BUILDING CLIMATOLOGY OF SOUTH REGIONS OF … · Ordenanza General de Urbanismo y Construcciones...

1
Model of climatic zone mapping Hourly temperature data from meteorological station measurements Total solar radiation data from modelling http://ernc.dgf.uchile.cl Calculation of parameters WCS and SCS for meteorological stations Determination of the dependences of the parameters WCS and CSC from the geophysical characteristics of the study area (Height above sea level, distance from ocean and etc.) Formation of a geophysical model of the study area Calculation of parameters WCS and SCS for the reference points of the geophysical model Interpolation of parameters WCS and SCS and creation of the climate zones map Konstantin Verichev (1), Alisa Salimova (2) and Manuel Carpio (1) (1) Institute of Civil Engineering, Faculty of Engineering Sciences, Austral University of Chile, Valdivia, Chile, (2) School of Environment, Tsinghua University, Beijing, China In order to optimize the energy consumption of the heating and cooling premises, the building construction process should be designed according to the different climatic zones. For this research we chose the region of South Chile, located between 37°S and 44°S in the Temperate Mediterranean and Temperate Marine West Coast climate zones. In civil engineering in Chile, according to the Ordenanza General de Urbanizmo y Construcciones (OGUC), the average annual values of the heating degree-days (HDD) with base temperature of 15°C for the period of 1999 are used to determine thermic zones (Fig.2). Therefore, we decided to recalculate the climatic values of HDD based on hourly temperature measurements in meteorological stations in these regions of Chile (Fig.1) over the last decade. We used the meteorological data of the Ministry of Agriculture, the Directorate General of Civil Aviation and the Ministry of Environment of Chile. As a result, new maps of the spatial distribution of climatic values of HDD with base temperature 15°C were obtained. The discrepancy between the actual thermal zones (based on the HDD climatic values) and the data from 1999 of OGUC was observed on an area of about 17% of the entire study area. For other hands, to determine the building climatic zones, we used the technology presented in the Código Técnico de Edificación (CTE) of Spain. In this document, the building climatic zones will be determined on the basis of the heating degree-days and cooling degree-days with the base temperature of 20°C and the total solar radiation. We used this methodology to suggest a reappraisal of the building climatic zones in Chile using the building climatic zones from Spain. Finally, based on the CTE method, we obtained the maps of the building climatic zones for the regions of La Araucanía, Los Ríos and Los Lagos of Chile (Fig.4). These zones correspond to the building climatic zones on the Northwest coast of Spain in autonomous communities: Galicia, Asturias, Cantabria, País Vasco and Castilla-León (Fig.5). That led us to raise the possibility of applying building codes of the CTE for the regions of Spain in the studied regions of Chile since OGUC construction norms do not satisfy the construction of buildings with high- energy efficiency in the climatic zones of the studied regions (Table 4). This work was funded by the following research projects:CONICYT FONDECYT 11160524 and DID-S-2016-40 UACh BUILDING CLIMATOLOGY OF SOUTH REGIONS OF CHILE: COMPARATIVE WITH NORTH REGIONS OF SPAIN Thermal zone Heating degree-days (HDD) 1 ≤ 500 2 >500 ≤750 3 >750 ≤1000 4 >1000 ≤1250 5 >1250 ≤1500 6 >1500 ≤2000 7 > 2000 Table 1. Thermal zones according to Ordenanza general de Urbanismo y Construcciones (OGUC) Fig.2. Map of meteorological stations in South of Chile Fig 1. Old thermal zone map of the Ministry of Housing and Urban planning of the 1999 (determination of zones according to Table 1) a b c d e f WCS -8.35·10 -3 3.72·10 -3 -8.62·10 -6 4.88·10 -5 7.15·10 -7 -6.81·10 -2 SCS 3.724·10 -3 1.409·10 -2 - 1.869·10 -5 - 2.053·10 -6 - 1.389·10 -5 - 5.434·10 -1 Table 2. Values of coefficients in equation 2 to calculate Winter Climate Severity (WCS) and Summer Climate Severity (SCS) Summer Climate Severity (SCS) SCS≤0.6 [1] 0.6<SCS≤0.9 [2] 0.9<SCS≤1.25 [3] SCS>1.25 [4] Winter Climate Severity (WCS) WCS≤0.3 [A] A1 A2 A2 A3 0.3<WCS≤0.6 [B] B1 B2 B3 B4 0.6<WCS≤0.95 [C] C1 C2 C3 C4 0.95<WCS≤1.3 [D] D1 D2 D3 D4 WCS>1.3 [E] E1 E2 E3 E4 Table 3. Climatic zones according to Technical Building Code (CTE) = × + × + ×× + × - + × - + 2; Thermal transmittance U[W/m 2 K] OGUC Roofing Walls Floor Thermal zone 4 0.38 1.70 0.60 Thermal zone 5 0.33 1.60 0.50 Thermal zone 6 0.28 1.10 0.39 Thermal zone 7 0.25 0.60 0.32 CTE Roofing Walls Floor Climate zone C1 0.41 0.73 0.50 Climate zone D1 0.38 0.66 0.49 Climate zone E1 0.35 0.57 0.48 Fig. 3. New actualized composite thermal zone map of OGUC (determination of zones according to table 1) Fig.4 Climate zone map of CTE for South part of Chile Fig.5 Cites with climate zones (C1, D1 and E1) of CTE in Spain Table.4 Recommendations of the thermal transmittance for the constructive elements of the buildings Daily HDD is obtained by equation: 4 = 5 7 9 : -; 9<= 1 24 (1); where Ti = hourly temperature measured by i-th hour of the day; Tb-base temperature; index (+) means that it is only necessary to calculate positive differences between Tb and Ti. Mean annual values of HDD were calculated on the basis of the daily values. The climate zoning of the CTE is based on Climate Severity Index Method: CS – Winter Climate Severity index (WCS) or Summer Climate Severity index (SCS). For case of WCS: DG – monthly average HDD with base temperature of 20°C for June, July and August, Rad – monthly average global radiation [kWh/m^2] for same months. For case of SCS: DG – monthly average Cooling degree-days (CDD) with base temperature of 20°C for December, January, February and March, Rad – monthly average global radiation [kWh/m^2] for same months. The thermal zoning of the OGUC is based Heating Degree-Days method: References 1. Ordenanza General de Urbanismo y Construcciones (OGUC), Ministerio de Vivienda y Urbanismo de Chile. Decreto Supremo №47 de 1992. D.O. de 13.04.09, 2009. 2. Código Técnico de la Edificación (CTE), Ministerio de la Vivienda, Government of Spain, Real Decreto 314/2006 de 17 de marzo, BOE 74 (2006) 11816–11831., 2006. 3. M. Mourshed, Relationship between annual mean temperature and degree-days, Energy Build. 54 (2012) 418–425. 4. Manual de Aplicación, Reglamentación Térmica, Ordenanza General de Urbanismo y Construcciones (art. 4.1.10), par. I-IV, Ministerio de Vivienda y Urbanismo de Chile, 2006. 5. Dirección Meteorológica de Chile. Dirección General de Aeronáutica Civil., (2017). http://www.meteochile.gob.cl/PortalDMC-web/index.xhtml (accessed April 18, 2017). 6. Agromet. Red Agrometeorológica de INIA. Ministerio de Agricultura. Gobierno de Chile., (2017). http://agromet.inia.cl/ (accessed April 18, 2017). 7. Explorador de Energía Solar para Autoconsumo. Ministerio de Energía. Gobierno de Chile. Facultad de Ciencias Físicas y matemáticas Universidad de Chile., (2017). http://walker.dgf.uchile.cl/Explorador/Solar3/ (accessed April 18, 2017). 8. M. Carpio, J. Jódar, M.L. Rodíguez, M. Zamorano, A proposed method based on approximation and interpolation for determining climatic zones and its effect on energy demand and CO2 emissions from buildings, (2015). doi:10.1016/j.enbuild.2014.11.041.+ 9. W. Bustamante, Guia de Diseño para la Eficiencia Energética en la Vivienda Social, Statew. Agric. L. Use Baseline 2015. 1 (2009) 203. doi:10.1017/CBO9781107415324.004.

Transcript of BUILDING CLIMATOLOGY OF SOUTH REGIONS OF … · Ordenanza General de Urbanismo y Construcciones...

Page 1: BUILDING CLIMATOLOGY OF SOUTH REGIONS OF … · Ordenanza General de Urbanismo y Construcciones (OGUC), Ministerio de Vivienda y Urbanismo de Chile. ... General de Urbanismo y Construcciones(art.

Modelofclimaticzonemapping

Hourlytemperaturedatafrommeteorologicalstationmeasurements

Totalsolarradiationdatafrommodelling

http://ernc.dgf.uchile.cl

CalculationofparametersWCSandSCSfor

meteorologicalstations

Determinationofthedependencesofthe

parametersWCSandCSCfromthegeophysicalcharacteristicsofthe

studyarea(Heightabovesealevel,distancefrom

oceanandetc.)

Formationofageophysicalmodelofthe

studyarea

CalculationofparametersWCSandSCSforthereferencepointsofthegeophysicalmodel

InterpolationofparametersWCSandSCS

andcreationoftheclimatezonesmap

KonstantinVerichev(1),AlisaSalimova(2)andManuelCarpio(1)(1)InstituteofCivilEngineering,FacultyofEngineeringSciences,AustralUniversityofChile,Valdivia,Chile,

(2)SchoolofEnvironment,TsinghuaUniversity,Beijing,China

In order to optimize the energy consumption of the heating and cooling premises, the building construction process should be designed according to the different climatic zones. For this research we chose theregion of South Chile, located between 37°S and 44°S in the Temperate Mediterranean and Temperate Marine West Coast climate zones. In civil engineering in Chile, according to the Ordenanza General deUrbanizmo y Construcciones (OGUC), the average annual values of the heating degree-days (HDD) with base temperature of 15°C for the period of 1999 are used to determine thermic zones (Fig.2).

Therefore, we decided to recalculate the climatic values of HDD based on hourly temperature measurements in meteorological stations in these regions of Chile (Fig.1) over the last decade. We used themeteorological data of the Ministry of Agriculture, the Directorate General of Civil Aviation and the Ministry of Environment of Chile. As a result, new maps of the spatial distribution of climatic values of HDDwith base temperature 15°C were obtained. The discrepancy between the actual thermal zones (based on the HDD climatic values) and the data from 1999 of OGUC was observed on an area of about 17% ofthe entire study area.

For other hands, to determine the building climatic zones, we used the technology presented in the Código Técnico de Edificación (CTE) of Spain. In this document, the building climatic zones will bedetermined on the basis of the heating degree-days and cooling degree-days with the base temperature of 20°C and the total solar radiation. We used this methodology to suggest a reappraisal of the buildingclimatic zones in Chile using the building climatic zones from Spain. Finally, based on the CTE method, we obtained the maps of the building climatic zones for the regions of La Araucanía, Los Ríos and LosLagos of Chile (Fig.4). These zones correspond to the building climatic zones on the Northwest coast of Spain in autonomous communities: Galicia, Asturias, Cantabria, País Vasco and Castilla-León (Fig.5). Thatled us to raise the possibility of applying building codes of the CTE for the regions of Spain in the studied regions of Chile since OGUC construction norms do not satisfy the construction of buildings with high-energy efficiency in the climatic zones of the studied regions (Table 4).

This work was funded by the following research projects:CONICYT FONDECYT 11160524 and DID-S-2016-40 UACh

BUILDING CLIMATOLOGY OF SOUTH REGIONS OF CHILE:COMPARATIVE WITH NORTH REGIONS OF SPAIN

Thermal zone Heating degree-days (HDD)

1 ≤5002 >500≤750

3 >750≤1000

4 >1000≤1250

5 >1250≤1500

6 >1500≤2000

7 >2000

Table1.ThermalzonesaccordingtoOrdenanza generaldeUrbanismo yConstrucciones (OGUC)

Fig.2.MapofmeteorologicalstationsinSouthofChile

Fig 1. Old thermal zone map of the Ministry of Housingand Urban planning of the 1999 (determination of zonesaccording to Table 1)

a b c d e fWCS -8.35·10-3 3.72·10-3 -8.62·10-6 4.88·10-5 7.15·10-7 -6.81·10-2

SCS 3.724·10-3 1.409·10-2 -1.869·10-5 -2.053·10-6 -1.389·10-5 -5.434·10-1

Table2.Valuesofcoefficientsinequation2tocalculateWinterClimateSeverity(WCS)andSummerClimateSeverity(SCS)

Summer Climate Severity (SCS)SCS≤0.6[1] 0.6<SCS≤0.9[2] 0.9<SCS≤1.25[3] SCS>1.25[4]

WinterClimateSeverity(WCS)

WCS≤0.3[A] A1 A2 A2 A3

0.3<WCS≤0.6[B] B1 B2 B3 B4

0.6<WCS≤0.95[C]

C1 C2 C3 C4

0.95<WCS≤1.3[D]

D1 D2 D3 D4

WCS>1.3[E] E1 E2 E3 E4

Table 3.Climatic zones according toTechnical Building Code (CTE)

𝐶𝑆 = 𝑎×𝑅𝑎𝑑 + 𝑏×𝐷𝐺 + 𝑐×𝑅𝑎𝑑×𝐷𝐺 + 𝑑× 𝑅𝑎𝑑 - + 𝑒×𝐷𝐺- + 𝑓 2 ;

Thermal transmittance U[W/m2K]OGUC

Roofing Walls Floor

Thermalzone4 0.38 1.70 0.60

Thermalzone5 0.33 1.60 0.50

Thermalzone6 0.28 1.10 0.39

Thermalzone7 0.25 0.60 0.32

CTERoofing Walls Floor

Climate zone C1 0.41 0.73 0.50

ClimatezoneD1 0.38 0.66 0.49

ClimatezoneE1 0.35 0.57 0.48

Fig. 3. New actualized composite thermal zone map ofOGUC (determinationof zones according to table 1)

Fig.4ClimatezonemapofCTEforSouthpartofChile

Fig.5Citeswithclimatezones(C1,D1andE1)ofCTEinSpain

Table.4Recommendationsofthethermaltransmittancefortheconstructiveelementsofthebuildings

DailyHDDisobtainedbyequation:

𝐻𝐷𝐷4 = 5 𝑇7 − 𝑇9 :-;

9<=

124(1);

whereTi =hourlytemperaturemeasuredbyi-thhouroftheday;Tb-basetemperature;index(+)meansthatitisonlynecessarytocalculatepositivedifferencesbetweenTbandTi.MeanannualvaluesofHDDwerecalculatedonthebasisofthedailyvalues.

TheclimatezoningoftheCTEisbasedonClimateSeverityIndexMethod:

CS – Winter Climate Severity index (WCS) or Summer Climate Severity index (SCS). For case ofWCS: DG – monthly average HDD with base temperature of 20°C for June, July and August,Rad – monthly average global radiation [kWh/m^2] for same months. For case of SCS: DG –monthly average Cooling degree-days (CDD) with base temperature of 20°C for December,January, February and March, Rad – monthly average global radiation [kWh/m^2] for samemonths.

ThethermalzoningoftheOGUCisbasedHeatingDegree-Daysmethod:

References1. Ordenanza General de Urbanismo y Construcciones (OGUC),Ministerio de Vivienda y Urbanismo de Chile. Decreto Supremo№47 de 1992. D.O. de 13.04.09, 2009.2. Código Técnico de la Edificación (CTE), Ministerio de laVivienda, Government of Spain, Real Decreto 314/2006 de 17 demarzo, BOE 74 (2006) 11816–11831., 2006.3. M. Mourshed, Relationship between annual meantemperature and degree-days, EnergyBuild. 54 (2012) 418–425.4. Manual de Aplicación, Reglamentación Térmica, OrdenanzaGeneral de Urbanismo y Construcciones (art. 4.1.10), par. I-IV,Ministerio deVivienda y Urbanismo deChile, 2006.5. Dirección Meteorológica de Chile. Dirección General deAeronáutica Civil., (2017).http://www.meteochile.gob.cl/PortalDMC-web/index.xhtml(accessed April 18, 2017).6. Agromet. Red Agrometeorológica de INIA. Ministerio deAgricultura. Gobierno de Chile., (2017). http://agromet.inia.cl/(accessed April 18, 2017).7. Explorador de Energía Solar para Autoconsumo. Ministerio deEnergía. Gobierno de Chile. Facultad de Ciencias Físicas ymatemáticas Universidad de Chile., (2017).http://walker.dgf.uchile.cl/Explorador/Solar3/ (accessed April18, 2017).8. M. Carpio, J. Jódar, M.L. Rodíguez, M. Zamorano, A proposedmethod based on approximation and interpolation fordetermining climatic zones and its effect on energy demand andCO2 emissions from buildings, (2015).doi:10.1016/j.enbuild.2014.11.041.+9. W. Bustamante, Guia de Diseño para la Eficiencia Energéticaen la Vivienda Social, Statew. Agric. L. Use Baseline 2015. 1(2009) 203. doi:10.1017/CBO9781107415324.004.