Brief&History&of&Solid&State&Physics& - TTUcmyles/Phys4309-5304/Lectures/Solid State Physics... ·...

28
Brief History of Solid State Physics Along with astronomy, the oldest subfield of what we now refer to as Physics. Prescien>fic >mes: stones, bronzes, iron, jewelry...Lots of empirical knowledge but, prior to the end of the 19 th century, almost no understanding. Crystals: periodic structures of atoms and molecules. A common no>on in crystallography and mineralogy well before the periodic structure was proven by Xrays (1912). Special branch of mathema>cs: group theory.

Transcript of Brief&History&of&Solid&State&Physics& - TTUcmyles/Phys4309-5304/Lectures/Solid State Physics... ·...

Brief  History  of  Solid  State  Physics  

 Along   with   astronomy,   the   oldest   subfield   of  what  we  now  refer  to  as  Physics.  

 Pre-­‐scien>fic   >mes:   stones,   bronzes,   iron,        jewelry...Lots   of   empirical   knowledge   but,   prior  to   the   end   of   the   19th   century,   almost   no  understanding.  

 Crystals:   periodic   structures   of   atoms   and  molecules.   A   common   no>on   in   crystallography  and  mineralogy  well  before  the  periodic  structure  was  proven  by  X-­‐rays    (1912).  

 Special  branch  of  mathema>cs:  group  theory.    

Early  discoveries  

MaOhiessen  Rule  Agustus  MaOhiesen  (1864)    

ρ T( ) = ρ0

purity-dependent

+ ρin (T )material- but not purity-dependent

ρin T( )∝T (for T > 50 ÷ 70 K)Interpreta>on  

ρ0 : impurities, defects...ρin : lattice vibrations (phonons)In general, all sources of scattering contribute:ρ= ρnn∑

Wiedemann-­‐Franz  Law  

Gustav  Wiedemann  and  Rudolph  Franz  (1853)  

thermal conductivityelectrical conductivity

= const for a given T

Ludvig  Lorentz  (1872)    

thermal conductivityelectrical conductivity iT

= const

"Lorentz number"=π 2

3kBe

⎛⎝⎜

⎞⎠⎟

2

Ag 2.31 2.37

Au 2.35 2.40

Cd 2.42 2.43

Cu 2.23 2.33

Pb 2.47 2.56

Pt 2.51 2.60

W 3.04 3.20

Zn 2.31 2.33

Ir 2.49 2.49

Mo 2.61 2.79

0 C 100 C

Lexp i108 WiOhm/K2 Ltheor = 2.45i10−8 WiOhm/K2

Hall  Effect  

Edwin  Hall  (1879,  PhD)  

Drude  model  Paul  Drude  (1900)  

Drude  model  

dpdt

= −eE− ev ×B− pτ

dc conductivity: σ = jE= ne

2τm

Hall constant: RH = VHj i B

= − 1en

Lorentz number= 13

kBe

⎛⎝⎜

⎞⎠⎟

2

as compared to the correct value π2

3kBe

⎛⎝⎜

⎞⎠⎟

2

Assump>ons  of  the  Drude  model  

Maxwell-­‐Boltzmann  staLsLcs  12m v2 = 3

2kBT

Wrong.  In  metals,  electrons  obey  the  Fermi-­‐Dirac  sta>s>cs  m2v2 ≈ const(T )

ScaOering  mechanism:  collisions  between  electrons  and  laRce  

Wrong.  QM  bandstructure  theory:  electrons  are  not  slowed  down      by  a  periodic  array  of  ions;  instead,  they  behave  of  par>cles  of  different  mass  

Classical  dynamics  (second  law)  

Quantum  mechanics  was  not  invented  yet...  

Yet, σ =ne2τ /m does not contain the electron velocityThe formula still works if τ is understood as phenomenological parameter

Great  predic>on  of  the  Drude  model  

dc conductivity: σ = jE= ne

2τm

Hall constant: RH = VHj i B

= − 1en

By  measuring  these  two  quanLLes  one  can  separate  the  T  dependences    of  the    relaxaLon  Lme  and  the  electron  number  density  

Metals  and  insulators  

T

ρ−RH

Metals:  number  density  is  T  independent                                relaxa>on  >me  is  T  dependendent  

n = −1/ eRH

Insulators:  free  carriers  freeze  out                                          as  T  goes  down  

Sommerfeld  theory  of  metals  

free  electrons  obeying  Fermi-­‐Dirac  sta>s>cs   independence  of  n  from  T     linear  dependence  of  the  specific  heat  in  metals  at  low      temperatures  $ correct  value  of  the  Lorentz  number  $ below room T, the Lorentz number becomes T dependent ☐  origin  of  scaOering        ☐   posi>ve  value  of  the  Hall  constants  in  certain  metals  ☐  positive magnetoresistance (an increase of the resistivity with B) ☐

f E( ) kBT

Fermi  sphere  

kFEF

EF =2k2

F

2m43π k 3

F = 2π( )3 n

Metals: EF = 1÷10 eV EF / kB = 104 ÷105 K

Arnold  Sommerfeld  (PhD,  1928)  

Quantum-­‐mechanical  theory    electron  dynamics  

Felix  Bloch  (1928,  PhD)  

interference  of  electron  waves  scaOered  by  ionsenergy  bands  

E  

allowed

     forbidde

n  

metal  

insulator  

µ

µ

Posi>on  of  the  chemical  poten>al  is  determined  by  the  number  of  the  electrons  

If  a  band  is  less  than  half  ful      leffec>ve  carriers  are  electrons  RH<0  If  a  band  is  more  than  half  fulleffec>ve  carriers  are  “holes”  Holes=posi>vely  charged  electronsRH>0  

a  

phase  shic  between  incoming  and  reflected  waves    

µ

2ka

2ka = πN ⇒λ = 2πk

= N a2

Shroedinger  equa>on  with    a  periodic  poten>al  energy  

− 2

2m∇2 +U r( )⎡

⎣⎢

⎦⎥ψ = Eψ

U r + n1a1 + n2a2 + n3a3( ) =U r( ); n1,2,3 = 0,±1,±2...

Symmetries  of  lafce  determine  proper>es  of  the  eigenstates  

Bloch  Theorem  

ψ k r( ) = eikiruk r( )uk r + a( ) = uk r( )E k( ) = E k + b( )

bi = 2π( )3 a j × akV

a1a2

a3pseudo  (crystal  momentum)  

k and k + b are equivalent

a1

a2

17  

Bravais  lafces  in  3D:  14  types,  7  classes  

Poα −

Ag,Au,Al,Cu,Fe,Cr,Ni,Mb…  

Ba,Cs,Fe,Cr,Li,Na,K,U,V…  

Sb,Bi,Hg  

He,Sc,Zn,Se,Cd…  

S,Cl,Br  

F  

1.  Cubic  ✖3  2.  Tetragonal✖2  3.  Hexagonal✖1  4.  Orthorhombic✖4  5.  Rhombohedral✖1  6.  Monoclinic✖2  7.  Triclinic✖1  

Auguste  Bravais  (1850)  

Lafce  dynamics  

Classical  thermodynamics:  specific  heat  for  a  system  of  coupled  oscillators  (Dulong-­‐Pe>t  law)  

CV = 3kBn

Experiment:  marked  devia>ons  from  the  Dulong-­‐Pe>t  law  

T

CVDulong-­‐Pe>t  

room  

Albert  Enstein:  quantum  monochroma>c  oscillators                                                          modern  language:  op>cal  phonons  Paul  Debye:            quantum  sound  waves                                                            modern  language:  acous>c  phonons    “Black-­‐body  radia>on”                                                        

Max  Born:  modern  theory  of  lafce  dynamics  Important  consequence:    electrons  are  not  slowed  down  because  of  scaOering  at  sta1onary    ions.  But  they  are  slowed  down  by  scaOering  from    vibra>ng  ions.  This  is  why  relaxation time depends on T!  T

T 3

CV ∝T 3

Max  von  Laue  (Nobel  Prize  1914)  

X-­‐ray  scaOering  from  crystals:  confirma>on  of  periodicity  

William  Lawrence  Bragg  and  William  Henry  Bragg    (  1913)  

Bragg’s  law  

Discovery  of  superconduc>vity  -­‐1911  

Kamerlingh  Onnes  

Co.  Scien>fic  American  Meissner-­‐Ochsenfeld  effect  (1933)    

Walther  Meissner  

     Superfluidity  (mo>on  without  fric>on)  in  He-­‐4  

Pyotr  Kapitsa  (1937)  John  F.  Allen  and  Don  Misener  (1937)  

                                                 Lev  Landau:  phenomenological  two-­‐fluid  model  (1941)      Nikolay  Bogolyubov:  

canonical  transforma>ons  (1947-­‐1948)  

Richard  Feynman:  ver>ces  (1955)  

He-­‐4  atoms  are  bosons  

Bose-­‐Einstein  condensa>on  into  the  lowest  energy  state.  

T < Tλ = 4.2 K @1 atm

T > Tλ T < Tλ

Electrons  are  fermions.  How  to  make  bosons  out  of  fermions?                                                                                          Pair  them!  

Herbert  Froelich  

Two  types  of  interac>on  among  electrons  in  metals:  i)  Coulomb  repulsion  ii)  Phonon-­‐mediated  aOrac>on  

Normal  metals:  Coulomb  repulsion  dominates  Superconductors:  phonon-­‐mediated  aOrac>on  dominates  below  the  cri>cal  temperature  

Cooper  pairs  Leon  Cooper  

Bardeen-­‐Cooper-­‐Schrieffer  Theory  of  Superconduc>vity  (1957)  

John  Bardeen  Leon  Cooper  

Robert  Schrieffer  

High-­‐temperature  superconduc>vity                                                        1986  

Alexander  Müller            Georg  Bednorz  

non-­‐phonon  mechanism  

Field-­‐effect  transistor  

first  patent:  Lilienfeld  (1925)  working  device:  John  Bardeen,  Walter  BraOain,  William  Shockley  (Nobel  Prize  1956)    

Integer  Quantum  Hall  Effect  (1980)  

Klaus  von  Klitzing  (Nobel  Prize  1985)  

     von  Klitzing  constant        

     Value                                            25  812.807  4434      Standard  uncertainty            0.000  0084  Rela>ve  standard  uncertainty  3.2  x  10-­‐10

                 Theore>cal  explana>on:  Robert  Laughlin  

RK = h / e2

Frac>onal  quantum  Hall  effect  (1982)  

Dan  Tsui,  Horst  Stormer,  Robert  Laughlin:  Nobel  Prize,  1998  

Dan  Tsui  

Horst  Stormer  

Robert  Laughlin  

quantization of ρxy in fractions of h / e2

1 / 3,1 / 5,5 / 2...Each  plateau  is  a  new  elementary  excita>on  with  a  frac>onal  electric  charge!  

Solid  statenanoscience  

2D:  electron  gases,  graphene  

Konstan>n  Novoselov  

Andre  Geim  Nobel  Prize  2010  

1D:  carbon  nanotubes  and  quantum  wires