Brief overview of Immunology and Molecular Dynamics Denise Chac 10 October 2014.

13
Brief overview of Immunology and Molecular Dynamics Denise Chac 10 October 2014

Transcript of Brief overview of Immunology and Molecular Dynamics Denise Chac 10 October 2014.

Page 1: Brief overview of Immunology and Molecular Dynamics Denise Chac 10 October 2014.

Brief overview of Immunology and Molecular Dynamics

Denise Chac10 October 2014

Page 2: Brief overview of Immunology and Molecular Dynamics Denise Chac 10 October 2014.

Immunology

• The study of the human immune system

Page 3: Brief overview of Immunology and Molecular Dynamics Denise Chac 10 October 2014.

Lymphocytes

B Cells• Membrane bound antibody• Activation: bind to

pathogen and triggered by helper T cells

• MHC II proteins present antigen peptide on cell surface

• Differentiates– Effector Cells– Memory Cells

T Cells• T Cell Receptors (TCR)• Helper T Cells

– Presents CD4 – Recognize MHC class II– Activation: release of

cytokines

• Cytotoxic T Cells– Presents CD8– Recognizes MHC class I– Destroys infected/cancerous

cells

Page 4: Brief overview of Immunology and Molecular Dynamics Denise Chac 10 October 2014.

B Cell

Page 5: Brief overview of Immunology and Molecular Dynamics Denise Chac 10 October 2014.

T-Cells

Page 6: Brief overview of Immunology and Molecular Dynamics Denise Chac 10 October 2014.

Viruses

Page 7: Brief overview of Immunology and Molecular Dynamics Denise Chac 10 October 2014.

HIV/AIDS

Page 8: Brief overview of Immunology and Molecular Dynamics Denise Chac 10 October 2014.

Previous Studies

• The breadth of epitope recognition within specific regions of HIV antigen peptides contribute to anti-viral efficiency of CD8 T-cell response [Geldmacher et al. 2007]

• The altering of antigen peptides on MHC to give a more ‘protruding’ surface topology may increase TCR repertoire diversity [Turner et al. 2005]

Page 9: Brief overview of Immunology and Molecular Dynamics Denise Chac 10 October 2014.

Method: Molecular Dynamics

• VMD – Visual Molecular Dynamics– Program to visualize large biomolecular systems in 3-D

graphics

• Molecular Dynamics - NAMD• MODELLER– Homology studies– Python based homology modeling software used for

modeling proteins

Page 10: Brief overview of Immunology and Molecular Dynamics Denise Chac 10 October 2014.

Methods: NAMD

• Parallel molecular dynamics code designed for high-performance simulation of large biomolecular systems

• Based on Charm++ but can be compatible with AMBER, CHARMM, and X-PLOR

• Need:– Protein Data Bank – PDB

• Atomic coordinates• Velocities

– Protein Structure File – PSF• Structural information

– Force Field Parameter File• Mathematical potential of

atoms in the system

– Configuration File• Tells how NAMD will run the

simulation

Page 11: Brief overview of Immunology and Molecular Dynamics Denise Chac 10 October 2014.

Methods: NAMD – the solvent

• Put protein in water to resemble the cellular environment

• How?– A water sphere in surrounding vacuum

• Without periodic boundary conditions

– A water box• With periodic boundary conditions

Page 12: Brief overview of Immunology and Molecular Dynamics Denise Chac 10 October 2014.

Questions:

• “epitope enhancement”• Difference between R5 and X4 HIV• TCR flexibility [Martinez-Hackert et al. 2006]

Page 13: Brief overview of Immunology and Molecular Dynamics Denise Chac 10 October 2014.

References• Martinez-Hackert, E., Anikeeva, N., Kalams, S.A., Walker, B.D., Hendrickson, W.A., Sykulev, Y., 2006.

Structural basis for degenerate recognition of natural HIV peptide variants by cytotoxic lymphocytes. Journal of Biological Chemistry 281, 20205–20212.

• Geldmacher, C., Currier, J.R., Herrmann, E., Haule, A., Kuta, E., McCutchan, F., Njovu, L., Geis, S., Hoffmann, O., Maboko, L., Williamson, C., Birx, D., Meyerhans, A., Cox, J., Hoelscher, M., 2007. CD8 T-cell recognition of multiple epitopes within specific Gag regions is associated with maintenance of a low steady-state viremia in human immunodeficiency virus type 1-seropositive patients. Journal of Virology 81, 2440–2448.

• Turner, S.J., Kedzierska, K., Komodromou, H., La Gruta, N.L., Dunstone, M.A., Webb, A.I., Webby, R., Walden, H., Xie, W., McCluskey, J., Purcell, A.W., Rossjohn, J., Doherty, P.C., 2005. Lack of prominent peptide–major histocompatibility com- plex features limits repertoire diversity in virus-specific CD8+ T cell populations. Nature Immunology 6, 382–389.

• Park, M., Park, S.Y., Miller, K.R., Collins, E.J., Lee, H.Y., 2013. Accurate Structure prediction of peptide-MHC complexes for identifying highly immunogenic antigens. Molecular Immunology 56, 81-90.

• Alberts, B., Johnson, A., Lewis, J. et al. 2002. Molecular Biology of the Cell. 4th Edition. New York: Garland Science.

• Janeway, C., Murphy, K., Travers, P., Walport, M. 2008. Janeway’s Immunobiology. 8th Edition. New York: Garland Science .