Bridge Substructure With Pile Foundation at the State of Jharkhand (1)

70
DESIGN OF SUBSTRUCTURE AND FOUNDATION (Pier P2 & P3) SPAN : 25.0 m c/c of expansion joints

description

Bridge Substructure With Pile Foundation at the State of Jharkhand (1)

Transcript of Bridge Substructure With Pile Foundation at the State of Jharkhand (1)

Cover

DESIGN OF SUBSTRUCTURE AND FOUNDATION(Pier P2 & P3)

SPAN : 25.0 m c/c of expansion joints

ContentsCONTENTSChapter No.DescriptionPage No.1INTRODUCTION12DESIGN DATA23CALCULATION OF LOADS ON PIER44CALCULATION OF LOADS ON BASE OF PILE CAP75DESIGN OF PILE CAP106DESIGN OF PILE157DESIGN OF PIER188DESIGN OF PIER CAP20

APPENDICESAPPENDIX ASEISMIC DATAA-1APPENDIX BCALCULATION OF LONGITUDINAL FORCES AND TRANSVERSE MOMENTB-1

APPENDIX B SUPERSTRUCTURE - DL & SDL C-1

&"Arial,Regular"&8 &"Arial,Regular"&8 Design of Substructure and foundation

&"Arial,Regular"&8 &"Arial,Regular"&8 i&"Arial,Regular"&8

IntroductionCHAPTER - 1

Introduction

It is proposed to construct a bridge structure. The proposed deck width of bridge is 8.4 m with carriageway of 7.5m , Crash Barrier of 0.45 m both sides sides.

Code of referenceIRC:5-1997IRC:6-2010IRC:21-2000IRC:78-2000IS:6403-1981

&"Arial,Regular"&8 &"Arial,Regular"&8 Design of Substructure and foundation

&"Arial,Regular"&8 &"Arial,Regular"&8 &P&"Arial,Regular"&8

DesignDataCHAPTER - 2

Design Data

2.1Design LevelsFormation road levelFRL107.77714.4370Bearing top levelBTL105.165Pier cap top levelATL104.815Ground levelGL93.340Highest Flood LevelHFL104.027Maximum scour levelMSL91.848Pile cap top levelPC.top91.648Pile cap bottom levelPC.bott.89.84867.848

2.2Superstructure Data21.948Span c/c of expansion joints of left spanl.span.ej25.000Span c/c of bearings of left spanl.span.bea24.000Span c/c of expansion joints of right spanr.span.ej25.000Span c/c of bearings of right spanr.span.bea24.000Overall widthowidth8.400Carriageway widthcarw7.500Crash barrier widthcbw0.450Footpath/ safety kerb widthfpw0.000cross slope for drainagecslope0.025Overall depth of superstructure of left spanl.dep.sup2.400Overall depth of superstructure of right spanr.dep.sup2.400Thickness of deck slabthk.deck0.200Thickness of wearing coatthk.wc0.075

2.3Substructure DataPier widthp.wid1.800Pier shaft thicknessp.thk1.800Pier cap rectangular heightp.ht.r1.000Pier cap trapezoidal heightp.ht.t1.000Pier shaft heightp.ht11.167Pier cap left projectionpr.pcap.l0.100Pier cap right projectionpr.pcap.r0.100Pier cap width at topwid.pcap.t8.400Pier cap width at bottomwid.pcap.b2.000eccentricity of pier centre and left bearing centreeccn.l-0.500eccentricity of pier centre and right bearing centreeccn.r0.500

2.4Pile Foundation DataLength of Pile capplcp.len5.100Width of Pile capplcp.wid8.700Depth of Pile capplcp.dep1.800Dia of Pilepl.dia1.200Length of Pilepl.len20.000

2.5Soil DataCohesion of Soilc.soil0.000Angle of internal friction.soil30.000Safe Bearing Capacity of soil in normal casesbc.n2500.000Safe Bearing Capacity of soil in seismic casesbc.s3125.000

2.6Material DataGrade of concreteM 35R.C.C.

Grade of flexure reinforcementFe 500Grade of shear reinforcementFe 500

2.7Bearing DataType of bearingPOT CUM PTFE

2.8Live load Data2 lane of class AOR1 lane of class 70R

2.9Seismic DataSeismic Analysis TypeResponse spectrum method(using standard response spectra)Seismic zoneII

2.10Material unit weight Dataunit weight of RCCuwc25unit weight of wearing coatuwwc22unit weight of dry soildry18unit weight of submerged soilsub10

2.11Calculation unitskN-m, MPa unless otherwise specified.

2.12Sign Convention

MomentClock wise+ve Anticlock wise-ve

&"Arial,Regular"&8 &"Arial,Regular"&8 Design of Substructure and foundation

&"Arial,Regular"&8 &"Arial,Regular"&8 &P&"Arial,Regular"&8

Load on PierbaseCHAPTER - 3

Calculation of Loads on Pier

3.1Normal case3.1.1Calculation of forces at base of pier shaft in normal caseS.No.DescriptionLoadeccn/Moment(V/ H)lever arm(ML)1Vertical Load1.1DL+SDL reaction40000.0000Pier cap (Normal)1.2Pier cap6800.0000this sheet(calc eccn and moment of cap)Ax from Ly from TAvg. lenVol.1.3Pier shaft7100.00002.0001.0000.5008.40016.8001.4aLL max reaction case8640.1461260.1000.0501.3335.2000.5201.4bLL max long. moment case7690.5003840.1002.1501.3335.2000.5201.4cLL max trans. moment case8640.1461261.8001.1001.5005.2009.360

4.0001.0500.99227.200

2Horizontal Load2.1aBraking max rea./ ver. load case20013.51727032.1bBraking max long. moment case20013.51727032.1cBraking max trans. moment case20013.5172703

Note: All calculations has been done about centre line of pier shaft.20000.510003.1.2Summary of forces & moments at base of pier shaft for normal case

3.1.2.1Normal case

S.No.DescriptionVertical loadLateral loadMoment VHLMLMT1LL max reaction case6254200283010950.45244831092LL max long. moment case615920030888880.50131656590.91072479953LL max trans. moment case6254200283010950.45244831094Span dislodged33900100000.2949520111

3.2Seismic case3.2.1Calculation of forces at base of pier shaft in seismic case

S.No.DescriptionVertical loadLateral forceSeismic lever armSeismic moment1Due to Vertical Load1.1DL+SDL reaction400020013.51727031.2Pier cap6803412.4174221.3Pier shaft710365.5831981.4aLL max vertical load case2221113.5171501.4bLL max long. moment case2001013.5171351.4cLL max trans. moment case2001013.517135

2Due to Horizontal Load2.1aBraking max vertical load case4013.5175412.1bBraking max long. moment case4013.5175412.1cBraking max trans. moment case4013.517541

3.2.2Summary of forces at base of pier shaft in seismic longitudinal and transverse case

S.No.DescriptionLongitudinalTransverseHLMLHTMT1Due to Vertical Load1.1Superstructure DL+SDL200270320027031.2Substructure DL70620706201.3aLL max vertical load case00111501.3bLL max long. moment case00101351.3cLL max trans. moment case0010135

2Due to Horizontal Load2.1aBraking max vertical load case40541002.1bBraking max long. moment case40541002.1cBraking max trans. moment case4054100

3.2.3Summary of seismic design forces at base of pier shaft as per IRC:6-2010, Cl. 219.4

S.No.DescriptionLongitudinalTransverseHLMLHTMT1Due to Vertical Load1.1Superstructure DL+SDL260351426035141.2Substructure DL90807908071.3aLL max vertical load case345111501.3bLL max long. moment case341101351.3cLL max trans. moment case34110135

2Due to Horizontal Load2.1aBraking max vertical load case40541002.1bBraking max long. moment case40541002.1cBraking max trans. moment case40541003.2.4Calculation of Forces at base of pier shaft in seismic case3.2.4.1Longitudinal caseS.No.DescriptionVertical loadLateral loadMoment VHLMLMT1Due to Vertical Load1.1Superstructure DL+SDL400026035141.2Substructure DL1390908071.3aLL max vertical load case2223702191.3bLL max long. moment case20031171781.3cLL max trans. moment case2003662191.4aBuoyancy LWL001.4bBuoyancy HFL00

2Due to Horizontal Load2.1aBraking max vertical load case405412.1bBraking max long. moment case405412.1cBraking max trans. moment case40541

3.2.4.2Transverse caseS.No.DescriptionVertical loadLateral loadMoment VHTMLMT1Due to Vertical Load1.1Superstructure DL+SDL4000260035141.2Substructure DL13909008071.3aLL max vertical load case22211253691.3bLL max long. moment case20010773131.3cLL max trans. moment case2001025354

3.2.5Summary of forces & moments at base of pier shaft for seismic case3.2.5.1Longitudinal case

S.No.DescriptionVertical loadLateral loadMoment VHLMLMT1LWL Case1.1LL max reaction case561239449322191.2LL max long. moment case559039349791781.3LL max trans. moment case559039349272191.4Span dislodged33902203564

3.2.5.2Transverse caseS.No.DescriptionVertical loadLateral loadMoment VHTMLMT1LWL Case1.1LL max reaction case561236156646901.2LL max long. moment case559036061846341.3LL max trans. moment case559036056646751.4Span dislodged339022010002564

&"Arial,Regular"&8 &"Arial,Regular"&8 Design of Substructure and foundation

&"Arial,Regular"&8 &"Arial,Regular"&8&P &"Arial,Regular"&8

Load on pcbaseCHAPTER - 4

Calculation of Loads on base of Pile Cap

4.1Design DataLength of Pile capplcp.len5.100Width of Pile capplcp.wid8.700Depth of Pile capplcp.dep1.800Dia of Pilepl.dia1.200Length of Pilepl.len20.000

4.2Calculation of loads on foundation4.2.1Normal case4.2.1.1Calculation of forces at base of footing in normal case

S.No.DescriptionLoadeccn/Moment(V/ H)lever arm(ML)1Vertical Load1.1DL+SDL reaction40000.00001.2Pier cap6800.00001.3Pier shaft7100.00001.4Soil weight over pile cap13060.00001.5Pile cap19970.00001.6aLL max reaction case8640.1461261.6bLL max long. moment case7690.5003841.6cLL max trans. moment case8640.146126

2Horizontal Load2.1aBraking max rea./ ver. load case20015.31730632.1bBraking max long. moment case20015.31730632.1cBraking max trans. moment case20015.3173063

Note: All calculations has been done about centre line of pier shaft.4.2.1.2Summary of forces & moments at base of footing for normal case

4.2.1.2.1Normal case

S.No.DescriptionVertical loadLateral loadMoment VHLMLMT1LL max reaction case9556200319010952LL max long. moment case946120034488883LL max trans. moment case9556200319010954Span dislodged6693010000

4.2.2Seismic case4.2.2.1Calculation of forces at base of footing in seismic case

S.No.DescriptionVertical loadLateral forceSeismic lever armSeismic moment1Due to Vertical Load1.1DL+SDL reaction400020015.31730631.2Pier cap6803414.2174831.3Pier shaft710367.3832621.4Soil weight over pile cap1306651.8001171.5Pile cap19971000.900901.6aLL max vertical load case2221115.3171701.6bLL max long. moment case2001015.3171531.6cLL max trans. moment case2001015.317153

2Due to Horizontal Load2.1aBraking max vertical load case4015.3176132.1bBraking max long. moment case4015.3176132.1cBraking max trans. moment case4015.317613

4.2.2.2Summary of forces at base of footing in seismic longitudinal and transverse case

S.No.DescriptionLongitudinalTransverseHLMLHTMT1Due to Vertical Load1.1Superstructure DL+SDL200306320030631.2Substructure DL2359532359531.3aLL max vertical load case00111701.3bLL max long. moment case00101531.3cLL max trans. moment case0010153

2Due to Horizontal Load2.1aBraking max vertical load case40613002.1bBraking max long. moment case40613002.1cBraking max trans. moment case4061300

4.2.2.3Summary of seismic design forces at base of footing as per IRC:6-2010, Cl. 219.4

S.No.DescriptionLongitudinalTransverseHLMLHTMT1Due to Vertical Load1.1Superstructure DL+SDL260398226039821.2Substructure DL305123930512391.3aLL max vertical load case351111701.3bLL max long. moment case346101531.3cLL max trans. moment case34610153

2Due to Horizontal Load2.1aBraking max vertical load case40613002.1bBraking max long. moment case40613002.1cBraking max trans. moment case4061300

4.2.2.4Calculation of Forces at base of footing in seismic case4.2.2.4.1Longitudinal case

S.No.DescriptionVertical loadLateral loadMoment VHLMLMT1Due to Vertical Load1.1Superstructure DL+SDL400026039821.2Substructure DL469330512391.3aLL max vertical load case2223762191.3bLL max long. moment case20031231781.3cLL max trans. moment case200371219

2Due to Horizontal Load2.1aBraking max vertical load case406132.1bBraking max long. moment case406132.1cBraking max trans. moment case40613

4.2.2.4.2Transverse case

S.No.DescriptionVertical loadLateral loadMoment VHTMLMT1Due to Vertical Load1.1Superstructure DL+SDL4000260039821.2Substructure DL4693305012391.3aLL max vertical load case22211253891.3bLL max long. moment case20010773311.3cLL max trans. moment case2001025372

4.2.2.5Summary of forces & moments at base of footing for seismic case4.2.2.5.1Longitudinal case

S.No.DescriptionVertical loadLateral loadMoment VHLMLMT

1LL max vertical load case891460859102192LL max long. moment case889360859571783LL max trans. moment case889360859052194Span dislodged66934353230

4.2.2.5.2Transverse case

S.No.DescriptionVertical loadLateral loadMoment VHTMLMT

1LL max vertical load case891457663856102LL max long. moment case889357569055523LL max trans. moment case889357563855934Span dislodged669343510003230

&"Arial,Regular"&8 &"Arial,Regular"&8 Design of Substructure and foundation

&"Arial,Regular"&8 &"Arial,Regular"&8 &P&"Arial,Regular"&8

Pile CapCHAPTER - 5

Design of Pile Cap

5.1General DataNumber of Pilespl.nr6Permissible tensile strength of reinforcementst240Clear cover to reinforcementcov.75mm

5.1.1Distance of Individual Pile from CG of Pile Cap

Pile No.Distance in Longitudinal DirectionDistance in Transverse Direction

1-1.83.62-1.80.03-1.8-3.641.83.651.80.061.8-3.6

ld.sumsq19.4td.sumsq51.8

5.2Design LoadsLoad CaseVertical loadMoment VMLMT

Normal CaseLL max reaction case955631901095LL max long. moment case94613448888LL max trans. moment case955631901095Span dislodged669310000

Seismic LongitudinalLL max reaction case89145910219LL max long. moment case88935957178LL max trans. moment case88935905219Span dislodged669332300

Seismic TransverseLL max reaction case89146385610LL max long. moment case88936905552LL max trans. moment case88936385593Span dislodged6693100032305.3Load Calculation on Pile5.3.1Normal Case

Sl. No.Pile No.Pile reaction fromTotal ReactionMaximum ReactionMinimum ReactionVertical loadLongitudinal momentTransverse moment

1.111593-2957613731964122121593-2950129731593-295-76122141593295761964515932950188861593295-761812

1.211577-3196213191958119621577-3190125831577-319-62119641577319621958515773190189661577319-621834

1.311593-2957613731964122121593-2950129731593-295-76122141593295761964515932950188861593295-761812

1.411115-93010231208102321115-930102331115-9301023411159301208511159301208611159301208

5.3.2Seismic Longitudinal

Sl. No.Pile No.Pile reaction fromTotal ReactionMaximum ReactionMinimum ReactionVertical loadLongitudinal momentTransverse moment

2.111486-54715954204892321486-547093831486-547-1592341486547152048514865470203361486547-152018

2.211482-55212943204691821482-552093131482-552-1291841482552122046514825520203461482552-122021

2.311482-54715951204492021482-547093531482-547-1592041482547152044514825470202961482547-152014

2.411115-2990816141481621115-299081631115-2990816411152990141451115299014146111529901414

5.3.3Seismic Transverse

Sl. No.Pile No.Pile reaction fromTotal ReactionMaximum ReactionMinimum ReactionVertical loadLongitudinal momentTransverse moment

3.111486-5939018161934103721486-590142731486-59-3901037414865939019345148659015456148659-3901155

3.211482-6438618041931103321482-640141831482-64-3861033414826438619315148264015466148264-3861160

3.311482-5938818111930103521482-590142331482-59-3881035414825938819305148259015416148259-3881153

3.411115-932241247143279921115-930102331115-93-224799411159322414325111593012086111593-224984

5.3.4Load Summary on Pile

Load CaseunitMaximum ReactionMinimum Reaction

NormalkN19641023Seismic LongitudinalkN2048816Seismic TransversekN1934799

5.4Design of Pile Cap (by STM)

Structural ElementunitLoad CaseNormalSeismic

Design Tension in TiekN19642048Permissible Tensile StressMPa240360Required area of reinforcementmm281845689Required area of reinforcement in pile region stripmm265474551Required area of reinforcement in between stripmm216371138

Pile Region strip (per metre width)Widthmm18001800Required area of reinforcement at bottommm236372529Minimum area of reinforcement throughout depthmm254005400Dia of bar at bottommm2525Required spacing of reinforcement at bottommm135194Provided spacing of reinforcement at bottommm100100Required area of reinforcement throughout depth (except tie)mm2491491Minimum area of reinforcement throughout depth (except tie)mm2540540Dia of bar along depthmm2020No. of layers along depthNo.11Required spacing of reinforcement throughout depthmm582582Provided spacing of reinforcement throughout depthmm100100

Non Pile Region strip (per metre width)Widthmm27002700Required area of reinforcement at bottommm2606421Minimum area of reinforcement throughout depthmm254005400Dia of bar at bottommm1616Required spacing of reinforcement at bottommm332477Provided spacing of reinforcement at bottommm100100Required area of reinforcement throughout depth (except tie)mm233893389Minimum area of reinforcement throughout depth (except tie)mm2540540Dia of bar along depthmm2525No. of layers along depthNo.11Required spacing of reinforcement throughout depthmm145145Provided spacing of reinforcement throughout depthmm100100

Note: Referring to literatures, total reinforcemnet in pilecap has been divided in two regions, 80% in pile region strip (1.5 times pile dia) and 20% in between strip.

&"Arial,Regular"&8 &"Arial,Regular"&8 Design of Substructure and foundation

&"Arial,Regular"&8 &"Arial,Regular"&8 &P

Pile designCHAPTER - 6

Design of Pile

6.1Design Data6.1.1Material PropertyGrade of concrete35Permissible bending strength of concrete11.67Grade of reinforcement500Permissible tensile strength of reinforcement240Modulus of elsticity of concrete2.96E+04Modulus of elsticity of reinforcement2.00E+05Modular ratio10.000clear cover0.0756.1.1Section PropertyMoment of Inertia of Pile0.106.2Determination of Depth of Fixity (Fixed Head Pile)As per IS: 2911 (Part1/ Sec 2) - 1979ANDwhereK1, K2Constants given in Table 1 and 2EYoung's modulus of pile materialIMoment of Inertia of Pile6.2.1Calculation of depth of fixity (For Piles in sand and normally loaded clays)

unitDesign Calculation

Pile length above ground levelmL10.0Pile length below ground levelmLe20.0ConstantkN/m2K15250.0ConstantmT3.6ConstantL1/T0.0ConstantLf/T2.18Length of equivalent cantilever below ground levelmLf.K17.8

6.3Determination of Deflection and Maximum moment in Pile (Fixed Head Pile)6.3.1Deflection is given by

whereQLateral load on each pile

6.3.2Maximum moment is given by

whereMFFixed End Momentmmoment reduction factor

6.3.3Calculation of Deflection and Maximum moment in each pileLoad CaseunitNormalSeismicLongitudinalTransverse

Lateral ForcekN33.3101.496.0Deflectionmm0.41.31.2Allowable deflectionmm5.010.010.0Fixed end momentkN-m129.4393.7372.8Moment reduction factor0.80.80.8Maximum MomentkN-m106.1322.8305.7Minimum Vertical loadkN1022.8816.4798.5Eccentricitym0.10.40.4

6.4Pile Design

DescriptionunitNormalSeismicLongitudinalTransverse

Minimum Vertical loadkN1023816799Maximum MomentkN-m106323306Dia of barmm202020No. of barNo.242424Minimum area of reinforcementmm2452445244524Provided area of reinforcementmm2754075407540Percentage of reinforcement%0.670.670.67Permissible Compressive Stress in concreteMPa121818Permissible Tensile Stress in steelMPa240360360Developed Compressive Stress in concreteMPa11010Developed Tensile Stress in steelMPa2278245CheckOKOKOK6.5Stress CheckMacro Output

INPUTOUTPUTAXI LOAFY867STRESSMOMMZ106TOP CONSTC-1.2952970551DIAOD1.2000000477BOT STLSBS-2.2258568949STE PERSP0.6666665839MOD RATMR10

INPUTOUTPUTAXI LOAFY202STRESSMOMMZ802TOP CONSTC-10.3596253346DIAOD1.2000000477BOT STLSBS277.5267748828STE PERSP0.6666665839MOD RATMR10

INPUTOUTPUTAXI LOAFY390STRESSMOMMZ793TOP CONSTC-10.0705892706DIAOD1.2000000477BOT STLSBS245.40880847STE PERSP0.6666665839MOD RATMR10

6.6Confining ReinforcementWhere Ash =area of bar cross sectionS =Spacingh =longer dimension of rectangle confing hoop measured to its outer face

Ag =gross area of cross sectionAk =Area of concrete corePier Shaft diam1.200Spacing Provide75mm < S < 100mmm0.075Cover providedm0.075Clear spanm20Dkm1.125Agm1.131Akm0.994Fckfck35Fyfy500Ashmm^273Dia of bar requiredmm10Dia of bar Providedmm12Special confing reinforcement shall be provided over a length (l0) from each joint face, towards midspan .

l0 =1/6 of clear spanmm3333l0 =Providedmm3700

Design of Substructure and foundation

&P

PierDesCHAPTER - 7

Design of Pier

7.1Design DataDimensional DataPier Diadia1.800Pier shaft thicknessa.thk1.800Pier shaft heighta.ht11.167

Material PropertyGrade of concretea.fck35Permissible bending strength of concretea.cbc11.67Grade of flexure reinforcementa.fy.fl500Grade of shear reinforcementa.fy.sh500Permissible tensile strength of flexure reinforcementa.st.fl240Permissible tensile strength of shear reinforcementa.st.sh200Modulus of elsticity of concretea.Ec2.96E+04Modulus of elsticity of reinforcementa.Es2.00E+05Modular ratioa.m10.000clear covera.ccov0.050

7.2Design of Pier Shaft7.2.1Load summary

S.No.LoadcaseVertical loadMomentsqrtVMLMT(ML^2+MT^2)1Normal1.1LL max reaction case62542830109530341.2LL max long. moment case6159308888832131.3LL max trans. moment case62542830109530341.4Span dislodged3390100001000

2Seismic longitudinal2.1LL max reaction case5612493221949372.2LL max long. moment case5590497917849822.3LL max trans. moment case5590492721949322.4Span dislodged3390356403564

3Seismic transverse3.1LL max reaction case5612566469047243.2LL max long. moment case5590618463446753.3LL max trans. moment case5590566467547093.4Span dislodged3390100025642752

P(min)M (max) Normal case339032133613.58318631662463.2507371962Seismic long. case339049823666.458186316612327.3818736402Seismic trans. case339047243666.458186316612419.2507601131

7.2.2Stress CheckMacro Output

NORMAL CASE (P min M max)INPUTOUTPUTAXI LOAFY3390STRESSMOMMZ3213TOP CONSTC-9.1820475638OKDIAOD1.7999999523BOT STLSBS122.743182887OKSTE PERSP0.8680556274MOD RATMR10

SEISMIC CASE (P min M max)INPUTOUTPUTAXI LOAFY3390STRESSMOMMZ4982TOP CONSTC-14.9798096641OKDIAOD1.7999999523BOT STLSBS268.0917296681OKSTE PERSP0.8680556274MOD RATMR10

Provide25mm dia45bar

7.2.3Confining Reinforcement

Where Ash =area of bar cross sectionS =Spacingh =longer dimension of rectangle confing hoop measured to its outer face

Ag =gross area of cross sectionAk =Area of concrete core

Pier Shaft diam1.800Spacing Provide 75mm < S < 100mmm0.075Cover providedm0.050Clear spanm11.167Dkm1.700Agm2.545Akm2.270FckN/mm^235FyN/mm^2500Ashmm^297Dia of bar requiredmm11Dia of bar Providedmm16

Special confing reinforcement shall be provided over a length (l0) from each joint face, towards midspan .

l0 =1/6 of clear spanmm1861l0 =Providedmm750

7.2.3Check for shear0.150.250.50.7511.250.20.230.310.370.420.45Load CaseunitNormalSeismicLongitudinalLongitudinalTransverse

Shear ForcekN200394361Widthmm180018001800Overall depthmm180018001800Effective depthmm167516751675Area of tension reinforcementmm2220892208922089

percentage of tension reinforcement%0.870.870.87permissible shear stressMPa0.390.390.39

permissible shear forcekN118711871187design shear forcekN000

&"Arial,Regular"&8 &"Arial,Regular"&8 Design of Substructure and foundation

&"Arial,Regular"&8 &"Arial,Regular"&8 &P&"Arial,Regular"&8

PierCapDesCHAPTER - 8

Design of Pier Cap

1.20m33.00m1.20m

1.000m1.000m

1.000m1.000m

1.20m3.00m 31.20m8.40m

1.00m

1.00m

1.200m1.200m

1.80m

Pier Shaft Dia.=1.80 msqrt(PI()*Dia*Dia/4)Width of Deck slab=8.400 mLength of Pier cap=8.400 mAssume Width of Pier Cap at LHS =1.000 mlayer1Width of Pier Cap at RHS =1.000 mDia of Main 32Depth of Pier Cap =2.000 mDia of Stirrups16Effective Depth =1.934 mClear Cover50

Forces due to load at outer bearingMaximum Dead Load Reaction=100.000 tDistribution factor for Live Load=0.7Max Live Load Reaction=86.38 tTotal Reation=186.38 t

Distance of Bearing from face of pier in Transverse direction (at) = =2.100mDepth of section (deff)=1.364mat/d =1.540>1 Design as Cantilever Beam in Transverse Direction

&"Arial,Regular"&8 &"Arial,Regular"&8 Design of Substructure and foundation

&"Arial,Regular"&8 &"Arial,Regular"&8 &P&"Arial,Regular"&8

PierCapTransDir8.1Design of Pier Cap in Transverse Direction (using Strut and Tie Method)3.3002.1001.200 P110.501.934CStrut and Tie ModelT -Tension TieC -Compression Strut1=42.642=ERROR:#DIV/0!tan 1=0.921tan 2=ERROR:#DIV/0!Grade of Reinforcement=Fe- 500Permissible Tensile stress in Steel=24000t/m28.1.1Tie ReinforcementForces due to load at outer bearingMaximum Dead Load Reaction=100.00tDistribution factor for Live Load=0.70Max Live Load Reaction=86.38tTotal Reation=160.46tSelfweight of Piercap upto face of Pier=24.75tTotal Force, P1=185.21tTotal Force, P2160.46Tension, T in Tension TieP1*Cot 1201.11tAst Required=8380mm2Provide21no. of25mm dia bars in1layers.Ast Provided=10308mm2CheckO.K.

8.1.2StrutRef. AASTHO LRFD cl. 5.6.3.3Pedestal Size=700 mm X700 mmArea of strutA*Sin 0.3319m2Compression in Conpression StrutP*Cosec 136.70tCompressive Stress=411.82t/m20.65*fc'=1592.5t/m2CheckO.K.

8.1.3Crack Control ReinforcementRef. AASTHO LRFD cl. 5.6.3.6Minimun Reinforcement in all orthogonal directions =0.30%a)Vertical Shear ReinforcementMinimum Reinforcement=0.30%Ast required for Vertical shear=5802mm213500Bar Dia=12mmNo. of legs=8Spacing reqd.=589mmSpacing Provided=150mmCheckO.K.

Provide12mm dia8legged vert. stirrups @150mm c/c.b)Horizontal Shear Reinforcement (Hx)Minimum Reinforcement=0.30%Ast required for Vertical shear=12048.3mm2Bar Dia=16mmNo. of legs=8Spacing reqd.=280mmSpacing Provided=150mmCheckO.K.

Provide16mm dia8legged horiz. stirrups @150mm c/c.c)Horizontal Shear Reinforcement (Hy)Minimum Reinforcement=0.30%Ast required for Vertical shear=12048.3mm2Bar Dia=16mmNo. of legs=8Spacing reqd.=280mmSpacing Provided=150mmCheckO.K.

Provide16mm dia8legged horiz. stirrups @150mm c/c.

&"Arial,Regular"&8 &"Arial,Regular"&8 Design of Substructure and foundation

&"Arial,Regular"&8 &"Arial,Regular"&8 &P&"Arial,Regular"&8

PierCapCorbelLongDirection7.2Design of Pier Cap (as a Corbel) in Longitudinal DirectionDistance of bearing from center of shafta1=0mma2=0mmCap projection from c/l of the shaft=3300mmShaft width=1800mmHeight of Corbelh=2000mmWidth of Corbelb=2000mmLength of Corbel/Projection of capl=2400mmDist of load app. point from face of pier shafta=-900mmHeight of Pedestal and Bearing=350mmDiameter of Main reinforcementl=32mmNo of layer=1No.sDiameter of stirrupss=16mmClear cover=40mmGrade of concretefck=35.0N/mm2Grade of steelfy=500.0N/mm2Permissible Flexural Compressive stresscbc=11.67N/mm2Permissible stess in steelst=240N/mm2

Ultimate Vertical load acting on the cap=186.4t

Selfweight of Corbel=7.2t=194t

Say =150.0tDesign shear force=150.0tHorizontal force=0.0t=30.0tCylindrical strength of concretefc'=28.0MpaEffective depth d'=1944mmEffective depth for Corbel d = 0.8 x d' =1555mmChecka/d'=-0.46 ATLIF HFL< ATLTotal83.011504.638604.250

C.1.2Longitudinal Direction

S No.Load acting onV2 F FTotalML @ base of PierML @ base of Foundation(m2/sec2)(kN/m)(kN)(kN-m)(kN-m)

HFL6.153Pier CapTop6.15333.59727.254235.230267.935Bottom5.83310.009Pier ShaftTop5.8334.00414.57361.43478.922MSL00

Total41.828296.665346.858

&"Arial,Regular"&8 &"Arial,Regular"&8 Design of Substructure and Foundation

&"Arial,Regular"&8Pier&"Arial,Regular"&8 C-&P&"Arial,Regular"&8