 2: Idealized enclosure showing the four primary control layers

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

6

Thewater,airandvaporcontrollayersareshownasthinlinestoindicatethatthey

can,inreality,bequitethin(e.g.lessthan1/16”or1mm)andstillperformtheir

functionsverywell.Somematerials,suchasprecastconcrete,canbeusedasa

water,airandvapourcontrollayeronlyiftheyarethicker,e.g.,4”or100mm.

Thesupportandthethermalcontrollayerareshownasthickercomponents,

becauseinpractisetheselayersneedtobethicker(e.g.,wellover1”or25mm)to

performtheirfunction.Dependingonthespanandtoalesserextentthemagnitude

oftheloads(snow,wind,dead,etc.),thesupportstructurewillusuallybeinthe

rangeof3”to8”(75to200mm)forwallswithaspanheightof8’to20’(2.4to6m).

Dependingonitsmaterialproperties,theclimate,andbuildingdesign,thethermal

controllayerwillusuallybe2”to10”thick(50-250mm).

Figure3depictsthespecial,butcommonandpractical,caseofanassemblythat

collapsesthewater,air,andvaporcontrollayersintoasinglephysicalmaterial

(typicallyapolymersuchasaplasticorbituminousmembrane),andprovidesan

optionalservicedistributionspaceandinteriorfinish.

Figure 3: Idealized enclosure with service distribution and finishes

RainControlRaincontrolisthemostimportantpracticalcontrolfunctiontoprovide.Thereis

littleacceptanceorforgivenessforfailure.

Therearethreerecognizeddesignstrategiestocontrolrainpenetrationwithinand

throughtheenclosure(Straube&Burnett1999,CMHC1999):

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

7

1. Drained/Screen2. Mass/Storage3. PerfectBarrier

Thecategorizationdescribedisindependentofmaterialsordesignintentandis

basedsolelyonthemethodbywhichawallsystemcontrolsrainpenetration.

Figure 4: Examples of Drained/Screen Assemblies

Historically,thebestperformanceforwaterpenetrationcontrolhasbeenfrom

drained/screenassemblies.Someexamplesofdrainedwallsystemsincludecavity

walls,brickandstoneveneer,vinylsiding,metalpanels,two-stagejoints,and

drainedEIFS.Screened/drainedwallsassumesomerainwaterwillpenetratethe

outersurface(hencethecladding“screens”rain)andremovethiswaterby

designinganassemblythatprovidesdrainagewithinthewall.

Alldrained(aka“rainscreen”)systemsmusthavefivecomponents:

1. arainscreenorcladding(onethatleaksrain)

2. adrainagegap(oftenaclearairspace),

3. adrainageplane(watercontrollater,awaterrepellentplane,WRB.),

4. flashingatthebasetodirectwateroutwards(waterproof),and

5. drainholes(weepholes)toallowwateroutofthedrainagegap.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

8

Figure 5: Examples of Mass/Storage Wall Assemblies

Masswallsrequiretheuseofanassemblyofmaterialswithenoughsafestorage

capacityandmoisturetolerancetoabsorballrainwaterthatisnotdrainedor

otherwiseremovedfromtheoutersurface.Theinfiltrationoccursthroughmicro

cracksandporesintheassemblyandisdrivenpredominantlyfromgravityand

capillaryforces.Windisgenerallynotasmuchofafactorduetothesizeofthe

cracksandtherelativemagnitudeofthecapillaryforces.Inafunctionalmassor

storagewall,evaporativedryinganddiffusioneventuallyremovesmoisturebefore

itreachestheinnersurfaceofthewall.

Figure 6: Examples of Perfect Barrier Assemblies

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

9

Perfectbarriers,thethirdtypeofraincontrolstrategy,stopallwaterpenetrationat

asingleplane.Suchperfectcontrolrequiredtheadventofmodernmaterials.Some

examplesofperfectbarrierwallsaresomewindowframes,andsomemetaland

glasscurtainwallsystems.Becauseitisdifficulttobuildandmaintainaperfect

barrierwall,mostwallsaredesignedas,orperformas,imperfectbarrierwall

systemsofeitherthemasstypeorthescreenedtype.However,somesystems,

usuallyfactorybuilt,providewallelementsthatarepracticalperfectbarriers,and

whilethepanelsthemselvescanbeconsideredperfectbarriers,thejointsareoften

susceptibletoinfiltration.

Thejointsbetweenperfectbarrierelementsmaybealsodesignedasperfect

barriers(e.g.asinglelineofcaulking).Suchjointshaveapoorrecordof

performanceandshouldnotbeusedtocontrolrainentry.Alternately,forlarge

panels,suchasprecastpanelsandwindow-walljointsitbecomespracticaltodesign

thejointsdrainedsystems.

Figure 7: Examples of Perfect Barrier Assemblies

Themostimportantjointisoftenthejointbetweenwindows,doors,curtainwalls

andthewallinwhichtheyareinstalled.Thisjointshouldbedesignedasatwo-

stagedrainedjointwithflashingatthebottomtocollectandrejectwateroutward.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

10

Figure 8: Examples of Perfect Barrier Assemblies

MasonryVeneer,MetalPanel,andEIFSCladdings

Masonryveneer,metalpanelsanddrainedEIFSsystemsareverycommonlyused

drainedassembliesthathavedemonstratedreliableperformanceformanagingrain

water.However,sincetheassembliesaremadeupofmultiplelayersandaresite

constructed,certainelementscanaffecttheperformanceoftheassemblies.

Ithaslongbeenknownthatwaterisabletopenetratethroughmasonryveneersdue

toacombinationofgravity-drivenwaterleakageandcapillaryforces.Thewater

controllayerinadrainedsystemiscalledthedrainageplaneorwaterresistivebarrier(WRB).Itisthelastlayeravailabletoresistfurtherwaterpenetrationintotheassemblyandisintendedtoexcludeallthewatertowhichitisexposed.The

WRBismostcommonlymadeofengineeredbuildingwraps,asphaltimpregnated

buildingpaper,fluidorsheet-appliedmembranes,orwater-resistivesheathingwith

tapedorsealedjoints.Thewaterresistivebarrierneedstobeinstalledwithno

discontinuitiesand/orallseams,joints,andpenetrationsshinglelappedtodrain

liquidwateroutandawayfromtheassembly..

Asignificantamountofforgivenessisbuiltintothesystemduetotheairspace

betweenthebrickandthebackupwallconstruction.Thisairspaceactsacapillary

breakanddrainagegap.Mostoftherainwaterthatpenetratesthroughthecladding

drainsdownthebacksideofthecladdingandoutattheweepholelocationssothe

actualmoistureloadontheWRBisminimalinmostcases.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

11

AirFlowControlAirmovementthroughanenclosureassemblyisdrivenbyairpressuredifferences

betweentheinteriorandtheexterior.Theseairpressuredifferencesarecausedby

acombinationofwind,stackeffect(naturalbuoyancyofair),andmechanical

pressurization.Thecombinedeffectoftheseforcescanbequitesignificantandlead

toalargevolumeofairmovement.Tocontrolairmovementthroughtheassembly,

acontinuousbarriertoairmovementisrequired(theaircontrollayer).The

locationoftheairbarrierintheassemblyisnotstrictlyimportant(thisisnotthe

caseforconvectiveloopsdiscussedlater).Theairbarriercanbeontheinterior,

exterior,atalocationinthemiddle,ormadeupofanentirecompositeassembly.In

orderfortheairbarriertobeeffectiveitmustbecontinuousinthefieldofthewall

aswellasattheconnectionstoothercomponents(suchasatfoundation,roof,and

windowsanddoors).Thelast30yearsofpracticalfieldexperiencewithairbarrier

performancehasresultedintwooutcomes,difficulttoproveinthelab,but

repeatedlydemonstratedinthefield:airbarriersinstalledtotheexteriorofthe

primarysupportstructureandinteriorpartitionsarefareasiertobuildreliablyair

tight,andfully-adheredorclamped(e.g.notloose)membranesaresuperiorto

loose-appliedmembranes.Alltypesofsystemscanwork,butthosetwolessons

resultineitherhigherperformance,lowerriskoffailure,orlowercostforthesame

performancerelativetootherapproaches.

Figure 9: Air barriers on the exterior of the primary framing are preferred for practical reasons, especially in light-framed wall systems.

Theairbarriercanbeasinglematerialoralayerofmaterialsactingtogetherasa

compositetoresisttheimposedairpressureloadswithoutrupturing.Materials,

suchassheetpolyethyleneortapedfoil-orkraft-paperfacings,whichhistorically

wereintroducedasvaporbarriers,havedemonstratedpoorperformanceasanair

barrier(duetotheirinabilitytoresistairpressureloads).Masonrymaterials(such

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

12

asmasonryblock)donotfunctionasairbarriersbecausetheyaretooairporous,

butthickelastomericpaintscanrendermasonryairtightandprecastconcreteis

denseandexceptionallyairtight.Materialssuchasfluid-appliedorsheet

membranesfully-adheredtoasolidsubstrate(exteriorgypsum,masonry,concrete)

havedemonstratedhighlevelsofperformanceinpractice(duetothestructural

natureofthecombinedmembraneandsolidsubstrate).

Itiscriticalthattheairbarrierbecontinuousfromoneassemblytoanother(roofto

wall,walltofoundation,andwindow/doortowall).Iftheairbarrierisnot

continuous,thenleakageofairwilloccur.Thepathofairmovementwilldependon

thedesignoftheassembliesandthelocationofthediscontinuity.Condensation

withintheassemblywilloccurifmoisture-ladenairmovingthroughtheassembly

comesintocontactwithacoldsurface(surfacetemperaturebelowthedewpoint

temperatureoftheair).Theremustbeairmovement(overallairtightness)and

coldsurfacesalongthepathofflowforinterstitialcondensationproblemstooccur.

Figure 10: A mechanically –attached membrane air-water barrier held tightly to the wall with furring strips provides good performance. Nails or screws through the furring are self-sealing, unlike nails

and screws driven through the thin membrane.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

13

ThermalControlAcontinuousandeffectivethermalcontrollayerisrequiredtoprovidegood

thermalcomfort,reducetheriskofcondensation,andreduceoperatingenergy

consumption.

Allmaterialsandlayersinabuildingassemblyhavesomeresistancetoheatflow.

However,materialswithanR-valueofabout2/inchormore(k-valuelessthan0.07

W/m∙K)aredeliberatelyusedinbuildingassembliesfortheirabilitytoretardthe

flowofheat.Thesebuildingproductsarecalledthermalinsulations.Threematerial

categories,polymericfoams,mineralfibre(i.e.,glass,slag,orrockwool),andorganic

fiber(e.g.,cellulose,cotton,polyester,etc.),areusedtoproducealmostallcommon

buildinginsulationproducts(Table1).Insulationsareusuallysolidmaterials,but

radiantbarriersthatcontrolonlyradiationheattransferacrossairspacesarealso

sometimesused,especiallyinglazingsystems(thelow-ecoatingsthat

commonplace).

Insulationproductscanbeproducedinatleastfivecommonphysicalforms:loose,

batt,roll,board,andspray(Table2).Eachformhasadvantagesanddisadvantages,

andsomematerialscanbepurchasedinallfiveforms,andsomeonlyinone.

MaterialCategory

Examples Moisture

Fire VaporPermeance

AirPermeance

Mineralfiber Fiberglass,stone,slag Tolerant

Non-combustible high high

OrganicFiber Cellulose,cotton,wool,straw Sensitive

Combustible high high

Plasticfoam Polystyrene,polyurethane,polyisocyanurate

Tolerant

Combustible Low-medium

low

Mineralfoam Foamglass,pumice,airkrete,aerogel

Tolerant

Non-combustible low low

Table 1: Four material categories, with a range of physical attributes, describe most insulation products used in buildings

Highperformancebuildingenclosuresgenerallyrequirecontinuousthermalcontrol

layersontheexteriorofthestructuretoensurecontinuity.Thislayercanbeboard

orsprayfoamaswellassemi-rigidfiberglassorrockwoolinsulation.Iforganic-fiber

productsareused,theycanonlybeusedinsideoftheenclosureassembly’swater

controllayerortheywillbedamagedin-service.

Locatingallinsulationasacontinuouslayerontheexteriorofthestructure

effectivelyeliminateslow-costfibrousbattandloose-fillinsulationsfroma

designer’spalette.Suchlow-densityfibrousinsulationsarestillimportanttofill

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

14

interiorvoidsandcansupplement(neverreplace)theexteriorinsulationlayer,especiallyforwood-framedassemblies.Toensureallspacesandvoidsinframing

cavitiesarefilledproperly(tocontrolconvectiveloops),sprayorblowninsulationis

preferredwhencavityfillsareappropriate.Wheneverairandvapour-permeable

insulationisaddedtoacavity,extracareisrequiredinthelocationandselectionof

thevapourcontrollayerandthelocationoftheaircontrollayer.

Cellularfoamplasticsareoftenusedwhenairimpermeableand/ormoisture

tolerantmaterialsarerequired.Theyarethemostcommontypeofsemi-rigid

insulation.Productssuchasexpandedpolystyrene(EPS),extrudedpolystyrene

(XPS),andfacedpolyisocyanurate(“polyiso”orPIR)havelongbeenusedbehind

claddingsandoutboardofthewatercontrollayer.Polyisoshouldnotbeusedin

applicationswhereitcanbeimmersedinwaterforlongperiodsoftime:thisisnota

concernforabove-gradewalls,butdoeslimititsusebelowgrade.Extruded

polystyreneisthematerialthathasthehighestresistancetowater,andshouldbe

usedwhenrepeatedorextendedwaterimmersionand/orlong-termhighvapour

pressuredrivesareexpectedinservice.

Form Installation LimitstouseLoose pouredorblown maysettle,easilycompressedBatt frictionfit heldinplacebyfriction,easilycompressedRoll frictionfit/mechanicallyattached asforbatts

Board mechanically,adhesivelyattached resistanttomechanicalpressure

Spray sprayinplace stickstoadjoiningsurfaces,resilient

Table 2: Insulations of can take on a wide range of forms, which may limit how they are used.

Expandedpolystyrene(EPS,sometimescalled“beadboard”)isverysimilarto

extrudedpolystyrene(XPS)especiallyathigherdensities,althoughithasalower

thermalresistance,andabsorbsmorewater.Widelyusedoutsidethewatercontrol

layerinabove-gradewallassemblies,itcanalsobeusedveryeffectivelybelow

gradeandhaslongbeenacceptedintheCanadianbuildingcodeforthisuse.

Experiencehasshownthanitcannotbeusedinprotectedmembraneroofs(i.e.,

abovealowsloperoofmembrane)withoutabsorbingtoomuchwater.

Medium-densityclosed-cellspraypolyurethane(ccSPF)isanincreasinglycommon

productthatisspray-appliedtoappropriatesubstrates.Ithasevenbeenusedunder

slabsbysprayingitdirectlytotheearth.Thisproductcanactaspartoftherain,air,

vapour,andheatflowcontrollayersofanassemblyifcareistakentomaintain

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

15

continuityattransitionsandthepotentialcracksduetomovement(duringservice)

orcoolingshrinkage(duringinitialcuring).

Insulationproductsareoftenselectednotjustonthebasisoftheirfireandmoisture

resistance,butalsobecausetheymayassist,ortaketheprimaryrole,incontrolling

airandvapourflow.

Mostrigidfoamboardproducts,especiallythosewithfacers(e.g.thealuminum

faceronpolyisointendedforwalls,facedEPSboard),canactaspartofthewater

and/orvapour,and/orairflowcontrolsolongasotherrequirements,suchas

structuralsupport,durability,andcontinuityatjoints,aremet.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

16

Material Form UsesVapor

PermeanceAir

Permeance

Fiberglass loose packedintospaces,laidonceilings high high

batt

frictionfitbetweencloselyspacedframing,laidonceilings high high

spray

partiallyfillingirregularlyshapedvolumes high high

semi-rigidboard ductinsulation high high

Stonewool loose

high high

batts asforFG high high

spray

partiallyfillingirregularlyshapedvolumes high high

semi-rigidboard

cavityinsulaton,coveringinteriorsurface,roofs high high

Polyisocyanurate(PIC) board,foil-faced

sheathing,coverssurfaces,cavitywalls,insideroofs,ontopofroof low low

glassorpaper-faced med low

ExtrudedPolystyrene(XPS) board

sheathing,coverssurfaces,cavitywalls,insideroofs,ontopofroof,underslab,wetzones low-med low

faced low low

ExpandedPolystyrene(EPS) board

sheathing,coverssurfaces,cavitywalls,insideroofs,ontopofroof med low

faced low lowCellulose loose packedintospaces,laidonceilings high high

sprayorpacked

partiallyfillingirregularlyshapedvolumes high med

Fiberboard board drysheathingroofingfloors high med

Straw balesself-supportingwhendense,andsupportscladding high med

open-cellspraypolyurethane(ocSPF) spray

partiallyfillingirregularlyshapedvolumes,adheredtoundersidepouredontoceilings high low

closed-cellspraypolyurethane(ccSPF) spray AsocSPF,butmorewaterresistant med low

Table 3: Different Insulation Products, Their Uses, and Air-Vapor Permeance Properties

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

17

Figure 11: Extruded Polystyrene (XPS) insulated used as continuous insulated sheathing for a

house. Note the red tape used to create a continuous water-air control layer

Semi-rigidfibrousinsulationboardscanonlyactasheatflowcontrollayers,

althoughtheycanprovideadrainagepath(i.e.,theyprovideadrainagegapinthe

largeairvoidsbetweenfibers)forrainwater,eitherbydesignorinactuality1.In

manyapplications,air-andvapour-permeablemineral-fibresemi-rigidinsulations

(MFI),suchasfiberglassandrockwoolcanbeusedasexteriorcontinuousinsulation

andhaveaverylongtrackrecordofgoodperformance.Toperforminunsupported

applications,fiberglassproductsgenerallyrequireaminimumdensityintherange

of2.5-4poundspercubicfoot(40-70kg/m3),whereasrockwoolshouldhavea

densityofoverabout3pcf(50kg/m3).SuchMFIproductstendtobelessexpensive,

andarealwaysmorefireresistant,thanfoamedplastics.

1 Semi-rigid mineral fiber insulation (MFI), particularly rockwool, provides a drainage path in the fibers of the outer 1/8” – ¼” (3-6 mm) without materially affecting its thermal resistance. MFI have been used in drained masonry cavity walls with great success for over 50 years in most parts of the world and have been widely deployed as below-grade drainage layers with some insulating value.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

18

Figure 12: Closed-cell spray polyurethane foam (ccSPF) has been used for decades as a combined

thermal insulation, air barrier material, drainage plane, and vapor control product. Note the extensive use of transition membranes at penetrations.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

19

Figure 13: Rockwool semi-rigid board insulation used as continuous exterior insulation in an

institutional building over a fluid-applied asphaltic air-water barrier over CMU

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

20

Layer R-value RSI(m2K/W)Emptystudspace0.75”-6”(20-140mm) 0.85–1.4 0.15–0.25m2K/W

Emptyspace(3.5”/90mm) 1 0.18m2K/W

Emptyspace(5.5”/140mm) 1 0.18m2K/W

CMU8”/200mmnormalweight 2.0 0.35m2K/W

Insulationmaterial R-value/inch k(W/mK)

Batt(mineralfiber) 3.4-4.3 0.032-0.042

Extrudedpolystyrene(XPS) 5.0 0.029

Polyisocyanurate(PIC) 5.5-6.0 0.024-0.027

Expandedpolystyrene(EPS) 3.6-4.4 0.033-0.040

Semi-rigidmineralfiber(MFI) 3.6-4.4 0.033-0.040

Sprayfiberglass 3.8-4.3 0.034-0.040

Closed-cellsprayfoam(2pcf)ccSPF 5.8-6.2 0.023-0.025

Open-cellsprayfoam(0.5pcf)ocSPF 3.6 0.040

Aerogel 10 0.015

VacuumInsulatedPanels(VIP) 18-30 0.005-0.008

Table 4: Representative Insulation Material Properties and their R-values

RadiantBarriersandLow-ECoatingsSomethermalcontrolproductsaredesignedtoprimarilycontrolradiationheat

transfer.Radiantbarriersheetscanbeprovidedasasheet,beadheredtosheathing

andinsulationproducts,orbepartofarooforsheathingmembrane.Transparent

metalliccoatingsarecanbeappliedtoanyofthesurfacesofglazing.

Inallcasestheefficacyofradiationcontrolcanbemeasuredintheinfra-redregion

byemissivity.Lowemissivity,low-e,surfacesneitheremitnorabsorbenergy

effectivelyintheinfra-redtemperature(from-40°F/-40°Ctoover200°F/90°C).

Normalbuildingmaterialshaveanemissivityofaround0.90,or90%.Low-e

surfaces,almostalwaysbasedonsomemetalliccompound,haveemissivitiesofwell

below0.20,andthebestcoatingshavevaluesof0.03orevenlower.Alow-e

surfacewillreducetheradiationthattransfersacrossanairspaceregardlessof

whichsideoftheairspaceitisapplied.Applyingalow-ecoatingtobothsideswill

haveonlyaverysmalladditionalbenefit.Inallcases,aradiantbarriermusthavean

airspaceassociatedwithittohaveanybenefittothermalcontrol.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

21

Themostpowerfulapplicationofradiationcontrolisintheformoftransparent

coatingsonglass,theubiquitouslow-ecoating.Thecoatingisusuallyappliedtoone

ofthesurfacesfacingasealedairgapinaninsulatedglazingunit(IGU).Inthis

location,thesurfaceisprotectedfromcorrosion,condensation,dust,anddirt,and

thereforetheemissivityofthecoatingisprotectedfromchange.Low-ecoatings

increasetheapparentthermalresistanceofa½”(13mm)airgapinasealedIGUby

fromR1toR2.Whenthegapisfilledwithalessconductivegassuchasargon,the

benefitisevenlarger,boostingtheR-valueofadouble-glazedIGUfromaroundR2

toaroundR4.Somenewerglazingsystemsareaddingalow-ecoatingtotheinside

faceoftheglassaswell:thisimprovesR-valueandoccupantradiantcomfortbut

doesresultincolderglasssurfacetemperatures.

Low-emissivitycoatingsorfilmsareoftenappliedtocarriersheets,insulation

boards,orsheathing.Thesecoatingmayinitiallyhaveemissivitiesaslowas0.05,

butthevaluetendstoriseinserviceasdust,corrosion,andagingincreasesthe

emissivity.Somelow-epaintsandcoatingsmayhaveemissivitiesashighas0.30:

thebenefitofthesecoatingsareprettysmall.

Asradiationemissionincreaseswiththefourpowerofabsolutetemperature,

radiationismoreimportantathightemperaturesthanatcoldtemperatures.Hence,

radiantbarriers/low-ecoatingsareslightlymoreimportantathightemperatures

thanlowtemperatures.Asheatiscarriedbyrisingair,heatflowupwardacrossa

horizontalairspaceisdominatedbyconvection,whereasheatflowdownwardis

dominatedbyradiation:theimpactoflow-ecoatingswillbeveryimportantinthe

lattercaseandnottheformer.Allofthesevariedfactorsmeansthereisnoone

correctapparentthermalresistanceforanairspacewithlow-ecoating,oraradiant

barrierproductexposedtoanairspace.

ThermalBridging

Whenheatflowsatamuchhigherratethroughonepartofanassemblythan

another,thetermthermalbridgeisusedtoreflectthefactthattheheathasbridgedover/aroundthethermalinsulation.Thermalbridgesbecomeimportantwhen:

• theycausecoldspotswithinanassemblythatmightcauseperformance(e.g.,

surfacecondensation),durabilityorcomfortproblems.Thisisparticularily

importantinbuildingswithhigherinteriorhumidityduringwinter.

• theyareeitherlargeenoughorintenseenough(highlyconductive)thatthey

affectthetotalheatlossthroughtheenclosure.Thiseffecthasbecomerather

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

22

significantashigherR-valuesintherestoftheenclosureincreaseinhigh

performancebuildings.

Thermalbridging,especiallybysteelframing,orattheintersectionofwallcorners

withroofsandfloors,projectingstructuralelementslikecantilveredbalconiesand

perimeterconcreteslabsoftencausescoldinteriorsurfacetemperaturesandthus

condensationaswellasunwantedenergylossandgain.Attachedfiguresprovidea

schematicofhowtemperaturesatstudsandnearcornerscancauselowsurface

temperatures.Inthecaseofthesteelframingshown,anexteriortemperatureof–

10ºCcanresultininteriorsurfacetemperaturesof5to10ºCatstuds,andbelow

freezingatfloortowallcorners.

Allenclosuresshouldbedesignedtoavoidalargenumberandextremethermal

bridges.Themosteffectivesolution,exteriorcontinuousinsulation(e.g.,insulating

wallsheathingssuchassemi-rigidstonewoolandrigidfoam),arequiteusefulfor

“blunting”thermalbridgesandalsoofferenergysavingbenefits,andimprove

resistancetoexfiltrationcondensation.Claddingattachmentsandwindowframes

requirethermalbreaks,whereasmoststructuralframingsuchassteelstudsand

beams,concretewallsandframes,andwoodshouldbecoveredwithinsulation.For

conditionssuchasbalconies,andbrickshelfanglesandcanopyprojections,either

structuralthermalbreaksshouldbeusedortheareaofhighlyconductivematerials

penetratingtheinsulationshouldbestrictlylimited.

High-PerformanceEnclosuresThekeytohighperformanceisthatthefourcontrollayersbeprovidedandthat

theybeascontinuousandunbrokenaspossibleacrosspenetrationsandtransitions.

Thedesignandconstructionteammustbeabletoidentifywhichmaterials/sub-

assembliesareprovidingeachofthefourcontrolfunctions.Oncethecontrollayers

ineachenclosurecomponent(e.g.,window,roof,wall)areidentifiedorspecified,

continuityanalysisisconductedbydrawingalineforeachcontrollayeraroundthe

entireenclosurethroughallpenetrationsandtransitions.Anyinterruptioninaline

isadefectthatmustberectified.

Figure14providesanexampleofacommontypeofbuildingenclosurefor

commercialandinstitutionalconstruction:asteel-framedprimarysuperstructure,

withlight-gaugesteelstudinfill,andabrickveneercladding.High-performance

aspectsinclude

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

23

• acontinuousair-water-vaporcontrollayerappliedtotheexterioroftheprimarystructureandenclosuresupport(toensureitiseasyandpracticalto

achievecontinuity),and

• acontinuouslayerofthermalcontrolontheexterioroftheair-watercontrol

layer,uninterruptedbythermalbridges(especiallythesteelstructure).The

insulationwithintheframingisoptional,andoftennotworththeriskof

moistureproblemsforthesmallperformancegainprovided.

Figure 14: Steel-Framed, steel-stud infill enclosure with brick cladding

Differentcladdings,insulations,andcontrollayermaterialchoicesareminor

relativetotherobusttechnicalandpracticaladvantagesofthelayering.Ofcourse,

differentsolutionswillappeardifferent,e.g.,woodframingislessconcernedwith

thermalbridging,andconcretemasonryinfillwillalwayslocateallofitsthermal

controlontheexterior.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

24

CommonWood-FramedAssembliesLoad-bearingwoodframedenclosuresarewidelyusedforlow-risehousing,and

increasinglybeappliedtobuildingsof4storeysandmore.High-risesteel,concrete

frameorevenheavytimberbuildingsof6to30storieshaveorarebeingbuiltwith

infill,non-loadbearingwoodframewalls,oftenprefabricatedpanelshungfromthe

framemuchlikeprecastconcreteorcurtainwallassemblies.

Becausewoodframingisthermallyfarsuperiortosteelframingorconcreteblocks,

itiscommontofillthestudspacewithinsulation.Forhigh-performanceenclosures,

theairandwatercontrollayersshouldinmostcasesbelocatedoutboardofthe

woodframingandsheathing—thisprotectsthemoisture-sensitivewoodandhas

theverysignificantpracticalbenefitofmakingcontinuityatpartitionwalls,floors,

andservicedistributionpenetrationsmucheasiertoachieve.

Acommonandflexibleformofahigh-performancewood-framedenclosure:thecontrollayersareallidentifiedandcontinuous,allmaterialsarewidelyavailable,andconstructionissimple.Increasingthethermalperformanceoftheassemblytomeetdifferentclimatechallengesandenergyperformancetargetsisachievedsimplybychangingthethicknessoftheexteriorinsulation.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

25

CommonCommercialAssembliesThecontrollayerscanbeidentifiedinallfunctionalbuildingenclosures:thequality

ofthecontrolmaybemarginal,orthecontrolmaybeprovidedbyacollectionof

materials,butitmustbepresentortheenclosureisnotfunctional.Thefigurebelow

providesexamplesofnumeroussystemsalongwiththeidentifiedcontrollayers.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

26

HistoricandAlternateConstructionAlthoughcontrollayersarecommonlydefinedandevenlabeledassuchinmodern

enclosuredesigns,theyareoftenmoredifficulttoidentifyinexistingandhistoric

buildingsandsomealternatemodernapproachestobuilding.Olderbuildingsused

masonryastheprimarywatercontrollayers(i.e.,thestorageormassapproachto

raincontrol)aswellasthesupportfunction(Figure15).Airflowcontrolwasoften

alayerofinteriorplasterorexteriorstucco,althoughsufficientlythickand

impermeablemasonrycouldfulfillthatrole.

Amasonrywallretrofitforimprovedthermalcontroloftenusessprayfoamasboth

athermalcontrollayerandaircontrol,andrequiresanewinteriorfinish/fire

controllayerintheformofgypsumboardonsteelstuds(Figure16).Alternatively,a

higherperformancelower-moisture-riskretrofitthatchangestheexterior

appearancecoulduseEIFSontheexterior,andemptysteelstudsontheinterior

(Figure17).Labelingthecontrollayersactsasadesignqualitycontroltool,aswell

asameansofeffectivecommunicationinconstructiondocumentation.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

27

Figure 15: Historic solid masonry wall showing control layers

Figure 16: Interior retrofit of solid masonry wall showing control layers

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

28

Figure 17: Exterior retrofit of solid masonry wall showing control layers

Oneofthemorecommonmodernalternativesystemsthatisroutinelyandsuccessfullyusedinmodern,higherperformancebuildingsisarchitecturalprecast.Theuseofhighqualityconcreteallowsthesupportandprimaryairandwatercontrolfunctionstobelocatedontheexterior,andstillprovidegoodlong-termdurability.Fordurablehighperformancethechallengeremainstoensurethermalcontrol,avoidingcondensation,andproperjointdetailing.Anexampleofasuccessfuldesignofaprecastconcreteenclosuresystemisshowninthefigurebelow.

©2014-2017JohnStraube Reproductionallowedfornon-profitteachingonly

29

Figure 18: Examples of Architectural Precast

Numerousothersystemsexistthatmaybemoredifficulttoanalyze.InsulatedConcreteForms(ICF),StructuralInsulatedPanelSystems(SIPS),InsulatedMetalPanels(IMP),etc.However,eachofthesesystemsprovidessome,orallinthecaseofIMPs,ofthesupport,controlandfinishfunctions.

1 ReferencesStraube, J.F. and Burnett, E.F.P., "Rain Control and Design Strategies". J. Of

Thermal Insulation and Building Envelopes, July 1999, pp. 41-56.

Straube, J.F., High Performance Enclosures: Design Guide for Institutional

Commercial and Industrial Buildings in Cold Climates. Building Science Press,

Somerville,Massachusetts,2012. 320 pp.