Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building...

73
Building America Special Research Project: High-R Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube Abstract: Many concerns, including the rising cost of energy, climate change concerns, and demands for increased comfort, have lead to the desire for increased insulation levels in many new and existing buildings. Building codes are improving to require higher levels of thermal control than ever before for new construction. This report considers a number of promising foundation and basement insulation strategies that can meet the requirement for better thermal control in colder climates while enhancing moisture control, health, and comfort. building science.com © 2010 Building Science Press All rights of reproduction in any form reserved.

Transcript of Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building...

Page 1: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

1

Building America Special Research Project: High-R Foundations Case Study Analysis

Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube

Abstract:

Many concerns, including the rising cost of energy, climate change concerns, and demands for increased comfort, have lead to the desire for increased insulation levels in many new and existing buildings. Building codes are improving to require higher levels of thermal control than ever before for new construction. This report considers a number of promising foundation and basement insulation strategies that can meet the requirement for better thermal control in colder climates while enhancing moisture control, health, and comfort.

building science.com © 2010 Building Science Press All rights of reproduction in any form reserved.

Page 2: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

BuildingAmericaSpecialResearchProject

High­RFoundationsCaseStudyAnalysis20100820

JonathanSmegalMAScJohnStraube,PhD,P.Eng

BuildingScienceCorporation30ForestStreet

Somerville,MA02143

www.buildingscience.com

Page 3: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 1 www.buildingscience.com 30 Forest St. Somerville, MA 02143

TableofContentsA. Introduction ...........................................................................................................................................................................................4

1.Objective...................................................................................................................................................................................................4

2.Scope ..........................................................................................................................................................................................................5

3.Approach..................................................................................................................................................................................................5

B. Analysis ....................................................................................................................................................................................................5

1.Wallassembliesreviewed ................................................................................................................................................................5

2.AnalysisCriteria....................................................................................................................................................................................5

2.1ThermalControlandHeatFlowAnalysis ..........................................................................................................................7

2.2HygrothermalAnalysis ........................................................................................................................................................... 16

2.3EnclosureDurability ................................................................................................................................................................ 41

2.4Buildability................................................................................................................................................................................... 41

2.5MaterialUse ................................................................................................................................................................................. 41

2.6Cost 42

2.7OtherConsiderations............................................................................................................................................................... 42

C. Results ................................................................................................................................................................................................... 43

1.Case1:UninsulatedFoundationWallsandSlab................................................................................................................. 43

1.1ThermalControl......................................................................................................................................................................... 43

1.2MoistureControl........................................................................................................................................................................ 43

1.3ConstructabilityandCost....................................................................................................................................................... 44

1.4OtherConsiderations............................................................................................................................................................... 44

2.Case2:CodeminimumR10continuousinsulation........................................................................................................... 45

2.1ThermalControl......................................................................................................................................................................... 45

2.2MoistureControl........................................................................................................................................................................ 45

2.3ConstructabilityandCost....................................................................................................................................................... 46

2.4OtherConsiderations............................................................................................................................................................... 46

3.Case3:R13fiberglassbattina2x4framedwall ................................................................................................................ 47

3.1ThermalControl......................................................................................................................................................................... 47

3.2MoistureControl........................................................................................................................................................................ 47

3.3ConstructabilityandCost....................................................................................................................................................... 48

3.4OtherConsiderations............................................................................................................................................................... 48

4.Case4:1”XPS,2x4woodframedwallwithfibreglassbatt ........................................................................................... 49

4.1ThermalControl......................................................................................................................................................................... 49

4.2MoistureControl........................................................................................................................................................................ 49

4.3ConstructabilityandCost....................................................................................................................................................... 50

Page 4: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 2 www.buildingscience.com 30 Forest St. Somerville, MA 02143

4.4OtherConsiderations............................................................................................................................................................... 50

5.Case5:2”XPS,2”foilfacedpolyisocyanurate ..................................................................................................................... 51

5.1ThermalControl......................................................................................................................................................................... 51

5.2MoistureControl........................................................................................................................................................................ 51

5.3ConstructabilityandCost....................................................................................................................................................... 52

5.4OtherConsiderations............................................................................................................................................................... 52

6.Case6:3.5”2.0pcfclosedcellspraypolyurethanefoam ............................................................................................... 53

6.1ThermalControl......................................................................................................................................................................... 53

6.2MoistureControl........................................................................................................................................................................ 53

6.3ConstructabilityandCost....................................................................................................................................................... 54

6.4OtherConsiderations............................................................................................................................................................... 54

7.Case7:6”0.5pcfopencellsprayfoam................................................................................................................................... 55

7.1ThermalControl......................................................................................................................................................................... 55

7.2MoistureControl........................................................................................................................................................................ 56

7.3ConstructabilityandCost....................................................................................................................................................... 56

7.4OtherConsiderations............................................................................................................................................................... 56

8.Case8:2”XPS,2x4framingwithfibreglassbatt ................................................................................................................ 57

8.1ThermalControl......................................................................................................................................................................... 57

8.2MoistureControl........................................................................................................................................................................ 57

8.3ConstructabilityandCost....................................................................................................................................................... 57

8.4OtherConsiderations............................................................................................................................................................... 58

9.Case9:2”Polyisocyanurateinsulation,2x4framingwithcellulose.......................................................................... 58

9.1ThermalControl......................................................................................................................................................................... 58

9.2MoistureControl........................................................................................................................................................................ 58

9.3ConstructabilityandCost....................................................................................................................................................... 59

9.4OtherConsiderations............................................................................................................................................................... 59

10.Case10:6”0.5pcfsprayfoamwith2x4framingoffset2.5”fromconcrete ........................................................ 59

10.1ThermalControl ...................................................................................................................................................................... 59

10.2MoistureControl ..................................................................................................................................................................... 59

10.3ConstructabilityandCost .................................................................................................................................................... 60

10.4OtherConsiderations ............................................................................................................................................................ 60

11.Case11:4”XPSinsulationontheexterioroffoundationwall................................................................................... 60

11.1ThermalControl ...................................................................................................................................................................... 60

11.2MoistureControl ..................................................................................................................................................................... 61

11.3ConstructabilityandCost .................................................................................................................................................... 61

11.4OtherConsiderations ............................................................................................................................................................ 61

12.Case12:4”XPSinsulationinthecenteroffoundationwall ....................................................................................... 61

Page 5: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 3 www.buildingscience.com 30 Forest St. Somerville, MA 02143

12.1ThermalControl ...................................................................................................................................................................... 62

12.2MoistureControl ..................................................................................................................................................................... 62

12.3ConstructabilityandCost .................................................................................................................................................... 62

12.4OtherConsiderations ............................................................................................................................................................ 62

13.Case13:InsulatedConcreteForms,2”XPSoninteriorandexterior ..................................................................... 63

13.1ThermalControl ...................................................................................................................................................................... 63

13.2MoistureControl ..................................................................................................................................................................... 63

13.3ConstructabilityandCost .................................................................................................................................................... 63

13.4OtherConsiderations ............................................................................................................................................................ 64

14.Case14:2”XPS,2x6framingwithfibreglassbatt ........................................................................................................... 64

14.1ThermalControl ...................................................................................................................................................................... 64

14.2MoistureControl ..................................................................................................................................................................... 64

14.3ConstructabilityandCost .................................................................................................................................................... 65

14.4OtherConsiderations ............................................................................................................................................................ 65

15.Case15:4”PIC,2x6framingwithfibreglassbatt............................................................................................................ 65

15.1ThermalControl ...................................................................................................................................................................... 65

15.2MoistureControl ..................................................................................................................................................................... 65

15.3ConstructabilityandCost .................................................................................................................................................... 66

15.4OtherConsiderations ............................................................................................................................................................ 66

D. Conclusions.......................................................................................................................................................................................... 67

E. FutureWork........................................................................................................................................................................................ 69

F. WorksCited ......................................................................................................................................................................................... 70

Page 6: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 4 www.buildingscience.com 30 Forest St. Somerville, MA 02143

A. Introduction

Manyconcerns,includingtherisingcostofenergy,climatechangeconcerns,anddemandsforincreasedcomfort,haveleadtothedesireforincreasedinsulationlevelsinmanynewandexistingbuildings.Buildingcodesareimprovingtorequirehigherlevelsofthermalcontrolthaneverbeforefornewconstruction.Thisreportconsidersanumberofpromisingfoundationandbasementinsulationstrategiesthatcanmeettherequirementforbetterthermalcontrolincolderclimateswhileenhancingmoisturecontrol,health,andcomfort.

The2009IRC(TableN1102.1)and2009IECC(Table402.27)requirebasementsinDOEclimatezonesfourandgreatertorequireacontinuouslayerofR10insulationorR13inaframedwall.HighRbasements,forcoldclimates,inthisreportarewallsthatapproachorexceedatrueR‐valueofR20.Inawarmerclimate,thatdoesnotrequirebasementinsulation,high‐Rmaybeconsideredless.

Basementsarestereotypicallycool,damp,mustysmellingareasofthebuildingthatwerehistoricallyunfinished,unoccupiedandusedmostlyasstorage.Moreandmoreoften,peoplearefinishingtheirbasementstoincreasethelivingenvironmentandfrequentlythebasementistransformedintoamediaroom,bedroom,orextralivingroom.Thesenewenvironmentsrequiregreatercontrolofbothheatandmoisturetoprovideahealthylivingenvironmentwithminimalrisktoequipmentandfinishes.

Asuccessfulfoundationwillperformthefollowingtasks

• Holdthebuildingup• Resistsoilpressures• Keepthegroundwaterout• Keepthesoilgasout• Keepthewatervaporout• Allowanywatervaporinthewalltoleave• Keeptheheatinduringthewinter• Keeptheheatoutduringthesummer

Basementfailuresoccuroftenduetoflooding,orcondensation,bothofwhichmayresultinmouldordustmiteproblems.However,buildingphysicsandextensivefieldexperiencehasshownthatthemajorityofallbasementmoistureandcomfortissuescanbeavoidedbyproperdesignandmaterialselection.

Thisstudycomparesoveradozenbasementandfoundationenclosuredesignsincludinghistoricalconstructionstrategies,codeminimumconstructionandhighlyinsulatedconstruction.Thisreportdemonstratesthroughcomputerbasedsimulationsandfieldexperience,differencesinenergyconsumption,thermalcontrol,andmoisturerelatedissues.

ThisstudyisanextensionofthepreviousBuildingAmericastudyofHighRwallassemblies(StraubeandSmegal2009),tocontinuetoimprovetheoverallbuildingenclosureandachievegreaterenergysavings.

1. OBJECTIVE

Thegoalofthisresearchistofinddurable,costeffectivebasementinsulationsystemthatcanbeincludedwithotherenclosuredetailstohelpreducewholehouseenergyuseby70%.Thisreportwillcompareavarietyofbasementandfoundationinsulatingstrategiesandpresenttheiradvantagesanddisadvantagesaccordingtoseveralcomparisoncriteria.

Page 7: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 5 www.buildingscience.com 30 Forest St. Somerville, MA 02143

2. SCOPE

Thisstudyislimitedtobasementandfoundationsystemsforcoldclimates.Apreviousstudywasconductedforwallsystemsandfurtherstudiesshouldbeconductedtoaddressroofsandattics.Ingeneral,onlycoldclimatesareconsideredinthisreportsinceenclosuresincoldclimatesbenefitthegreatestfromahighlyinsulatedbuildingenclosure,butimportantconclusionscanalsobedrawnforotherclimatezones.

3. APPROACH

Thequantitativeanalysisforeachwallsystemisbasedonathree‐dimensionalenergymodelingprogramandaone‐dimensionaldynamicheatandmoisture(hygrothermal)model.Minneapolis,MNinIECCclimateZone6wasusedastherepresentativecoldclimateformostofthemodeling,becauseofcoldwinterweatherandfairlywarmandhumidsummermonths.

B.Analysis 1. WALL ASSEMBLIES REVIEWED

Becausethereareanumberofvariablesforeachpossiblewallsystemdependingonthelocalpractices,climate,andarchitectorgeneralcontractorpreferences,anattemptwasmadetochoosethemostcommonwallsystemsandmakenotesaboutotheralternativesduringanalysis.Thislistofchosensystemsisexplainedinmoredetailintheanalysissectionforeachwallsystem.

• Case1:Un‐insulatedBasement• Case2:CodeminimumR10continuousinsulationwithpoly• Case3:3.5inchesfiberglassbattin2x4SPFwoodframedwallwithpoly• Case4:1inchXPS+3.5inchesfiberglassbattin2x4SPFwoodframedwall• Case5:2inchesXPS+2inchespolyisocyanuratewithR10underslab• Case6:3.5inches2.0ccpcfsprayfoamwithR10underslab• Case7:6inches0.5ocpcfsprayfoamwithR10underslab• Case8:2inchesXPS+3.5inchesfiberglassbattin2x4SPFwoodframedwallwithR10underslab• Case9:2inchespolyisocyanurate+3.5inchescellulosein2x4SPFwoodframedwallwithR10under

slab• Case10:6inches0.5ocpcfsprayfoaminoffset2”x4”SPFwoodframedcavitywithR10underslab• Case11:4inchesXPSonexteriorofbasementwithR10underslab• Case12:4inchesXPSincentreoffoundationwallwithR10underslab• Case13:ICFwallwith4”XPSandR10underslab• Case14:2inchesXPS+5.5inchesfiberglassbattin2”x6”SPFwoodframedwallwithR10underslab

2. ANALYSIS CRITERIA

Acomparisonmatrixwillbeusedtoquantitativelycompareallofthedifferentbasementinsulationstrategies.Avaluebetween1(poorperformance)and5(excellentperformance)willbeassigned,uponreviewoftheanalysis,toeachofthecomparisoncriteriaforeachwall.AnemptycomparisonmatrixisshownbelowinTable1asanexample.

Page 8: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 6 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Table 1: Criteria comparison matrix

Thecriteriascoreswillbesummedforeachinsulationstrategy,andthewallswiththehighestscoresarethepreferredoptionsassumingallofthecomparisoncriteriaareweightedequally.Itisalsopossibletoweightthedifferentcomparisoncriteriaasymmetricallydependingonthecircumstancessurroundingaparticularwalldesign.Theweightingsforeachwallwillfallbetween1(leastimportant)and5(mostimportant).Theweightingismultipliedbythecomparisoncriteriascoreandaddedtootherweightedvalues.Anexampleoftheweightedconclusionmatrixwillbeshownintheconclusionssectionofthisreport.

Oneofthebenefitsofusingacomparisonmatrixisthatitallowsaquantitativecomparisonwhensomeofthecriteria,suchascostmaybepoorlydefinedorhighlyvariable.Forexample,eventhoughtheexactcostsofdifferentinsulationsmaybeuncertain,fiberglassbattinsulationisalwayslessexpensivethanlowdensity(0.5pcf)sprayfoamwhichislessexpensivethanhighdensity(2.0pcf)sprayfoam,sothesesystemscanberankedaccordinglyregardlessoftheactualcosts.

Eachofthecriteriaaredescribedindetailbelow.

Page 9: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 7 www.buildingscience.com 30 Forest St. Somerville, MA 02143

2.1 Thermal Control and Heat Flow Analysis

TheHeatflowandenergyanalysisofeachbasementsystemwasconductedwithBasecalc,developedbyCanmetENERGYandbasedontheNationalResearchCouncilofCanada’sMitalasmethod.Mitalasusedmainframecomputerstoperformfinite‐elementanalysesofalargenumberofbasementsandanalyzedtheresultstoproduceaseriesofbasementheat‐lossfactors,whichwerethenpublishedasareference(Mitalas1983).

AusercanapplytheMitalasmethodbyusingthecorrectheat‐lossfactorsfromthepublishedtablesandperformaseriesofcalculationstopredictheatandenergylosses.Basecalcincorporatesthefinite‐elementapproachMitalasusedtogeneratetheheat‐lossfactors.DuringthisstudyananalysisspreadsheetmodelwasconstructedusingtheMitalasmethodandcomparisonsoftheresultsbetweentheanalysisspreadsheetandBasecalchavebeenconducted.

TheBasecalcsoftwareisarelativelysimplemenudrivenprogramthathasmanyoptionsforconstructionstrategies,insulationplacementandsiteconditions(Figure1).

Figure 1 : Screen Capture showing inputs for Basecalc

SomeassumptionsweremadeforalloftheBasecalcanalysistoensurecomparisonwaspossiblebetweenresultingsimulations.Theenergycalculatedisonlyforthesespecificcases,andmodifyinganyofthevariablesmaychangetheresultingenergyrequirements.Theseassumptionsarelistedbelow:

Page 10: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 8 www.buildingscience.com 30 Forest St. Somerville, MA 02143

• AllsimulationswererunforMinneapolis/St.PaulMN,dataincludedinBasecalc• Basementinteriorheight‐distancefromtopofslabtotopoffoundationwall2.44m(8ft)• Depth(belowgradefoundation)–distancefromtopofslabtosurfaceofground,2.13m(7ft)• Width‐exteriorofstructuralwalltoexteriorofstructuralwall,10m(32.8ft)• Length–exteriorofstructuralwalltoexteriorofstructuralwall,15m(49.2ft)• Basementwallarea–118m2(1270ft2)• Basementfloorslabarea–140m2(1506ft2)• Basementperimeter–48.5m2(159ft2)

InBasecalc,therimjoistisnotconsidered,(butthiswasanalyzedinpastresearch,StraubeandSmegal2009),butthermalbridgingacrossthetopofthefoundationwallisconsidereddependingonabovegradewallconstruction.Forexample,oneofthemostcommonthermalbridgesintypicalresidentialconstructionistheexteriorabovegradebrickcladdingsittingontheoutsideedgeofthefoundationwall.

Figure 2 : Typical construction thermal bridging through foundation and brick cladding ThisthermalbridgingcanbetakenintoaccountinBasecalc.Forallsimulationsinthisstudy,theabovegradecladdingwasassumedtobenon‐brickveneer.Intypicalconstructionwithbrickveneer,thereisasignificantthermalbridgebetweentheinteriorandexteriorwhenthebrickcladdingisinstalledontheexterioredgeoftheconcretefoundationwall.Itwasassumedthattherewasnosignificantthermalbridgeatthetopofthefoundationwall.

AlloftheBasecalcresultsarepresentedinunitsofMBtus.Forclarification1MBtuanditsequivalentenergyinothercommonunitsofmeasureareshowninTable2.

Table 2 : Conversion of 1 MBtu to Other Common Energy Units MillionBtu’s(MBtu’s) 1

Btu’s 1,000,000

Therms 10

Megajoules 1,057

Kilowatthours 293.6

Page 11: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 9 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Acommonwaytoexplainenergysavingstohomeownersisoftenindollarssavedsincethevalueofadollariswellknownandcanbecomparedtootherdesigndecisions.Unfortunately,pricesvaryconsiderablyacrossthecontinentforheatingenergy,andalsovarydependingonthetechnologyusedforheating,whetheritbeelectricity,naturalgas,oil,etc.Foranalysispurposes,ifcostcomparisonsareuseditwillalwaysbeforelectricheatingat15centsperkilowatthour($44/MBtu).Asacomparison,naturalgasat$1.50/thermburntina90%efficientfurnacecosts$16.70/MBtu.Thecostofenergyislikelytorise,eventhoughtherateofincreaseisunknown,sodollarsavingsarelikelytobehigherinthefuture.

2.1.1. Building Code Requirements Accordingtothe2009IECCinclimatezones4orhigher,thebuildingcoderequiresaminimumofR10continuousinsulation(e.g.fiberglassrollbatt)orR13discontinuous(e.g.framedwallwithR13fiberglassbatt)unlessitisanunconditionedbasementandtheflooroverheadisinsulatedinaccordancewithIRCSectionsN1102.1andN1102.2.6.AddingthisrequiredamountofinsulationmakesasignificantdifferencefromanenergyperspectiveasshowninFigure3,butmaynotadequatelyaddressthecomfort,moistureandhealthconcernsthatoccurinbasements.Case1inthisstudyisanun‐insulatedbasementasmanysuchcasescanbefoundinexistingbuildings,andCases2and3aretypicalofcodeminimumbasementsbuiltinmanycoldclimates.

Aninitialanalysiswasconductedtodeterminetheeffectsofdifferentamountsofinsulationandstrategiesonthetotalheatlosspriortoanalyzingthevariouswallsystems.Figure3showstheimprovementsinannualenergylossbyinsulatingthefullheightofthebasementwallwithdifferentinsulationvaluescomparedtoanun‐insulatedbasement.ThemostsignificantimprovementisachievedbyaddingthefirstR5,whichshowsthataddinganyinsulationcouldhelpwithenergylosses.IncreasingtheinsulationtoR10whichisthecodeminimumasacontinuousinsulationresultsinapredictedenergysavingsof31.2MBtus(savingsof$1372/yearbasedon$0.15/kWhror$44/).Theenergysavingsshouldbeconsideredwhendeterminingthecostofaddinginsulation,andwhetherornotitiscosteffective.

Thebasementwallhasanareaofapproximately1270ft2andR5foaminsulationcostsapproximately50‐75¢/sfplusinstallation.UsingR10rigidfoaminsulationovertheentirebasementinthiscasewouldcostintherangeof$1270to$1905,andwouldsaveapredicted$1372/year.

Figure3alsoshowsthepredictedenergysavingsiftheslabisinsulatedwithR10belowtheslab.Intheun‐insulatedcasethereisanimprovementofHeatingSeasonEnergyLossof1.3MBtus,andintheR20insulatedwallcomparisontheimprovementisslightlyimprovedwithunderslabinsulationat1.5MBtus.However,themostimportantaspectsoftheunderslabinsulationarenotshownonthisgraph.Comfortlevelsandmoisturerelatedissuesincludingdampnessandmustyodors,andstorageofmoisturesensitivematerialsonthefloorwilldecreaseifunderslabinsulationisused.Insomecaseswhenradiantfloorheatingisused,R20orgreaterunderslabinsulationisnecessarytoreducetheheatlosstotheground.

Page 12: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation www.buildingscience.com

30 Forest St. Somerville, MA 02143

Figure 3 : Reduction in Energy Loss with the Addition of Full Height Foundation Wall Insulation

Page 13: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation www.buildingscience.com

30 Forest St. Somerville, MA 02143

Figure 4 : Comparison of Different Underslab Insulation Techniques with R10 on foundation walls

Page 14: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation www.buildingscience.com

30 Forest St. Somerville, MA 02143

Figure 5 : Energy Savings From Thermal Break Insulation Between Concrete Footing and Slab

2.1.2. Case Study – Westford Prototype House

Page 15: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 13 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Figure 6 : Basement Floorplan of BA Westford Prototype House H2KwasalsousedtosimulatetheheatingenergylossesoftheWestfordprototypehouseanditwaspredictedthat6.96MBtusarelostbelowgrade,and2.36MBtusarelostabovegradeinthebasementforatotalbasementheatlossof9.32MBtusinayear.H2Kalsopredictedthetotalhouseheatingenergylossesof27.16MBtus,verysimilartotheEnergyGaugevalue.

Inthisstudy,Basecalcwasusedtodeterminethetotalannualenergylossthroughthebasementis7.1MBtuswhichissimilartotheH2Kvalue.BymodifyingsomeoftheinsulationvaluesinthebasementusingBasecalc,theeffectonthetotalhouseenergycanbeseentodetermineifincreasesininsulationvaluesarecosteffective.

Table3showstheeffectonthepredictedwholehouseheatingenergylossesbychangingtheamountofinsulationundertheslab.

Table 3 : Effects of Whole House energy by changing Underslab Insulation

Page 16: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 14 www.buildingscience.com 30 Forest St. Somerville, MA 02143

PredictedBasementEnergyLosses[MBtu]

ChangeinBasementEnergyLosses[MBtu]

ChangeinWholeHouseEnergyLosses[%]

RemovingUnderslabinsulation 8.4 1.3 4.8%

R10underslab 7.1 0 0

R20underslab 6.2 ‐0.9 ‐3.4%

R30underslab 5.7 ‐1.4 ‐5.0%

Table3showsthat1.3MBtusweresavedbyaddingR10underslabinsulation,asavingsofalmost5%oftheentirehouse’sheatingenergylosses.Astheunderslabinsulationisincreased,thechangestotheentirehouse’sheatingenergylosesbecomemuchlesssignificant.Tosaveanotherapproximately5%oftheentirehouse’sheatingenergylosses,anotherR20isrequiredabovetheoriginalR10insulation.

Table4showstheeffectonthepredictedwholehouseheatingenergylossesbychangingtheamountofinsulationonthefoundationwalls.

Table 4 : Effects of Whole House Energy by Changing Foundation Wall Insulation

PredictedBasementEnergyLoses[MBtu]

ChangeinBasementEnergyLosses[MBtu]

ChangeinWholeHouseEnergyLosses[%]

R10codeminimumfoundationwallinsulation 10.4 3.3 11.9%

R26foundationwallinsulation 7.1 0 0

R40foundationwallinsulation 6.2 ‐0.9 ‐3.4%

Table4showsthat12%oftheheatinglossesofthehousearesavedfromincreasingthefoundationwallinsulationfromthecodeminimumR10toR26,whichisasignificantportionoftheheatingenergylosses.Thisshowsthatitcanbecosteffectivetoinsulatethebasementincoldclimatesbasedonheatingenergyalone,withoutconsideringallofthemoisturerelatedbenefits.

ByincreasingtheinsulationanotherR13toR40,resultsinonlya3.4%decreaseintheheatingenergylossesfortheentirehouse.At$1.20/sf,thisinsulationwouldcost$1062,andwouldsave0.9MBtu/year.

2.1.3. Basement Wall Analysis ThefourteendifferentwallslistedpreviouslyweresimulatedinBasecalc,andtheheatingenergylosseswereestimated.SomeoftheproposedwallsystemshadcontinuousinsulationandtheR‐valueswereassumedtobeequaltotheirrating.Otherproposedwallsystemswereframedorfurredouttotheinteriorandinsulatedwithcavityinsulation.Theframingmaterialsintheseassembliesactasathermalbridgebypassingtheinsulation.Fortheframedwalls,theparallelpathmethodwasusedtocalculatetheR‐value,whichisaratiooftheRvaluethroughtheframingtotheR‐valuethroughthecenterofthestudspace,assumingaframing

Page 17: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 15 www.buildingscience.com 30 Forest St. Somerville, MA 02143

spacingof24”oncenter.Alsotakingintoaccountthegypsumwallboardandsurfacefilm,thethermalbridgingoftheframingdidnotsignificantlyaffecttheR‐value,infact,insomecasesthecalculatedparallelpathR‐valuewasslightlyhigherthantheinstalledinsulationR‐value.

Underslabinsulationandaslab‐edgethermalbreakwereonlyincludedinsimulationsforCases5to14,sinceitisunlikelythatbuilderswillinstallunderslabinsulationwhenonlyminimalfoundationwallinsulationispresent.

Figure 7 : Comparison of Heating Energy Losses for all Cases Asstatedpreviously,evenR10foundationwallinsulationshowedasignificantamountofenergysavingscomparedtoun‐insulatedbasements.However,insomecases,increasingtheinsulationincreasestheriskformoisturerelatedproblemsthatwillbeanalyzedintheHygrothermalAnalysissection.

Therangeofenergylossfortherecommendedfoundationinsulationstrategies(Cases5–14)is14.8to19.43MBtusperyearforthespecifichouseexamined.Cases5‐10,13,and14haveessentiallyidenticalperformance.Thevalueofthesesavingsdependsonthecharacteristicsofthehouse,theclimatezone,thetypeofenergyusedanditsassociatedcost.

ThebestperformingfoundationinsulationstrategiesfromaheatlossperspectiveareCase14(2”XPS,5.5”fibreglassbatt)andCase9(2”PIC,3.5”cellulose),butthereareseveralothersthatperformverywell.TheadvantagesanddisadvantagesofthevariousinsulationstrategieswillbecomparedfurtherintheAnalysissection.

Page 18: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 16 www.buildingscience.com 30 Forest St. Somerville, MA 02143

2.2 Hygrothermal Analysis

Moisture Balance

Assessingmoisturerelateddurabilityrisksinvolvesthreedifferentmoistureprocesses;wetting,dryingandmoistureredistribution.Thesethreeprocessesincombinationwiththesafestoragecapacityofeachcomponentwilldeterminetheriskofmoisturedamagetoabasementassembly.Thisreportonlyincludesabriefoverviewofthewettingmechanisms(moredetailbyJosephLstiburek2006).

Therearefourmainwettingmechanismsinfoundationsandbasements.Theyare:

Bulkwaterpenetrationfromtheexterior Capillarywickingor“risingdamp” Vapordiffusionandairleakagecondensation(fromexteriororinterior) Plumbingissuesontheinterior(notconsideredinthisanalysis)

Thegreatestamountofdamageintheshortesttimewillbecausedbyabulkwaterpenetrationfromtheexteriororinteriorplumbingrelatedissues.Thebeststrategytoavoidwateringressintothebasementfromtheexterioristodrainallofthecomponentsawayfromthebuildingincludingthesiteandtheexteriorofthefoundation(Figure7).Sometimesitisunavoidabletohaveliquidwaterincontactwiththefoundationandotherstrategiesmustbeusedincludingexteriordrainagematsandsumppumps.Inolderbuildings,foundationwallsmayhavebeenconstructedofrubbleorstoneandoftenallowwaterdirectlythroughthefoundationwallintherainyorthawseason.Ensuringbasementdrainsareproperlylocatedandthattheyareclearofobstructionswillminimizefloodingcausedbyinteriorplumbingissues.Thisstudydoesnotdealspecificallywithretrofitstrategies,butthepossibilityofuseinretrofitapplicationswillbementionedforanyrelevantinsulationstrategies.AdditionalinformationregardingtheretrofitofbasementsisavailableinPettit(2005).

Page 19: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 17 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Figure 8 : Drainage details to minimize foundation moisture issues Thesecondsourceofmoistureinthebasementenclosureismoisturetransportedfromwetsoilbycapillarywicking.Thephysicalcharacteristicsandporesizeofconcrete(10–1000nm)allowittowickmoisturequiteeffectivelyagainsttheforceofgravity,oftenwithsuctionpressuresof100kPato10MPa(StraubeandBurnett2005).Themostcommonsourceofwaterforcapillaritywickingisthefooting.Inmanycasesamoisturebarriersuchasdamp‐proofing,oradrainagemembrane,orbothareappliedtotheexteriorofthewallminimizingtheriskofcapillaryabsorptionthroughthefoundationwall.Thefloorslabisoftenpouredovergravelwhich,ifithasnofines,actsasacapillarybreakandshouldbedrainedtotheexteriordrainagetile.Inmanyhousefoundations,thereisnocapillarybreakinstalledontopofthefooting,andthereforewaterdrawnintothefootingisalsowickedfurtherupthefoundationwall.Inatypicalbasement,theliquidwaterisdrawntothesurfacesoftheconcretefoundationwall(Figure9),itwillevaporateanddrytotheinteriorortotheexteriorasenvironmentalconditionspermit.Ifdryingishinderedbyapolyethylenevaporbarrier,elevatedrelativehumiditiesmayoccurnearthewallsurfaceorwithinthewallcavityeventuallyresultinginmouldandothermoisturerelatedissues.

Ashomeownersfinishandinsulatetheirbasementspaces,apolyethylenevaporbarrierisofteninstalledtomeetthelocalbuildingcode.Somebuilderswhohavelearnedfrompastexperiencewillremoveasectionofthepolyethylenevaporbarrieratthebottomtoavoidmoldproblemsthathavebeendiscoveredinmanybasements.Removingthebottomsectionofthevaporbarrierallowsliquidwaterwickedupthefootingandintothefoundationwalltodrytotheinteriorspace.Thepreferredsolution,ofcourse,wouldbetoinstallacapillarybreakbetweenthefootingandfoundationwallduringtheoriginalconstructionprocesstostop

Page 20: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 18 www.buildingscience.com 30 Forest St. Somerville, MA 02143

moisturefrombeingwickedintothefoundationwall.Alternatively,amoisturetolerantinteriorfoamlayercanreducetheflowtotheinteriorsufficientlytoavoiddamage(ifnoadditionalvaporbarrierisadded).

Figure 9 : Capillary rise through basement footing Thethirdsourceofmoistureinthebasementenclosureiscausedbyvapordiffusion.Asdiscussedwithcapillarityabove,vapordiffusionoccursfromtheinteriorsurfaceoftheconcreteafterwateriswickedupthefoundationwall.Vapordiffusioncanalsooccurthroughfloorslabifnovaporbarrierisinstalledbelowtheslab.Therateofvapordiffusionisslow,butstillmaycausedurabilityissueswithvaporimpermeableflooringsinstalledwithwaterbasedadhesives,aswellasincreasingthemoistureloadinthebasement,whichcancontributetothecommondamp,mustyodour.Vapordiffusionthroughtheslabcanbevirtuallyeliminatedbyinstallingavaporcontrollayer(6milpolyethylene,boardfoaminsulationorsprayfoam)undertheslab.Interiormoisturevaporcouldalsobeanissue,especiallyinlatespringandearlysummerastheenvironmentalrelativehumidityincreasesbuttheconcretefoundationtemperaturesarestillcoolerbecauseoftheseasonaltemperaturelagoftheearthandthermalmass.

Vapordiffusiondryingoftheconcretecanlastforseveralyearsuntiltheconcretefullyhydrates,evenifothersourcesofmoistureareeliminated.Ifthereisnomoisturebarrierontheexterioroftheconcrete,thentheconcretewillneverdrycompletelyandwatervaporwillalwaysbepassingintoandthroughtheconcrete.

Dryingisimportantsincenearlyallbuildingenclosureswillexperiencewettingatsomepoint.Inabove‐gradefoundationwalls,thereisdryingpotentialtoboththeinteriorandexterioriftheenclosuredesignallows.Belowgrade,however,dryingcanonlyoccurtotheinteriorsincetheexteriorsurfaceofabelowgradewallisatessentiallyat100%humidityallyearround.

Thesafestoragecapacity(balanceofwettinganddrying)ofanindividualmaterialorenclosuresystemisfundamentaltogoodbuildingdesign(Figure9).Itisrarelyeconomicaltobuildanenclosurewithnoriskofwettingbutmanagingtheriskisimportant.Inanybuildingenclosure,buildingmaterialsshouldbechosen

Page 21: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 19 www.buildingscience.com 30 Forest St. Somerville, MA 02143

basedonmoisturetolerancethatcorrelatetotheriskofmoistureintheenclosure.Inallcasesdryingshouldbemaximized,andattentiontogooddesigndetailsshouldbeused.

Figure 10 : Moisture balance

Manyhouseshavedamp,mustysmellingbasementsthatareuncomfortable,andcanbeunhealthy.Historically,peopledidnotfinishtheirbasementsintolivingspacessoitwasnotasmuchofaconcern,butnowbasementsarebeingconvertedtolivingareas,entertainmentcentresandbedrooms,sohealthandcomfortareasmuchaconcernasforabove‐gradespace.

Afoundationshouldcontroltheamountofliquidwaterandwatervaporenteringtheinteriorspacefromtheexteriorenvironment.Thisstudyassumesdrainagedetailshavebeenconstructedcorrectlytolimittheexposureoftheexteriorofthefoundationtoliquidwater.Therearemanydifferentstrategiestoensurewaterisdrainedawayfromthefoundation,butallsystemsrequireproperlydetaileddrainagealongthefoundationfootingtoremovestandingwater.Thefoundationwallneedstohaveadrainageplanethatdirectsbulkwatertothisfootingdrain.Often,adrainagemembraneisinstalledagainsttheexteriorofthefoundationwalltoperformasbothliquidwaterandwatervaporbarrier.Thedrainagemembraneisrippledorcorrugatedandformsaspacebetweenthemembraneanddampproofedconcretefoundationwall,allowinganywateragainstthefoundationtodraintothedrainagetile.Thisensuresthatthefoundationdoesnotexperienceanyliquidpressurehead.

Eveninaridclimates,thegroundisverycloseto100%relativehumidity,sothatthebelowandabovegradeportionsofafoundationwallexperiencedifferentmoistureandtemperatureregimes.Atthebottomofthebasementwall,thevapordriveistotheinteriorfortheentireyear,andthetemperatureisrelativelystable.Theabovegradeportionofthefoundationwallisverydifferentfrombelowgrade:thevapordriveiscycleddailythroughenvironmentalvariationsofprecipitation,windandsun.

Thehygrothermalsimulationsinthisstudydonotconsiderliquidwateruptakebycapillarityintothefootingandfoundationwall,onlyvapordiffusion.Itisimportanttorecognizethatwaterisoftenwickedupthroughthefootingintotheconcretewall.Oncetheliquidwaterreachestheinteriororexteriorofthebasementwall,itmustbeevaporatedtowatervaporandtravelsbyvapordiffusion.Sincetheexteriorofthefoundationisalreadycloseto100%relativehumidity,themoisturecannotdrytotheexterioranditcanonlyevaporatetotheinside,whichaddstothemoistureloadattheinsulationlayer.Waterthatiswickedthroughthefootingcanbestoppedbyapplyingacapillarybreakbetweenthefootingandthefoundationwall.Therearebothliquidandsheetappliedcapillarybreaksthatwilldecreasethemoistureloadintothefoundationwallandintotheinteriorenvironment.

Page 22: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 20 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Sincethefoundationwallbelowgradeisunabletodrytotheexteriorandtherecanbeasignificantamountofmoisturepresentintheconcrete,intuitively,thevapordrivesshouldbeallowedtodrytotheinteriorandapolyethylenevaporbarriershouldnotbebuiltintotheinteriorofthewoodframedwall.Unfortunately,buildingcodeshaveoftenspecifiedpolyethylenevaporbarriersontheinteriorofframedwallsinfinishedbasementsandthesewallswillbeanalyzedtounderstandwhytheyoftenhaveseriousmoisturerelatedproblems.

Thehygrothermalsimulationsconductedforthisstudyareaonedimensionalapproximationofthehygrothermalbehaviourofeachwallsystem.Inrealitytherearetwoandthreedimensionalinteractionssuchasheattransferupanddowntheconcretefoundationwallaswellasconvectiveloopingandmoisturetransportthroughairandvaporpermeableinsulations.

BoundaryConditions

TheWUFIsimulationswereconductedinthreepartsbecauseofthedifferenthygrothermalregimesatthetopabovegradeportion,middleandbottombelowgradeportionsofthewall.TheexteriorbelowgradetemperaturesusedforhygrothermalsimulationswerebasedonmonitoringofgroundtemperaturesinSt.PaulMNasshowninFigure11.TheabovegradetemperaturesforMinneapolisareincludedintheweatherdataforWUFI.

Page 23: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 21 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Figure 11 : Monthly temperature variation with soil depth, St.Paul, MN (Bligh 1975) Therelativehumidityoftheexteriorforboththemidheightandbottomofthefoundationwallweresetat99.9%.Inthesesimulations,onlyvapordiffusionfromboththeinteriorandexteriorweresimulatedanditwasassumedthatthefoundationwallandslabwerenotincontactwithliquidwater.Iftheconcreteisincontactwithliquidwater,whichisnotuncommon,especiallyatthefooting,capillarywickingwilloccurandsignificantlyincreasethemoistureloadtothesurfaceoftheconcretenotonlyatthebaseofthewallbutfurtherupaswell.Thiswouldsignificantlyincreasethemoistureloadsabovethepredictedvalueswherethereisnotcapillarybreakinstalledinthefoundationenclosuresystem.

Interiortemperatureandrelativehumiditieswerechosentorepresentaslightlyhigherthanaveragemoistureloadforacoldclimatehouse(Figure12).Theseboundaryconditionsweresimulatedfor10yearstoensurethatthefoundationsystemwasatequilibriumwithboththeexteriorandinteriorenvironments.

Page 24: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 22 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Figure 12 : Interior Temperature and Relative Humidity for Hygrothermal Simulations

2.2.1. Wintertime Condensation

Inabovegradewalls,wintertimeairleakageandvaporcondensationareconcernsincoldclimates.Inthebasement,thebelowgradefoundationwallisoftenwarmerthantheexteriorenvironmentinthewinterduetotheheatsinkoftheground,andthethermallymassivestorage.Thismeansthatwintertimecondensationislessofaconcernonthefoundationwallitself.Intheabovegradeportionofthebasementwall,therecanbecondensationasshowninthefollowinghygrothermalanalysis.

Ofgreaterconcernistheearlysummerwhenthefoundationwalliscoolerthantheexteriorenvironmentandoftentherelativehumidityintheenvironmentcanbequitehigh.Iftherelativehumidityincreasesinthebasement,thiscouldresultincondensationandelevatedhumiditiesatenclosuresurfacessuchasonthewallsandfloor.Inbasementswithacarpet,theconcreteslabisslightlyinsulatedfromtheinteriorwarmthandhigherrelativehumiditiesarepossiblesincethecarpetisvaporpermeable.

2.2.2. Summer Inward Vapor DrivesAtthetopofthefoundationabovegradewallthereispotentialforinwardvapordrivesbecauseitissubjectedtothewarmsummertimetemperaturesandsolardrives.Thiswillonlyoccurwherethewallisheatedsufficientlytodrivethevaporintotheenclosure,andisevidentinsomewallassembliesinthehygrothermalanalysis.

Polyethylenesheetbondedtobattinsulationhastypicallybeentheconstructionstrategyusedforinsulatingcoldclimatebasementsinthepast,butnow,withincreasedunderstandingaboutthemoisturephysicsof

Page 25: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 23 www.buildingscience.com 30 Forest St. Somerville, MA 02143

basementsandbelowgradewalls,theIRC(InternationalResidentialCode)statesthatClassIandIIvaporretardersarenotrequiredonanybelowgradewallorbasements(IRC2009TableR601.3.1).

Someinsulationsinstalleddirectlyagainstthefoundationareeffectivevaporcontrollayersandinsulationlayersasshowninthehygrothermalanalysis.

2.2.3. Wall DryingBelowgradewallsexperienceelevatedrelativehumiditesontheexteriorandthusmustdrytotheinterioratalltimes.Theabovegradeportionofthefoundationwallcandrytoeithertheinteriororexteriordependingonwallconstruction,butitisrecommendedthattheentirebasementwallbeabletodrytotheinterior.Insomecases,lowerpermeancecoatingsmayberequiredbutaClassIorIIvaporcontrollayershouldbeavoided.

2.2.4. Case 1 Un-insulated Figure13showsthemoisturebehaviorofanun‐insulatedbasementwall.Predictedrelativehumiditiesatthesurfaceoftheconcretewallshowthereisverylittlepotentialforcondensation,onlyatthecoldesttimeofyearonthenorthorientationwithnosolarenergydoestheinterioroftheconcretegetcoldenoughtocondensewatervaporfromtheinteriorenvironmentwiththesimulatedinteriorrelativehumiditylevels.

Figure 13 : Predicted RH at the Interior Surface of the Concrete Foundation Wall for Case 1 ThepredictedsurfacetemperaturesofthefoundationwallandthedewpointoftheinteriorairareshowninFigure14.ThisshowsonlyacoupleshortinstancesofpredictedcondensationinearlyJanuary,andonlyontheabovegradeportionofthenorthwall.

Page 26: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 24 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Thisanalysisfortheun‐insulatedbasementassumesthattheinteriorrelativehumidityiscontrolledto31%inthewinterand58%inthesummer(Figure12).ThiswouldlikelyrequireadehumidifiersincetherearenovaporcontrollayersonthefoundationwallorbasementslabandthemoistureloadfromthesesurfaceswouldkeeptheRHinthebasementspacehigh.Iftherelativehumidityiscontrolledtothetheserelativehumiditiesasaminimumcontrol,thenthisbasementwillperformreasonablyfromamoistureperspective,withlittleriskofmould.Fromathermalcontrolperspective,however,thiswallisaverypoorperformer.

Figure 14 : Condensation Potential for Interior air on the Surface of the Concrete Foundation Wall

2.2.5. Case 3 - Code compliant basement Cases2and3weresimilarenoughthatseparatesimulationsforbothconditionswerenotrequired.Thesesimulationswereconductedwithapolyethylenevaporbarrierbecausetherearemanybasementsinexistencebuiltwithapolyethylenevaporbarrierontheinteriorsurfaceofthewall.TheIRCstatesinR601.3.1,thataClassIorIIvaporretarderisnotrequiredonbasementwallsorthebelowgradeportionofanywall.InothergeographicareassuchaspartsofCanada,thebuildingcodewithrespecttobasementshasnotbeenmodifiedtoreflectthelargenumberofbuildingfailures,andthemoisturephysicsofbasements.

Manycompanieshaveaninsulationproductsimilartoatraditionalrollbattwithpoly,butwithaperforatedfacerthatallowsvaportopassbothwaysthroughtheinteriorsurface,dependingonthetimeofyearandinteriorconditions.Simulationswerenotconductedyettoaddressaperforatedfacer,butintuitively,vapordiffusionwillbehigherbothways,andairleakagecondensationwillbesignificantlygreateracrossaperforatedfacerthananonperforatedfacer.Thisisnotarecommendedinsulationstrategy.

Figure15showstherelativehumidityatthesurfaceofthefoundationwallforwallCase3.Notsurprisinglyitisquitehigh.Theconcreteisgenerallywet,bothfromcapillarywickingandbyvapordiffusionfromtheexterior.Therelativehumiditydoesdecreaseatthetopofthefoundationwallinthesummermonths,when

Page 27: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 25 www.buildingscience.com 30 Forest St. Somerville, MA 02143

theconcreteiswarmedbyexteriortemperatures.Aperforatedfacermaydecreasetherelativehumidityslightly,dependingonthevaporpermeance.

Figure 15 : Predicted Relative Humidity at the Surface of the Concrete Foundation Wall for Case 3 Inthecaseofawelldetailedpolyethylenevaporbarrier,ittrapssignificantmoistureinthewallasthewetconcretedriestotheinterior,butdoesnotallowairleakagecondensation.Figure16showsthepotentialairleakagecondensationwhenthetemperatureofthefoundationwallfallsbelowthedewpointoftheinteriorair.ThereissignificantcondensationpotentialbetweenOctoberandJanuaryforthetophalfofthefoundationwall,andfromJunetoOctoberatthebottomofthefoundationwall.Thereiscondensationpotentialformostoftheyearontheconcretefoundationwallwiththeassumedconditions.Aperforatedfacerwouldallowairleakagecondensationtooccurresultinginsignificantcondensation.

Thismeansthatthewoodframingneartheconcreteissustainedatorabove90%relativehumidityallyear,whichwilleventuallycausemouldsinceitislikelythattherewillbeliquidwatercondensationinthewallsystemunderthesesustainedconditions.

Page 28: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 26 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Figure 16 : Interior Air Leakage Condensation Potential for Case 3 Code Minimum Wall Predictionswerealsomadefortherelativehumidityattheexteriorsurfaceofthepolyethylenevaporbarriersinceitiscommoninabasementtoseecondensationontheexteriorsurfaceofthepoly.Figure17showsthatbetweenJuneandAugust,therelativehumiditynearthetopofthewallisapproximately100%(higheronthesouththannorth)resultingfrominwardvapordrives.Aperforatedfacercoulddecreasethispotentialforincreasedrelativehumidityatthepoly.

Asmentionedpreviously,thesesimulationsdonotincludecapillarywickingforthisanalysis.Inthefuture,thismaybeincluded,sincethecapillarywickingisasignificantsourceofmoistureintheconcreteandbasementwallsystem.

Page 29: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 27 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Figure 17 : Predicted Relative Humidity at the Surface of the Polyethylene Vapor Barrier for Case 3

2.2.6. Case 4 - 1” XPS and 3.5” Fibreglass Batt Case3hasseriousmoisturerelatedriskscausedbybothvapordiffusionandairleakagecondensation.Onemethodofminimizingthepotentialrisksistoinstallavaporretardinglayerthatalsoprovidesinsulationagainsttheconcretefoundation.1”ofXPSisonlyslightlyvaporpermeable,andhasanR‐valueofR5.AssumingtheXPSiswellsealedtotheconcretefoundation,thecondensationplaneisnowtheinteriorXPSsurfaceandwillbewarmerthantheconcrete,whichshouldresultinlesspotentialcondensation,andlessvapordiffusionfromtheconcrete.Expandedpolystyrene(EPS)wouldalsoworkasanairbarrierbuthasahighervaporpermeance,sotherewouldbemorevapordiffusionfromtheexterior.SimulationswouldberequiredtoassessthedurabilityofsubstitutingEPSforXPS.

Figure18showsthepredictedrelativehumidityattheinteriorsurfaceoftheXPSinsulationatthebottomandatthetopofthefoundationwallonthenorthorientationwiththreedifferentvaporcontrolstrategies.Usingonlylatexpaintonthedrywall,therelativehumidityreachesapproximately100%atthetopinthewinterandatthebottominthesummer.Byusingavaporretardingpaint(approximately1perm)onthedrywall,therelativehumidityinboththewinterandsummerimproved.

Addingapolyethylenevaporbarrier,therelativehumiditieswereexpectedtoincrease.Atthetopofthewall,therelativehumidityincreasedandwassustainedforapproximatelythreemonths,butthebottomofthewallshowednoincreaseinrelativehumidity.IncreasingtheR‐valuebyusingR‐10foaminsulationreducesthemoisturerisks(SeeCase8).

Page 30: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 28 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Figure 18 : Predicted Relative Humidity at the Interior Surface of XPS for Case 4 TheairleakagecondensationpotentialofCase4wasmuchimprovedoverCases2and3asshowninFigure19.Thereisstillairleakagecondensationpotentialsothedrywallmustbemadeasairtightaspossible.

Figure 19 : Interior Air Leakage Condensation Potential for Case 4

Page 31: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 29 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Figure20showsthepredictedsurfacerelativehumiditesattheexteriorofthedrywall/polyvaporbarrierdependingonconstructionforCase4.Thetopofthewallexperiencesinwardvapordrives,sothewallwithpolyhasthehighestrelativehumidity.Thevaporbarrierpaintallowsmoredrying,andthelatexpaintedwallhasthelowestrelativehumidity.

Figure 20 : Predicted Relative Humidity at the Exterior Surface of the Gypsum Board for Case 4

2.2.1. Case 5 - 2” XPS, 2” foil face polyisocyanurate(PIC) TherewasnoreasontoconducthygrothermalsimulationsonCase5.Providedthereisnowayforairtobypasstheboardfoaminsulationinstalledagainsttheconcretefoundation,therearenomoisturerelatedrisks.TheInsulationisanairbarrierandvaporretarding,andisnotmoisturesensitive.

2.2.2. Case 6 - 3.5” 2.0 pcf closed cell (cc) spray foam Therewerenoexpectedmoisturerelatedissueswith3.5”ofclosedcellsprayfoamsincetheinsulationiscompletelyairimpermeableandhighlyvaporretarding.Therelativehumiditybetweentheconcreteandsprayfoamismaintainedatapproximately100%butneithermaterialismoisturesensitive.Asimulationwasconductedtoshowtherelativehumidityattheinterfacebetweenthesprayfoamandtheconcretefoundationwall(Figure21).Therearenomoisturerelatedconcernswiththiswallconstructionstrategy.

Closedcellsprayfoamisausefulmethodforretrofittingbasementsthathavemoistureand/orenergyrelatedissues,sinceitcanactasavaporbarrier,airbarrier,andcapillarybreak.

Page 32: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 30 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Figure 21 : Predicted Relative Humidity in the Interior Surface of the Foundation Wall of Closed Cell Spray Foam Case 6

Page 33: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 31 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Figure 22 : Predicted Relative Humidity at the Interior Surface of Closed Cell Spray Foam Case 6

2.2.3. Case 7 - 6” 0.5 pcf open cell (oc) spray foam SimilartoCase6,opencellsprayfoamcanbesprayeddirectlyagainsttheconcretefoundationwallasaninsulationstrategytoformanexcellentairbarriersystem.However,0.5pcfopencellfoamisvaporpermeable,somoisturerelatedissuescouldoccurunderspecificconditions.Usingsixinchesoffoamwillhelpretardthevapor,andasimulationwasconductedintheinterfaceofthefoamandfoundationwallafterthesystemreachesequilibrium(Figure23).Becauseneitherconcretenorthesprayfoamissusceptibletomoisture,therearenomoisturerelatedrisksforthissystem,providedtheinteriorsurfaceisvaporpermeable.

Page 34: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 32 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Figure 23 : Predicted Relative Humidity at the Interior Surface of the Foundation Wall of Open Cell Spray Foam Case 7

Figure 24 : Predicted Relative Humidity at the Interior Surface of Spray Foam of Open Cell Spray Foam Case 7

Page 35: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 33 www.buildingscience.com 30 Forest St. Somerville, MA 02143

2.2.4. Case 8 - 2” XPS and 3.5” fibreglass batt Case8isagoodpracticalbasementwallsystem.Figure25showsshortperiodsofelevatedRHattheinteriorsurfaceoftheXPSontheabovegradeportion(inthewinter),andatthebottomofthewall(inthesummer).BoththefiberglassbattinsulationandtheXPSareverymoisturetolerant,andthereislittleriskofcondensationunderthesesimulatedconditions.

Figure 25 : Predicted Relative Humidity at the interior Surface of the XPS for Case 8 Figure26showssomeperiodsduringtheyearwherethereisariskofairleakagecondensationofinteriorbasementaironthesurfaceoftheXPSinsulation.ItisimportanttoensuretheXPSiswelladheredandsealedtothefoundationwallsothereisnoairleakagearoundtheXPS.Theriskofcondensationonlyoccursontheabovegradeportionofthewall,andisworseonthenorthorientationthanthesouthorientationwheretherearesomesolargains.

TherelativehumiditybetweenthedrywallandfiberglassbattinsulationisshowninFigure27,andtherearenorisksofanymoisturerelateddurabilityissues.

Page 36: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 34 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Figure 26 : Interior Air Leakage Condensation Potential for Case 8

Figure 27 : Predicted Relative Humidity at the Exterior Surface of Gypsum Board for Case 8

Page 37: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 35 www.buildingscience.com 30 Forest St. Somerville, MA 02143

2.2.5. Case 9 - 2” PIC and 3.5” cellulose SimulationswerenotconductedonCase9becauseofthesimilaritytoCase8andCase14.ThePICinCase9hasagreaterinsulationvalueanddecreasedvaportransmission,solessmoisturewillentertheframedwallfromtheconcretefoundationthaninbothCase8andCase14.

2.2.6. Case 10 – 6” 0.5 pcf open cell foam with 2x4 framing offset 2” from foundation NosimulationswereconductedonCase10becauseitwillperformthesamefromamoistureperspectiveascase7asitalsohas6”of0.5pcfopencellfoam.InCase10,theinwardmovingmoisturemayincreasethewoodmoisturecontentoftheframing.Analysisshowedthatatthebottomofthebasementwalltheexterioroftheframingwillreachapredicted85%anddryto55%RH.AtallothermonitoringlocationsthepredictedRHdidnotexceed80%.Thisshouldbeanalyzedfurther,beforebeingconstructed,asitisacomplicatedthreedimensionalhygrothermalprocesswithwoodframingandsprayfoam.Thewoodismorethermallyconductivethanthefoam,sotheexteriorsurfaceofthestudwillbewarmerthanthefoamatthesamedepth.ThiswilllikelydecreasetheRH,butcould,insomecases,increasetheexteriortemperatureoftheframingtomoreidealconditionsformoldgrowth.

2.2.7. Case 11 - 4” XPS on the exterior TherearenomoisturerelatedissueswithCase11ifacapillarybreakisusedatthebottomofthefoundationwall.TheXPSontheexterioractsasavaporcontrollayer,andcapillarybreak,sothefoundationwillstaywarm,anddrier(followingdryingofconstructionmoisture).Thelargestsourceofmoisturewillbecapillarywickingthroughthefootingandbottomoffoundationwallifitisnotaddressed.

2.2.8. Case 12 - 4” XPS in the center of foundation wall Adding4”ofXPStothecenterofthefoundationwallactsasbothacapillarybreakandvaporcontrollayerresultinginlessmoistureontheinteriorandwarmersurfacetemperatures.Thereisnoneedtosimulatethisassemblyandlittlechanceofmoisturerelatedissues.Thelargestsourceofmoisturewillbecapillarywickingthroughthefootingandbottomoffoundationwallifthatisnotaddressed.

2.2.9. Case 13 – ICF, 2” EPS on interior and exterior InsulatedConcreteFormfoundationsareaverydurableandreliableconstructionstrategy.Thetotalof4”ofEPSwillperformasbothacapillarybreakandvaporcontrollayerresultinginlessmoistureontheinteriorandwarmersurfacetemperatures.Theconcreteinthiswallsystemwilltakeaverylongtimetodrycompletelysinceitispouredbetweentwovaporcontrollayers.ThiswillnotaffectmoisturerelateddurabilityissuesprovidedthereisnoClassIorIIvaporretarderinstalledontheinterior.

2.2.10. Case 14 - 2” XPS 5.5” Fibreglass Batt Case14isthesecondhighestR‐valueassemblyinthisstudyataninstalledinsulationR‐valueofR29with2”ofXPSatR10andanR19fibreglassbatt.Thiswallwassimulatedwithbothlatexpaintandvaporbarrierpaint,sincesimulationswithCase4,asimilarwallconstructionshowedthatapolyethylenevaporbarrierincreasedmoisturerelateddurabilityrisks.ThiswallissimilartoCase8,butwithahigherR‐valueofairandvaporpermeablefiberglassbattontheinterioroftheXPS.Thiswallperformssimilarly,butwithslightlyhighermoisturerelatedriskssincethecondensationplanetemperatureiskeptloweratthetopofthewallinthewinter,andatthebottomofthewallinthesummer.

Page 38: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 36 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Figure28showsthatthereareelevatedrelativehumiditiesatthesurfaceoftheXPScausedbyvapordiffusionforashortperiodduringthewintermonthsattheabovegradeportionofthewall.Thisriskisdecreasedslightlywithavaporbarrierpaintonthegypsumboard.

Inthesummermonths,therelativehumidityiselevatedatthebottomofthewalliflatexpaintisusedasvaporcontrolbutdecreasedifavaporbarrierpaintisused.

Figure 28 : Predicted Relative Humidity at the interior Surface of the XPS for Case 14 ThereispotentialforsomeairleakagecondensationintheabovegradeportionofthiswallsystemalthoughsignificantlylessthanCase4.Cases8and9withlessairpermeableinsulationtotheinterioroftheXPSwillhaveevenlesspotentialsincethecondensationplanewillbewarmer.Airtightdrywalldetailscanbeusedtominimizethepotentialforairleakagecondensation.

Page 39: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 37 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Figure 29 : Interior Air Leakage Condensation Potential for Case 14 Wall

TherelativehumiditywaspredictedattheexteriorsurfaceofthegypsumwallboardinFigure30,whichshowsthereisnomoisturerelatedissuesattheinteriorofthewallsystem.Asshownpreviously,apolyethylenevaporbarrierwouldincreasetherelativehumidityinthesystem,andsignificantlydecreasedryingofthewallsystem.

Page 40: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 38 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Figure 30 : Predicted Relative Humidity at the Exterior Surface of Gypsum Board for Case 14

2.2.11. Case 15 - 4” Foil-faced Polyisocyanurate 5.5” Fibreglass Batt Case15isthehighestR‐valueassemblyinthisstudyataninstalledinsulationR‐valueofR45with4”ofpolyisocyanurate(PIC)atR26andanR19fibreglassbatt.ThiswallissimilartoCase14,butwithahigherR‐valueofrigidfoamboardbetweenthefoundationwallandwoodframing.Thiswallperformssimilarly,butwithdecreasedmoisturerelatedriskssincethecondensationplanetemperatureiskeptwarmerbythehigherR‐valuePIC.

Figure31showsthereareelevatedrelativehumidites(~90%)butnoriskofcondensationonthesurfaceofthePICthroughouttheyearatanyheightonthewall.

Page 41: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 39 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Figure 31 : Predicted Relative Humidity at the interior Surface of the PIC for Case 15 Thereispracticallynopotentialforairleakagecondensationintheabovegradeportionofthiswallsystem(Figure32),andsignificantlylessthanCases8and14.Airtightdrywalldetailscanbeusedtominimizethepotentialforairleakagecondensation.

Page 42: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 40 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Figure 32 : Interior Air Leakage Condensation Potential for Case 15 TherelativehumiditywaspredictedattheexteriorsurfaceofthegypsumwallboardinFigure33,whichshowsthereisnomoisturerelatedissuesattheinteriorofthewallsystem.Asshownpreviously,apolyethylenevaporbarrierwouldincreasetherelativehumidityinthesystem,andsignificantlydecreasedryingofthewallsystem.

Page 43: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 41 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Figure 33 : Predicted Relative Humidity at the Exterior Surface of Gypsum Board for Case 15

2.3 Enclosure Durability

Durabilityofthebuildingenclosuresystemwasalsousedtoclassifythedifferentwallconstructionscenarios.Durabilityisusedinthisreporttogrouptogethermultipledurabilityrelatedcriteriasuchasdryingofwaterleakageevents,airleakagecondensation,builtinmoisture,andsusceptibilityofdifferentbuildingmaterialstomoisturerelatedissues.Thedurabilityassessmentwillbedeterminedfromhygrothermalmodeling,aswellasqualitativelybasedontheknowledgeandexperienceofbuildingmaterialcharacteristicssuchasvaporpermeability,hygricbufferingcapacity,andsusceptibilitytomoisturerelateddamage.

2.4 Buildability

Buildabilityisakeycomparisoncriterionforpracticalpurposes.Often,thegeneralcontractorandtradeswillinfluencedesigndecisionsbasedontheperceivedcomplexityofdifferentconstructiontechniquesordeviationfromtheirstandardpractice.Anyenclosuresystemanddetailingshouldbebuildableonaproductionleveltoachievethegreatestbenefiteventhoughthetradesareoftenresistanttochangesinconstructionpractices.

Thesusceptibilityoftheenclosuresystemtopoorlyconstructedwatermanagementdetailsandpoorworkmanshipisalsoconsideredinbuildability.Thesimplerasystemistoinstallcorrectly,themorepreferableitistouse.

2.5 Material Use

Materialuseisbecomingacriticaldesignissuebecauseofincreasingconcernsofdepletingresources,andincreasingcostsofmaterialsandenergy.Someconstructionstrategiesusemoreconstructionmaterials,and

Page 44: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 42 www.buildingscience.com 30 Forest St. Somerville, MA 02143

theadvantagesofincreasedthermalcontrolshouldbebalancedagainstthedisadvantagesofincreasingthebuildingmaterialsandembodiedenergy.

Atthetimethisreportwaswritten,someinsulations,suchasXPSandclosedcellsprayfoams,havehigherglobalwarmingpotentialthanalternativeinsulations,meaningtheeffectonglobalwarmingcanbetwoordersofmagnitudegreaterthanotherinsulationstrategies.ThesesignificantglobalwarmingpotentialsarecausedbytheuseofchemicalsusedintheproductionoftheinsulationsuchasHFC‐142b,HFC‐134a,andHFC‐245fa.Thesechemicalhavebetween1000and2000timesmoreglobalwarmingpotentialthanCarbondioxidemeaningthatonekgofHCFC‐142bis2000timesworseforglobalwarmingthan1kgofCO2.

Researchisbeingdonetoreducetheglobalwarmingpotentialinmanycases,andchangesarebeingmadeintheindustry,sospecificinsulationsshouldbereviewedonacasebycasebasisbeforebeingusedtodeterminetheirglobalwarmingpotential.

Embodiedenergyisthetotalenergyrequiredtogetaspecificproducttotheconstructionsiteincludingallenergytoobtaintherawmaterials,processingenergyandtransportationenergy.Insomecases,materialsthathavelessembodiedenergy,orrecycledmaterial,suchascelluloseinsulationcouldbeusedinsteadofthemoreenergyintensiveinsulations.Materialsthatareproducedlocallyrequirelessshippinganddecreasetheembodiedenergyrequired.

2.6 Cost

Thefactorwhichgenerallyhasthegreatestinfluenceonimplementationofabuildingenclosurestrategy,particularlyforproductionbuilders,iscost.Becausethecostofsomematerialsvariessignificantlydependingonlocationandcase‐specificrelationshipsbetweenbuildersandsuppliers,thecostofabuildingenclosuresystemwillbeperceivedrelativetoothersystems.Whendecidingwhichrecommendedsystemtouse,somecostestimatesshouldbedeterminedforyourlocale.

2.7 Other Considerations

Thereareoftenfactors,suchasoccupancycomfortandhealththatdonotquitefitintheothercategories,butareratheracombinationoftheothercomparisoncriteria.Onehealthrelatedcriteria,generallyassociatedwithbasementsisradongas.Radonprotectionisnotdealtwithinthisreport,butduringconstruction,itisveryeasytoinstallcomponentsthatwillmakeradonprotectionsimpleinthefutureshouldradonbeanissue.Infact,somerecommendedmeasurestakentoincreasethethermalresistanceofabasementassemblycanbedetailedtobepartofapassiveradonsystem.Forexample,thesubslabgravelbed,whichhasbeenidentifiedasacapillarybreakinthisreport,alsoservesthepurposeofcollectingsoilgasifaventstackisalsoinstalledduringconstruction.Also,detailingairbarriersysteminacontinuousmannerthroughthefoundationassembliesincreasesthethermalperformanceandblockssoilgasinfiltration.

Insomegeographicareas,somelevelsofradonprotectionwillberequiredinnewconstructionunderthebuildingcodeinthenearfuture.MoreinformationaboutradonandsoilgasresistantconstructioncanbefoundontheUSEPA’swebsite(http://www.epa.gov/radon/).

Page 45: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 43 www.buildingscience.com 30 Forest St. Somerville, MA 02143

C.Results 1. CASE 1 : UNINSULATED FOUNDATION WALLS AND SLAB

TheuninsulatedbasementcasewasincludedinthisanalysisbecausethereareuninsulatedbasementsinexistenceeventhoughthecoderequirementsinDOEclimatezones4andhigherdonotallowanuninsulatedbasementinnewconstructionwherethebasementisconditioned.Theuninsulatedbasementwasincludedasabaselineforcomparisonpurposes.

Figure 34 : Uninsulated Basement

1.1 Thermal Control

Thereisnothermalcontrolinthefoundationwallsorslab.Thisresultsinhighenergylossesformostoftheyear.Significantwholehouseenergysavingscanbeexperiencedifthebasementisinsulatedbutcareshouldbetakentodesignthethermalcontrolappropriatelytotheconstructiontypetodecreasetheriskofmoisturerelatedissuesfollowinganenergyretrofit.Predictedannualheatingenergylossbasedontheselectedsimulationcriteriais57MBtus.

1.2 Moisture Control

Sincethereisnoinsulation,thereislikelynomoisturecontrolinthebasement.Watervaporfromtheexteriorisaconstantmoisturesource,andcapillarywickingthroughthefootingand/orfoundationwallmayalsobeasignificantmoisturesourceincreasingtheriskofmoisturerelatedissues.

Page 46: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 44 www.buildingscience.com 30 Forest St. Somerville, MA 02143

WUFIanalysisoftheuninsulatedbasementintheHygrothermalanalysissectionshowednosignificantmoisturerelatedissues(Figure13andFigure14),iftherelativehumidityiscontrolledwithadehumidifier,althoughthebasementwilllikelystillsmelldampandmusty.

1.3 Constructability and Cost

Thereisnoconstructioncosttoleavingthebasementuninsulated,buttherearesignificantlyhigherenergycosts.

1.4 Other Considerations

Itisnotrecommendedtoleavethebasementuninsulatedfromanenergy,comfort,andhealthperspective.Therearemanydifferentretrofitstrategiesthatcouldbeused,someofwhichareincludedinthisanalysis.

Page 47: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 45 www.buildingscience.com 30 Forest St. Somerville, MA 02143

2. CASE 2 : CODE MINIMUM R10 CONTINUOUS INSULATION

AccordingtotheIECC,newresidentialconstructionofconditionedbasementsinDOEclimatezones4andgreatermustbeconstructedwithcontinuousR10insulationorR13inaframedwall.ContinuousR‐10istypicallyinstalledbyapplyingarollbattdirectlytothefoundationwallwhichconsistoffiberglassbatt.Insomeareas,therollbattiscoveredwithapolyethylenevaporbarrier,aswassimulatedinthehygrothermalanalysis.IntheIRC,therehavebeenimprovementstothebuildingcodewhichdonotrecommendaClassIorIIvaporcontrollayersinthebasementoronthebelowgradeportionofanywall.Commonlyaperforatedfacerisusedwhichisvaporandairpermeable.

Figure 35 : Typical Basement Insulation Strategy

2.1 Thermal Control

TheinstallationofR10continuousinsulation,evenasarollbatt,hassignificantenergyimprovementsoveruninuslatedfoundations,withsavingsofapproximately31MBtus(morethanhalfofanuninsulatedbasement)accordingtosimulations.Rollbattisusedbecauseitisveryinexpensiveandmeetscode,althoughthereareotheralternativesthatpeformbetter,asshowninsomeofthefollowingcases.Thesealternativesaremoreexpensiveforthecontractor,andhomeownersareunawareofthebenefits.

2.2 Moisture Control

Therearemoistureissueswiththisinsulationstrategythatareevidentbothinfieldinvestigationsandsimulations.Fiberglassbattisairandvaporpermeable,somoistureandaircanmovethroughtheinsulation.

Page 48: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 46 www.buildingscience.com 30 Forest St. Somerville, MA 02143

AscanbeseeninFigure15,therelativehumidityagainsttheconcretefoundationwalliselevatedthroughtheentireyear.Ifthereisairleakage(orthefacerisairpermeable)thereiscondensationpotentialontheconcretefoundationthroughmostoftheyearasshowninFigure16.Becausethesesimulationsareonedimensional,theyaregoodapproximations,butheatflowinthefoundationwallisthreedimensional.Also,intheairpermeableinsulation,convectiveloopingislikely,whichmayincreasethecondensationabovepredictedresults.Fieldinvestigationsshowthatitisquitecommontogethighquantitiesofmouldinthiswallsystem

2.3 Constructability and Cost

Thisisthemostinexpensivealternativeintermsofinitialcapitalcost,whichisthereasonitischosen.Continuousrollbattmakesfinishingthebasementwithgypsumboarddifficult,unlesstherollbattisremoved.

2.4 Other Considerations

Thiswallisnotrecommendedbasedonthisanalysis,otherreports,andfieldinvestigationsofmouldybasements.

Page 49: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 47 www.buildingscience.com 30 Forest St. Somerville, MA 02143

3. CASE 3 : R13 FIBERGLASS BATT IN A 2X4 FRAMED WALL

Case3isasecondalternativetotheminimumcoderequiredbasementinsulationinDOEclimatezones4andhigher.Thisconstructionusesa2x4framedwallagainsttheconcretefoundationwithR13battsinthestudspace.Thehygrothermalsimulationandapolyethylenevaporbarrierontheinterior.

Figure 36 : Case 3 - 2x4 framed wall with fiberglass batt

3.1 Thermal Control

ThisconstructiontechniqueperformsverysimilarlytoCase2.Theparallelpathmethod,takingintoaccountthehigherconductivityoftheframingmembersat24”oncenterresultsinaR‐valueinsidetheconcretewallofR12.6.Thisresultsinatotalannualpredictedheatingenergyloss23.9MBtus,asavingsof32.8MBtus.

3.2 Moisture Control

ThisinsulationstrategyhasaverysimilarpoormoisturecontrolleveltoCase2.Moistureisconstantlymovingfromthebelowgradeexteriorportionofthefoundationwalltotheinterior,andbecomingtrappedintheframedwallcavity.Therelativehumidityiselevatedandcondensationisalmostguaranteedbothontheconcretewallandonthepolyethylenevaporbarrierthroughouttheyear(Figure15).Ifthereisairleakage(orthefacerisairpermeable)thereiscondensationpotentialontheconcretefoundationthroughmostoftheyearasshowninFigure16.Becausethesesimulationsareonedimensional,theyaregoodapproximations,butheatflowinthefoundationwallisthreedimensional.Also,intheairpermeableinsulation,convective

Page 50: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 48 www.buildingscience.com 30 Forest St. Somerville, MA 02143

loopingislikely,whichmayincreasethecondensationabovepredictedresults.Fieldinvestigationsshowthatitisquitecommontogethighquantitiesofmouldinthiswallsystem

3.3 Constructability and Cost

ThiswallisslightlymoreexpensivethanCase2becauseoftheframinglumberrequiredbutdoeshavetheaddedbenefitofbeingabletofinishiteasierbyaddingservicesanddrywalleasier.

3.4 Other Considerations

Thiswallconstructiontechniqueisnotrecommended,becauseoftheobviousmoisturerelateddurabilityissuesobservedinthefield,andshownbysimulations.Thewoodframinginthiswallisatriskofmouldandrotafterprolongedexposuretotheconditionspredictedinthewallsystem.

Page 51: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 49 www.buildingscience.com 30 Forest St. Somerville, MA 02143

4. CASE 4 : 1” XPS, 2X4 WOOD FRAMED WALL WITH FIBREGLASS BATT

Thisinsulationstrategyissimilartocase3butwiththeaddedinsulationvalue,andmoisturecontrol,of1”ofXPSbetweentheframedwallandconcretefoundationwall.

Figure 37 : Case 4 - 1"XPS and 2x4 framed wall with fiberglass batt

4.1 Thermal Control

ThiswallhasaparallelpathcalculationmethodofR18becausethethermalbridgingoftheframedwallisminimized,theoverallimprovementinRvalueisR5.4foroneinchofR5insulation.Adding1”ofXPSresultsinanenergysavingsof2.2MBtuoverCase3withoutaninchofXPS,butwillalsoreduceconvectiveloopingbecausethetemperaturegradientintheframedwallisless.

4.2 Moisture Control

Thegreatestbenefittoadding1”ofXPSisarguablyformoisturecontrolandnotthermalcontrol.XPScontrolstheflowofwatervaporfromtheconcretetotheframedwall,frombothvapordiffusionthroughtheconcreteandcapillarywickingupthewall,reducingtherelativehumidityinthewallcavity.Smallamountsofmoisture(toosmalltodrain)betweentheXPSandconcreteisirrelevantbecauseneitherconcreteorXPSissusceptibletomoistureissues.TheXPSmustbewellattachedtotheconcretefoundation,andsealed,soairisnotabletobypasstheXPSinsulation.

Page 52: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 50 www.buildingscience.com 30 Forest St. Somerville, MA 02143

TheXPSinsulationalsoincreasesthetemperatureofthecondensationplane,minimizingcondensationofelevatedinteriorrelativehumidity.Figure19showsthatthereisstillpotentialformoisturecondensationbutitissignificantlylessthanCase3.

Figure18showstherelativehumiditylevelsattheinteriorsurfaceoftheXPSwhicharesignificantlylowerthanthesurfaceoftheconcreteinCase3.Therelativehumidityisshowntobeafunctionofthevaporcontrolontheinteriorsurface,withvaporbarrierpaint(approx1perm)performingbetterthanlatexpaintorapolyvaporbarrier.Evenwithjustlatexpaint,theriskofmoistureissuesisminimal,iftherelativehumidityinthebasementiscontrolled.

4.3 Constructability and Cost

Theconstructabilityofthiswallsystemisnotdifficult,butcareshouldbetakenthatairisunabletogetbehindtheXPS.Thiscouldbeaccomplishedwithtape,caulking,cansofsprayfoamoracombinationofthethree.Itisnotlikelythattapewillmaintainagoodairsealforthedesiredlifetimeofthewallsystem.ThiswallperformssignificantlybetterthanCase3,atonlyasmallincreasedcost.

4.4 Other Considerations

ThiswallconstructionisanimprovementoverCases2and3,butthereareevenbetteroptionsforthermalandmoisturecontroldiscussedinthefollowingCases.Thisisanaffordableoptionthatmanypeoplecoulddothemselves,withsignificantlylessmoisturerelatedrisksthanCases2and3,resultinginamorecomfortableandhealthyspace.

Page 53: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 51 www.buildingscience.com 30 Forest St. Somerville, MA 02143

5. CASE 5 : 2” XPS, 2” FOIL FACED POLYISOCYANURATE

Whenconstructingwithplasticboardfoams,thebuildingcodesrequirethatthefoamnotbeleftexposedasafirehazard.Thermalbarriersarerequiredoverbothboardfoamsandsprayfoamsinmanycases.Thermax™fromDowisathermallyratedfoamboardinsulationthatcanbeleftexposedandcouldbeusedinthissystem.Gypsumboardcouldalsobeusedtocovertheinsulation,butinsomegeographicareas,gypsumboardcanonlybeinstalledifthebasementiselectricallywiredtomeettheelectricalcode,whichdrivesupcostsubstantially.

Figure 38 : Case 5 – 2” XPS, 2” foil faced polyisocyanurate (Recommended)

5.1 Thermal Control

ThisproposedwallsystemperformsverywellthermallyatapproximatelyR23,andincombinationwithunderslabinsulationandthermalbreakattheslabedgeasshowninFigure38,thepredictedannualheatingenergylossis15.8MBtus,animprovementof40.8MBtusoveranuninsulatedwallforthecasestudyhouse.

5.2 Moisture Control

Providedthataircannotbypasstheinsulationlayers,thisstrategywillnotexperienceanymoisturerelatedissuesfromvapordiffusion,orcapillarywicking.Capillarywickingislimitedbythethermal/capillarybreakattheedgeoftheslab,andspecifiedontopofthefooting.

Page 54: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 52 www.buildingscience.com 30 Forest St. Somerville, MA 02143

5.3 Constructability and Cost

Theseamsinthetwolayersoffoaminsulationshouldbeoffsetandwellsealed.Athermalbarrierisrequiredbycodeinmostjurisdictions.Thermax™byDowisafoilfacedpolyisocyanurateinsulationthatiscodecompliant.

Tofinishthebasement,drywallwouldbeadded,whichobviatestheneedforfirecontrolinthefoam.

5.4 Other Considerations

Astudwallwillstillneedtobeconstructedtofinishthisbasementwithservicesanddrywall,soifthelongtermplanistofinishbasement,thisproposedwallsystemmaynotbethemosteconomicalchoice.

Insteadofusingtwodifferentboardfoaminsulations,itcouldbeconstructedwithtwolayersofPIC,ortwolayersofXPSwithdrywallinteriorfinish.

Thisbasementinsulationstrategyisrecommendedasadurable,comfortable,andhealthybasementsystem.

Page 55: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 53 www.buildingscience.com 30 Forest St. Somerville, MA 02143

6. CASE 6 : 3.5” 2.0 PCF CLOSED CELL SPRAY POLYURETHANE FOAM

AsshowninFigure39,thesprayfoamcanbeapplieddirectlytotheconcrete,butaspreviouslymentioned(andspecifiedinthedesigndetails),ifthefoamisleftexposeditwillrequireathermalbarrier,typicallyaspray‐onthermalbarrier.Theotheroptionistobuildastudwallinfrontofthesprayfoamandusegypsumwallboardasthethermalbarrier.

Figure 39 : Case 6 – Closed Cell spray foam

6.1 Thermal Control

Closedcellsprayfoamprovidesverygoodcontinuousthermalcontrol.Sprayfoamisanairbarrier,soconvectiveloopingandairleakagethermallossesdonotoccur.ThiswallsystemhasanR‐valueofR21andapredictedannualheatingenergylossof16.4MBtus.Morethermalcontrolcouldeasilybeaddedbysprayingmorefoamagainstthewall.

6.2 Moisture Control

Becauseclosedcellsprayfoamisanairandvaporbarrier,therearenoriskstoairleakageorvapordiffusioncondensation.Theconcreteisunabletodrytotheinteriorthroughclosedcellsprayfoam,butconcreteisgenerallynotaffectedbyahighmoisturecontent.Figure21showstherelativehumidityinthemiddleofthefoamdoesnotexceed80%,whichmeanstherearenomoisturerelatedrisksfromvapordiffusion.

Page 56: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 54 www.buildingscience.com 30 Forest St. Somerville, MA 02143

6.3 Constructability and Cost

Inthisproposedwallsystem,itispossibletoembedtheframingmembersinthefoam(similartoCase10,toincreasetheinteriorspace.Theframingshouldnotbeincontactwiththefoundationwalltolimitthermalbridging,andpotentialmoisturerelatedissueswiththeframingmembers.Closedcellsprayfoamcanbemoreexpensivethanotheroptions,butreduceslabourtimeoversomeoftheotherwalls,andisappliedbyaskilledlabourersothesystemisverydurableasalongtermsolution.

Sprayonthermalbarrierscanaddsignificantcosttothesprayfoaminstallation,butareregionspecific.

Closedcellsprayfoaminstalledontheinterioroftheconcretefoundationwallistheeasiestandsafestwaytoretrofitanexistingbasement.Sprayfoamcanbeinstalledincombinationwithadrainagemattandinteriordrainagetileinbasementsthathaveliquidwateringressissues.

6.4 Other Considerations

Sprayfoamshavebeenimprovedconsiderablyforhumanhealthandtheenvironment.Ozonedepletingsubstancesintheprocesshavebeenremoved,butsomesprayfoamsusegreenhousegasesthataremuchworsethancarbondioxide.Thereareoptionsavailableofmoreenvironmentallyfriendlysprayfoamsthatdonotreleasegreenhousegases,suchaswaterblownfoams,onthemarketandshouldbeconsidered.

Page 57: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 55 www.buildingscience.com 30 Forest St. Somerville, MA 02143

7. CASE 7 : 6” 0.5 PCF OPEN CELL SPRAY FOAM

AsshowninFigure40,opencellsprayfoamcanbeapplieddirectlytotheconcrete,butaspreviouslymentioned(andspecifiedinthedesigndetails),ifthefoamisleftexposeditwillrequireathermalbarrier,typicallyaspray‐onthermalbarrier,orthebasementcanbefinishedwithdrywall.

Figure40showsXPSorfoil‐facedpolyisocyanurateinstalledontheinterioroftherimjoistandfoundationwall.TheWUFIsimulationsforthefoundationwallwereconductedwithoutthislayerofboardfoaminMinneapolis,anditwasfoundthattherewerenomoisturerelatedissues,inpartbecausetheconcreteisnotassusceptibletomoisture.Installingboardfoamonthefoundationwallwillfurtherincreasethefactorofsafetyoverthepredictedresultsandmayberequiredincolderclimates.Therimjoistwasnotsimulatedinthisstudy,sinceitwassimulatedpreviously,butbecauseofthesusceptibilityofthewoodtomoisturerelateddurabilityissues,andthevaporpermeanceofthefoam,itisrecommendedtousetheboardfoamattherimjoisttolimitvapordiffusionandincreasethetemperatureofthepotentialcondensationsurface.

Figure 40 : Case 7 – Open Cell Spray Foam (Recommended)

7.1 Thermal Control

Opencellsprayfoamprovidesverygoodcontinuousthermalcontrol.Sprayfoamisanairbarrier,soconvectiveloopingandairleakagethermallossesdonotoccur.ThiswallsystemhasanR‐valueofR21andapredictedannualheatingenergylossof15.8MBtus.

Page 58: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 56 www.buildingscience.com 30 Forest St. Somerville, MA 02143

7.2 Moisture Control

Opencellsprayfoamisanairbarrier,butisvaporpermeable.Figure40showstheXPSinsulationdetailrequiredattheabovegradeportionofthefoundationwallforcoldclimateconstructiontominimizemoisturecondensationatthecoldconcreteinthewintermonths,andminimizeinwarddrivenvaporinthesummermonths.

Therelativehumiditywaspredictedinthecenteroftheopencellsprayfoaminsulationandwasfoundtobeatsafelevels(Figure24).

Lowpermeanceinteriorwallfinishes(<ClassIII)shouldbeavoidedwiththisconstructionstrategysothematerialcharacteristicsofthesprayonthermalbarriermustbeconsidered.

7.3 Constructability and Cost

Opencellsprayfoamislessexpensivethanclosedcellsprayfoambutdoesdecreasetheinteriorusefulspaceandvaporcontrolshouldbeconsideredforthissystem.

Thisproposedwallsystemdoesnotallowforfinishingofthebasementwithoutinstallinganinteriorframedwall.Ifthelongtermgoalistofinishtheinteriorofthebasement,Case10shouldbeconsideredinstead.

Sprayonthermalbarrierscanaddsignificantcosttothesprayfoaminstallation,butareregionspecific.

7.4 Other Considerations

Thisisarecommendedwallconstructionprovidedthatthedetailsforcoldclimatesarefollowed,includinganextralayerofvaporcondensationprotectionfortheabovegroundportionofthewall.

Sprayfoamshavebeenimprovedconsiderablyforhumanhealthandtheenvironment.Ozonedepletingsubstancesintheprocesshavebeenremoved,butsomesprayfoamsusegreenhousegasesthataremuchworsethancarbondioxide.Thereareoptionsavailableofmoreenvironmentallyfriendlysprayfoamsdonotreleasegreenhousegases,suchaswaterblownfoams,onthemarketandshouldbeconsidered.

Page 59: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 57 www.buildingscience.com 30 Forest St. Somerville, MA 02143

8. CASE 8 : 2” XPS, 2X4 FRAMING WITH FIBREGLASS BATT

Figure 41 : Case 8 – 2”XPS, 2x4 framing with fiberglass batt

8.1 Thermal Control

ThiswallsystemhasaninstalledinsulationR‐valueofR23whichisonlyslightlylowerbasedontheparallelpathcalculationmethodwhichaccountsforthewallframingassuming24”oncenter.ThisbasementcombinedwithR10undertheslabandR10thermalbreakresultsinanannualpredictedheatingenergylossof15.8MBtufortheexamplehouse.

8.2 Moisture Control

Thewatervapordiffusionandcapillarywickingarecontrolledby2”ofXPSinsulationassumingthattheXPSiswellsealedtotheconcrete.ThiswallsystemwasnothygrothermallysimulatedsinceitwillperformbetterthanCase14fromamoisturepointofview,andCase14performedwell.Case14has5.5”offiberglassbattinsulationwhichwillresultincoldercondensationplane.Case14hadsomecondensationpotentialbutimprovedperformancewithavaporretardingpaint.Therewassomepotentialforairleakagecondensationattheabovegradesectionofthewallinthewinteralternatingwithdryingperiods.

8.3 Constructability and Cost

Itmaybedifficulttoget2”boardsofXPSattachedwelltothenonuniformsurfaceoftheconcretefoundationbecausetheinsulationissostiff.Itiseasierinsomecasestouse21”thickboards,thatwillflexoverimperfections.Thejointsintheinsulationshouldbeoffsetiftwolayersof1”XPSareused.

Page 60: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 58 www.buildingscience.com 30 Forest St. Somerville, MA 02143

8.4 Other Considerations

Case8isoneofthesimplestandleastexpensivemethodsofminimizingthemoistureriskandsavingenergy.Itispossibletouseotherairpermeableinsulationsinsteadoffibreglassbattincludingdampspraycellulose,orsprayfibreglass.

9. CASE 9 : 2” POLYISOCYANURATE INSULATION, 2X4 FRAMING WITH CELLULOSE

Figure 42 : Case 9 – 2” polyiso, 2x4 framing with cellulose

9.1 Thermal Control

ThiswallsystemhasaninstalledinsulationR‐valueofR25whichisonlyslightlylowerbasedontheparallelpathcalculationmethodwhichaccountsforthewallframingassuming24”oncenter.ThisbasementcombinedwithR10undertheslabandR10thermalbreakresultsinanannualpredictedheatingenergylossof15.45MBtus.

9.2 Moisture Control

Thewatervapordiffusionandcapillarywickingarecontrolledby2”ofPICinsulationassumingthatthePICiswellsealedtotheconcrete.Thiswallsystemwasnothygrothermallysimulatedsinceitwillnotexperienceanymoisturerelatedissues.Thefoilfaceonthepolyisocyanuratewillnotallowvapordiffusionfromtheconcretefoundation,andtheincreasedR‐valueofPICcomparedtoXPSwillincreasethecondensationsurfacetemperaturecomparedtoCase8andCase14,resultingindecreasedcondensationpotential.

Page 61: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 59 www.buildingscience.com 30 Forest St. Somerville, MA 02143

9.3 Constructability and Cost

Fiberglassbattinsulationcouldbeusedintheplaceofcellulosetodecreasethecostoftheassembly.

9.4 Other Considerations

Case8isoneofthesimplestmethodsofminimizingthemoistureriskandsavingenergywhichalsoallowsthebasementtobefinished.Itispossibletouseotherairpermeableinsulationsinsteadofcelluloseincludingfiberglassbattorsprayfiberglass.

10. CASE 10 : 6” 0.5 PCF SPRAY FOAM WITH 2X4 FRAMING OFFSET 2.5” FROM CONCRETE

Figure 43 : Case 10 – 6” open cell foam

10.1 Thermal Control

Opencellsprayfoamprovidesverygoodcontinuousthermalcontrol.Sprayfoamisanairbarrier,soconvectiveloopingandairleakagethermallossesdonotoccur.ThiswallsystemhasanR‐valueofR21andapredictedannualheatingenergylossof16.3MBtus.

10.2 Moisture Control

Opencellsprayfoamisanairbarrier,butisvaporpermeable.Therelativehumiditywaspredictedinthecenteroftheopencellsprayfoaminsulationandwasfoundtobeatsafelevels(Figure24).

Page 62: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 60 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Lowpermeanceinteriorwallfinishesshouldbeavoidedwiththisconstructionstrategy.

10.3 Constructability and Cost

ThissolutionismorepracticalthanCase7iftheplanistofinishtheinteriorofthebasement.

10.4 Other Considerations

Sprayfoamshavebeenimprovedconsiderablyforhumanhealthandtheenvironment.Ozonedepletingsubstancesintheprocesshavebeenremoved,butsomesprayfoamsusegreenhousegasesthataremuchworsethancarbondioxide.Thereareoptionsavailableofmoreenvironmentallyfriendlysprayfoamsthatreleasegreenhousegases,suchaswaterblownfoams,onthemarketandshouldbeconsidered.

11. CASE 11 : 4” XPS INSULATION ON THE EXTERIOR OF FOUNDATION WALL

Figure 44 : Case 11 – Exterior XPS insulation

11.1 Thermal Control

ThisproposedwallsystemhasaninstalledinsulationR‐valueofR20andresultsinheatingenergylossof19.43MBtusforthespecificchosenparameters.Theadvantageofinsulatingontheexterioristhattheinsulationontheexteriorofthefoundationcanbejoinedwiththeexteriorinsulationonthefirstfloor,whichformsacontinuouslayerofinsulationandvaporcontrol.Thethermaldisadvantageofthissystemisthatthereisathermalbridgethroughtheconcretewall,andfootingintotheground.

Page 63: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 61 www.buildingscience.com 30 Forest St. Somerville, MA 02143

11.2 Moisture Control

FourinchesofXPSisagreatvapordiffusionresisterandcapillarybreakforinwardmoisturemovement.Thereisstillcapillarywickingpotentialthroughthefootingintotheinteriorsurfaceofconcreteresultinginmoistureattheinteriorsurfaceevaporatingintotheinteriorspaceifitisnotdetailedcorrectly.Thispotentialmoistureissuecanbesolvedbyusingacapillarybreak(eitherliquidappliedorplasticbased)onthetopofthefootingasnotedinthedesigndetails.Unlikesomeoftheotherproposedfoundationwallsystems,theexposedconcreteinthissystemwillprovidemoisturebufferingcapacity,onceithasdried.

11.3 Constructability and Cost

Thisproposedwallsystemwithexteriorinsulationisperceivedasdifficulttotheconstructiontrades,andthefinishingoftheabovegradeportionmaynotbearchitecturallydesirable.Insomecasesthetimingoftheinsulationinstallationtradescanbetrickysincetheentirehouseisnotinsulatedatonceinthiscase.

11.4 Other Considerations

Insomecases,exteriorfoundationisnotallowedbythebuildingcodeduetocomplicationswithtermitesandotherinsects.Whereinsectsmaybeanissue,Case12proposedwallsystemcouldbeused.

12. CASE 12 : 4” XPS INSULATION IN THE CENTER OF FOUNDATION WALL

Figure 45 : Case 12 – Interstitial XPS Insulation

Page 64: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 62 www.buildingscience.com 30 Forest St. Somerville, MA 02143

12.1 Thermal Control

ThisconstructionstrategyhasaninstalledinsulationR‐valueofR20,andhasapredictedannualheatingenergylossof19.24MBtus.Unlikesomeoftheotherwallsystemstheremaybethermalmassbenefitsoftheinteriorexposedsurfaceofconcrete.Thereisasmallthermalbridgethroughthefootingandinteriorsurfaceofconcretethatdoesincreasetheenergyrequiredoverawallthatisinsulatedcompletelyontheinterior

12.2 Moisture Control

FourinchesofXPSisagreatvapordiffusionresisterandcapillarybreakforinwardmoisturemovement.Thereisstillcapillarywickingpotentialthroughthefootingintotheinteriorsurfaceofconcreteresultinginmoistureattheinteriorsurfaceevaporatingintotheinteriorspaceifitisnotdetailedcorrectly.Thispotentialmoistureissuecanbesolvedbyusingacapillarybreak(eitherliquidappliedorplasticbased)onthetopofthefootingasnotedinthedesigndetails(Figure45).Unlikesomeoftheotherproposedfoundationwallsystems,theexposedconcreteinthissystemwillprovidemoisturebufferingcapacity,onceithasdried.

12.3 Constructability and Cost

Thisconstructionstrategyisnotverycommon,butisverydurablebecausetheXPSissealedintotheconcreteandprotectedfrominteriorandexteriordamage.Thiswalldesignismoreexpensivethaninstalling4”ontheinteriorortheexterior.

12.4 Other Considerations

Thisproposedwalltypemaynotbelocallyavailable.

Page 65: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 63 www.buildingscience.com 30 Forest St. Somerville, MA 02143

13. CASE 13 : INSULATED CONCRETE FORMS, 2” XPS ON INTERIOR AND EXTERIOR

Figure 46 : Case 13 –Insulated Concrete Forms (ICF)

13.1 Thermal Control

ThisconstructionstrategyhasaninstalledinsulationR‐valueofR20,andhasapredictedannualheatingenergylossof16.7MBtus.

13.2 Moisture Control

TwoinchesofXPSontheinterior,connectedtothethermalbreakattheslabedge,controlstheinteriorvapordriveandcapillarywickingtotheinteriorsotherearenomoisturerelatedissuesfrominwardvapordiffusionorcapillarywicking.

13.3 Constructability and Cost

Theinterioroftheinsulatedconcreteformwillrequiredrywallorotherthermalbarriertoachievethefireratingrequiredbycode.ThegypsumboardisveryeasytoattachtotheplasticclipsdesignedintotheICF.Thedrywallshouldnotbepainted,ifitisnotnecessary,toallowmaximumdryingoftheconcrete.Itmaybeeasierandmorepracticaltoinstallathinframedwall(eg.2x3woodorsteelframing)ontheinterioroftheICFtoallowanynecessaryservicestoberuninthewall,andpotentiallymoreinsulation.

Page 66: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 64 www.buildingscience.com 30 Forest St. Somerville, MA 02143

13.4 Other Considerations

Becausetheconcreteisinstalledbetweentwovaporretardinglayers,itwilltakeseveralyearsfortheconcretetodrytoequilibrium.Sinceadditionalinteriorvaporcontrolshouldbeavoided,nomorethanlatexpaintshouldbeusedontheinteriorsurfaceofthedrywall.

14. CASE 14 : 2” XPS, 2X6 FRAMING WITH FIBREGLASS BATT

Figure 47 : Case 14 – 2”XPS, 2x6 framing with fiberglass batt

14.1 Thermal Control

ThisfoundationwallsystemhasacalculatedparallelpathR‐valueofR28.7,andayearlyheatingenergyconsumptionof14.79MBTusassumingR10undertheslabandinthethermalbreak.Onlyiftherestoftheenclosureissuperinsulated,andairtight,inaverycoldclimatewillitmakesensetoincreasetheR‐valueofthefoundationwall.ItmaymakesensewithanR30foundationwalltoincreasetheunderslabinsulationtoR15orR20.Thisshouldbeexaminedinmoredetail.

14.2 Moisture Control

ThiswallwasanalyzedinWUFItopredictthemoisturerelatedriskinthewallsystem,anditwasshownthattheRHatthesurfaceoftheXPSintheabovegradeportionofthewalliselevatedinthewintermonths(Figure28),andthatthereissomecondensationpotentialalternatingwithperiodsofdryingpotentialatthetopofthefoundationwall.(Figure27).ThereislittleriskofmoisturerelatedissuesinthisallsystemiftheinteriorRHiscontrolledwithadehumidifier,andtheinteriordrywalliswellairsealed.

Page 67: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 65 www.buildingscience.com 30 Forest St. Somerville, MA 02143

14.3 Constructability and Cost

ThiswallsystemisslightlymoreexpensivethanCases8and9byincreasingthedepthoftheframedcavitywith2x6framinginsteadof2x4framing.Itispossibletouse2x4framingstoodoutfromtheXPSby2inches,anduseR19fiberglassbatts,orblowncelluloseorfibreglass.R19fiberglassbattsshouldbelessexpensivethanR13fiberglassbattsbecausethemanufacturingprocessforbothR19andR13battsusesthesameamountoffibreglass,buttheR13battsrequiremoretimeandefforttocompactto3.5”makingthemmoreexpensivetoproduce.

14.4 Other Considerations

15. CASE 15 : 4” PIC, 2X6 FRAMING WITH FIBREGLASS BATT

Figure 48 : Case 14 – 2”XPS, 2x6 framing with fiberglass batt

15.1 Thermal Control

ThisfoundationwallsystemhasacalculatedparallelpathR‐valueofR45.0,andayearlyheatingenergyconsumptionof11.09MBTusassumingR20undertheslabandinthethermalbreak..ThisisthehighestRvaluefoundationsysteminthisstudy,andislikelynotcosteffectiveunlesstherestofthehouseissuperinsulatedandairtight.

15.2 Moisture Control

ThiswallwasanalyzedinWUFItopredictthemoisturerelatedriskinthewallsystem,anditwasshownthattheRHatthesurfaceoftheXPSintheabovegradeportionofthewallisslightlyelevatedinthewinter

Page 68: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 66 www.buildingscience.com 30 Forest St. Somerville, MA 02143

months(Figure31),butdoesnotexceed90%.Thereisalmostnocondensationpotential(Figure32)exceptontheupperwallofthenorthorientationfortwoveryshortperiods.ThereisvirtuallynoriskofmoisturerelatedissuesinthisallsystemiftheinteriorRHiscontrolledwithadehumidifier,andtheinteriordrywalliswellairsealed.

15.3 Constructability and Cost

ThiswallsystemisslightlymoreexpensivethanCases14bychangingthe2”ofXPSto4”offoil‐facedpolyisocyanurate.Itispossibletouse2x4framingstoodoutfromtheXPSby2inches,anduseR19fiberglassbatts,orblowncelluloseorfibreglass.R19fiberglassbattsshouldbelessexpensivethanR13fiberglassbattsbecausethemanufacturingprocessforbothR19andR13battsusesthesameamountoffibreglass,buttheR13battsrequiremoretimeandefforttocompactto3.5”makingthemmoreexpensivetoproduce.

15.4 Other Considerations

Dependingonsitespecificconditions,andlocalcosts,thiswallislikelynoteconomicaltobuildunlessthehouseisveryhighlyinsulatedandairtight.

Page 69: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 67 www.buildingscience.com 30 Forest St. Somerville, MA 02143

D.Conclusions HeatingenergylosscalculationsforalloftheassemblieswerecalculatedusingBasecalcandthesummaryisshowninTable5below.TheheatingenergylosseswereconductedforabasementinMinneapolis(DOEclimatezone6),withanareaof1614ft2.

Table 5 : Summary of Basecalc Results

Analysisshowedthatevenasmallamountofinsulationonthefoundationwalldecreasedtheheatingenergylossessignificantlycomparedtoanuninsulatedbasement,butthebenefitsofincreasinginsulationdecreaseasmoreinsulationisadded.InCases5through13,noneofthewallsperformsignificantlybetterthantheothersfromaheatingenergylossesperspective,soanydecisionsshouldbebasedoncost,durabilityanddesiredfinish.

Insulatingbelowthebasementslabandattheinterfaceofthefoundationwallandbasementslabwillresultinenergysavings,butthegreatestbenefitismoisturerelatedsincetheyformavapordiffusionandcapillarybreakbetweenthemoistureandtheinteriorenvironment,resultinginadrier,healthierinteriorenvironment.

Besidesbulkwatermovement,whichisnotspecificallyaddressedinthisreport,therearetwomodesofwettinginthefoundation;vapordiffusionandcapillarywetting.Theexteriorsurfaceofthebelowgradeportionofanyfoundationwallismaintainedatapproximately100%relativehumiditysomoisturemovementbelowgradeisalwaystotheinterioranddryingisnotpossibletotheexterior.TheIRChasbeenmodifiedtoreflectthis,notrecommendingaClassIorIIvaporcontrollayerontheinteriorofanybelowgradewall.

Capillarywickingthroughthefootingintothefoundationwallisgenerallynotaddressedbyproductionbuilders,andcanresultinsignificantamountsofmoistureevaporatingfromtheinteriorsurfaceofthebasementwall.

Cases2and3representcodeminimumbasementinsulationamounts,althoughthesewerehygrothermallysimulatedwithaninteriorpolylayerinsteadofaperforatedlayer,whichshouldbesimulatedinfuturework.Withapolyethylenevaporbarrier,thesewallsperformverypoorly,withhighrelativehumiditiesintheinsulation,andairleakagecondensationpotentialfornearlytheentireyear.Intrusiveinvestigationsofbuildingsinthefieldhaveshownthatmoisturerelatedissues(includingmould,rot,andodours)canbeexpectedwiththistypeofwallconstruction.

Page 70: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 68 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Cases4,8,9,and14witharigidfoamagainsttheconcretefoundationandairpermeableinsulationinawoodframedwall(fiberglassbattorcellulose)showedsignificantimprovementsinmoistureperformanceoverCase2and3.Thereisstillsomepredictedairleakagecondensationpotential,butgenerallyisolatedtotheabovegradeportionofthewall,duetotheverycoldexteriortemperatures.

Case5with2”ofXPSand2”ofpolyisocyanuratehasnomoisturerelatedissuesandperformsverywell,butdoesnoteasilyallowforinteriorfinishescomparedtosomeotherproposedfoundationinsualationsystems.

Case6,7,and10usesprayfoamapplieddirectlyagainstthefoundationwall,whichformsanairbarriersystemresultinginnoairleakagecondensation.Closedcellsprayfoamisavaporbarrierlimitingdiffusiontotheinteriorandopencellfoamismorevaporpermeable,butsimulationspredictednomoisturerelatedissuesfromvapordiffusionduetothethicknessoffoam,andtheabilityofsmallamountofvaportodrytotheinteriorthroughthefoamandinteriorfinish.Attheabovegradeportionofthewallincoldclimates,alowerpermeanceboardfoamisrecommendedtocontroltheinwardvapordriveinthesummermonths,andlimitthevapordiffusioncondensationinthewintermonths.Therearenomoisturerelatedissuespredictedforthesprayfoamwalls.

Cases11,12,and13areallconstructedwith4”ofXPSindifferentlocationsonthefoundationwall,andallresultingoodmoistureperformance.Acapillarybreakisalwaysrecommendedbetweenthefootingandthefoundationwall,andinCase11,and12,itisrequiredsincethevaporcontrollayer,thatdecreasestheevaporationandvapordiffusionfromtheinteriorsurface,isdiscontinuousontheinteriorsurface.Cases11,and12alsohaveslightlyhigherheatingenergylossesbecauseofthethermalbridgealongtheinteriorsurfaceofthefoundationwallthroughthefooting,buttheydohavetheadvantageofboththermalandmoisturebufferingiftheinterioroftheconcretewallisleftexposed.

Followingtheanalysisofallproposedfoundationwallsystems,valueswereassignedforthefivecomparisoncriteria;

• Thermalcontrol• Durability• Buildability• Cost• Materialuse

Thesewallswerescoredonascaleof1to5foreachcriterion,onebeingtheworst,andfivebeingthebestperforming,andtheresultsareshowninTable6.Basedontheselectedcriteria,thetwohighestscoringwallswereCase6with3.5”of2.0pcfclosedcellspufandCase7with6”of0.5pcfocspf.BecausesomeofthecriteriasuchasMaterialUseandCostcouldbedifferentinotherregions,thefinalresultscouldbedifferentindifferentpartsofthecontinent.

Allofthecriteriaarecurrentlyweightedevenly,buttheycouldbechangeddependingontheconcernsofthecontractororhomeowner.Usingmultipliersbetween1and5beforesummingthescorescouldresultindifferentresultsbasedontheimportanceofdifferentcriteria.

Page 71: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 69 www.buildingscience.com 30 Forest St. Somerville, MA 02143

Table 6 : Comparison Criteria Matrix with Scoring Results

E. Future Work Whileconductingthisanalysis,somequestionswereencounteredthatrequirefurtherresearch,analysisandsimulationstomorecompletelyunderstandthemoistureandthermalperformanceofbasementinsulationsystems.Theseareasinclude;

• DeterminingtheeffectofperforatedfacersoncodecompliantR10rollbatts• Researchingfieldtestingdataonbasementmonitoringdatathathasbeenconductedand

correlatetotheproposedwallsystems.• FurtheranalysisoftheMitalasfiniteelementanalysismethodofheatingenergylossfor

basements.• Attempttoquantifytheroleofcapillarywickingthroughthebasementwallrelativetothe

vapordiffusionload.SomeworkhasbeenconductedalreadybyKohtaUenoofBuildingScienceCorporationaspartofaBuildingAmericaFoundationsExpertsGroupMeeting.

FollowingthecompletionoftheHigh‐Rbasementandfoundationreport,ananalysisreportwillbecompletedforroofsandatticsregardinghistorical,codecompliantandsuperinsulatedroofstrategies.Similarlytothe

Page 72: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

Building Science Corporation 70 www.buildingscience.com 30 Forest St. Somerville, MA 02143

previousHighRWallReportandthisBasements/Foundationsreport,theRoofandAtticreportwillbeacombinationofbothfieldtesting/monitoring,thermalandhygrothermalanalysis,yearsofexperience.

F. Works Cited Lstiburek,J.UnderstandingBasements,BuildingScienceDigest103,Westford,BuildingSciencePress,2006

Mitalas,G.P.,CalculationofBasementHeatLoss,NationalResearchCouncilCanada

Pettit,B.,RenovatingExistingBasements,ResearchReport–0509c,Westford,BuildingSciencePress,2008

Straube,J.,andBurnett,E.,BuildingScienceforBuildingEnclosures.Westford,BuildingSciencePress,2005

Straube,J.,Smegal,J.,BuildingAmericaSpecialResearchProject:High­RWallsCaseStudyAnalysis,BuildingSciencePress,MA,2009

Page 73: Building America Special Research Project: High-R ... · Foundations Case Study Analysis Building America Report - 1003 20 August 2010 Jonathan Smegal and John Straube ... 2009 IRC

BA-1003: Building America Special Research Report High-R Foundation Case Study Analysis

About this Report

This report was prepared with the cooperation of the U.S. Department of Energy’s, Building America Program.

About the Authors

Jonathan Smegal’s work at BSC includes laboratory research, hygro-thermal modeling, field monitoring of wall performance, and forensic analysis of building failures.

John Straube teaches in the Department of Civil Engineering and the School of Architecture at the University of Waterloo. More information about John Straube can be found at www.buildingscienceconsulting.com.

Direct all correspondence to: Building Science Corporation, 30 Forest Street, Somerville, MA 02143.

Limits of Liability and Disclaimer of Warranty:

Building Science documents are intended for professionals. The author and the publisher of this article have used their best efforts to provide accurate and authoritative information in regard to the subject matter covered. The author and publisher make no warranty of any kind, expressed or implied, with regard to the information contained in this article.

The information presented in this article must be used with care by professionals who understand the implications of what they are doing. If professional advice or other expert assistance is required, the services of a competent professional shall be sought. The author and publisher shall not be liable in the event of incidental or consequential damages in connection with, or arising from, the use of the information contained within this Building Science document.