Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at...

21
Brane SUSY Breaking and Inflation – implications for scalar fields and CMB distorsion Augusto Sagnotti Scuola Normale Superiore, Pisa Rencontres de Moriond EW 2013 La Thuile, March 2 – 9 2013 E. Dudas, N. Kitazawa, AS, P.L. B 694 (2010) 80 [arXiv:1009.0874 [hep-th]]. E. Dudas, N. Kitazawa, S. Patil, AS, JCAP 1205 (2012) 012 [arXiv:1202.6630 [hep-th]] P. Fré, A.S., A.S. Sorin, to appear E. Dudas, N. Kitazawa, S. Patil, AS, in progress

Transcript of Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at...

Page 1: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

Brane SUSY Breaking and Inflation – implications for scalar

fields and CMB distorsion Augusto Sagnotti

Scuola Normale Superiore, Pisa

Rencontres de Moriond EW 2013 La Thuile, March 2 – 9 2013

E. Dudas, N. Kitazawa, AS, P.L. B 694 (2010) 80 [arXiv:1009.0874 [hep-th]]. E. Dudas, N. Kitazawa, S. Patil, AS, JCAP 1205 (2012) 012 [arXiv:1202.6630 [hep-th]] P. Fré, A.S., A.S. Sorin, to appear E. Dudas, N. Kitazawa, S. Patil, AS, in progress

Page 2: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

Brane SUSY Breaking

2

(Sugimoto, 1999) (Antoniadis, Dudas, AS, 1999) (Aldazabal, Uranga, 1999) (Angelantonj, 1999)

• SUSY : D9 (T > 0, Q > 0) + O9- (T < 0, Q < 0) SO(32)

A. Sagnotti – Moriond EW 2013

• Dualities : link different strings • Orientifolds : link closed and open strings

Page 3: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

Brane SUSY Breaking

3

(Sugimoto, 1999) (Antoniadis, Dudas, AS, 1999) (Aldazabal, Uranga, 1999) (Angelantonj, 1999)

• BSB : anti-D9(T > 0, Q < 0) + O9+ (T > 0, Q > 0) USp(32)

A. Sagnotti – Moriond EW 2013

• Dualities : link different strings • Orientifolds : link closed and open strings

Page 4: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

Brane SUSY Breaking

4

(Sugimoto, 1999) (Antoniadis, Dudas, AS, 1999) (Aldazabal, Uranga, 1999) (Angelantonj, 1999)

BSB: Tension unbalance exponential potential

S10 =1

2·210

Zd10x

p¡g

©e¡ 2Á

¡¡R + 4 (@Á)2

¢¡ T e¡Á + : : :

ª

Flat space : runaway behavior

String-scale breaking : early-Universe Cosmology ? A. Sagnotti – Moriond EW 2013

Tree – level BSB

SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

Page 5: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

A climbing scalar in d dim’s

5

S =1

2·2

ZdDx

p¡g

·R ¡ 1

2(@Á)2 ¡ V (Á) + : : :

¸• Consider the action for gravity and a scalar φ :

• Look for cosmological solutions of the type

ds2 = ¡ e 2B(t) dt2 + e 2A(t) dx ¢ dx

• Make the convenient gauge choice V (Á) e2B = M2

(Halliwell, 1987) ……………… (Dudas,,Mourad, 2000) (Russo, 2004) ………………..

¯ =

rd¡ 1

d¡ 2; ¿ = M ¯ t ; ' =

¯ Áp2

; A = (d¡ 1) A

• In expanding phase : Ä' + _'p

1 + _' 2 +¡1 + _' 2

¢ 1

2V

@V

@'= 0

• Let :

• OUR CASE : V = exp( 2 ° ') ¡! 1

2 V

@V

@ '= °

A. Sagnotti – Moriond EW 2013

Page 6: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

A climbing scalar in d dim’s

6

• γ < 1 ? Both signs of speed a. “Climbing” solution (ϕ climbs, then descends):

b. “Descending” solution (ϕ only descends ):

_' =1

2

·r1¡ °

1 + °coth

³¿

2

p1¡ °2

´¡r

1 + °

1¡ °tanh

³¿

2

p1¡ °2

´¸

_' =1

2

·r1¡ °

1 + °tanh

³¿

2

p1¡ °2

´¡r

1 + °

1¡ °coth

³¿

2

p1¡ °2

´¸

vl = ¡ °p1¡ ° 2Limiting τ- speed (LM attractor):

γ 1 : LM attractor & descending solution disappear

_' =1

2 ¿¡ ¿

2• γ ≥ 1 ? Climbing ! E.g. for γ=1 :

CLIMBING : in ALL asymptotically exponential potentials with γ≥ 1 !

A. Sagnotti – Moriond EW 2013

NOTE : only ϕo . Early speed singularity time !

Page 7: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

String Realizations

7

a. Two - derivative couplings : α΄ corrections ? b. [BUT: climbing weak string coupling]

Dimensional reduction of (critical) 10-dimensional low-energy EFT:

(Condeescu, Dudas, in progress)

ds2 = e¡(10¡d)(d¡2)

¾ g¹º dx¹ dxº + e¾ ±ij dxi dxj

SD =1

2·210

Zd 10x

p¡g

©e¡ 2Á

¡¡R + 4 (@Á)2

¢¡ T e¡Á + : : :

ª

Sd =1

2·2d

Zd dx

p¡g

½¡ R ¡ 1

2(@Á)2 ¡ 2(10¡ d)

(d¡ 2)(@¾)2 ¡ T e

32 Á¡ (10¡d)

(d¡2)¾ + : : :

¾

• Two scalar combinations (Φs and Φt). Focus on Φt :

Sd =1

2·2d

Zd dx

p¡g

½¡R ¡ 1

2(@©s)

2 ¡ 1

2(@©t)

2 ¡ T e¢ ©t

¾

¢ =

s2(d¡ 1)

(d¡ 2)

NOTE :

° = 1 8d < 10!

A. Sagnotti – Moriond EW 2013

Page 8: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

Climbing with a SUSY Axion

8

• No-scale reduction + 10D tadpole

(Kachru, Kallosh, Linde, Trivedi, 2003)

(Cremmer, Ferrara, Kounnas, Nanopoulos, 1983) (Witten, 1985)

S4 =1

2·24

Zd4x

p¡g

½R ¡ 1

2(@©t)

2 ¡ 1

2e

2p3

©t (@µ)2 ¡ V (©t; µ) + ¢ ¢ ¢¾

T = e¡ ©tp

3 + iµp3

V (©t; µ) =c

(T + ¹T )3+ V(non pert:)

KKLT uplift

©t =2p3

x ; µ =2p3

y

d2x

d¿2+

dx

d¿

s

1 +

µdx

d¿

¶2

+ e4x3

µdy

d¿

¶2

+1

2 V

@V

@x

"1 +

µdx

d¿

¶2#

+1

2 V

@V

@y

dx

d¿

dy

d¿¡ 2

3e

4x3

µdy

d¿

¶2

= 0 ;

d2y

d¿ 2+

dy

d¿

s

1 +

µdx

d¿

¶2

+ e4x3

µdy

d¿

¶2

+

µ1

2 V

@V

@x+

4

3

¶dx

d¿

dy

d¿

+1

2 V

@V

@y

"e¡

4x3 +

µdy

d¿

¶2#

= 0

AXION INITIALLY “FROZEN “ CLIMBING ! A. Sagnotti – Moriond EW 2013

Page 9: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

Climbing can inject Inflation

9

a. “Hard” exponential of Brane SUSY Breaking b. “Soft” exponential (γ < 1/√3):

Non-BPS D3 brane gives γ = 1/2 [+ stabilization of Φs]

V (Á) = M4 ¡

e 2' + e 2 ° '¢

(Sen , 1998) (Dudas, Mourad, AS 2001)

BSB “Hard exponential“ makes initial climbing phase inevitable

“Soft exponential” drives inflation during subsequent descent

Would need :

° ¼ 1

12

A. Sagnotti – Moriond EW 2013

ϕo : “hardness” of kick !

Page 10: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

Mukhanov – Sasaki Equation

10

Schroedinger-like equation for scalar (or tensor) fluctuations : “MS Potential” : determined by the background

d 2vk(´)

d´2+

£k2 ¡ Ws(´)

¤vk(´) = 0

ds2 = a2(´)¡¡ d´2 + dx ¢ dx

¢

Scalar : z(´) = a2(´)Á 00(´)

a 0(´)

Tensor : z(´) = a

Ws =1

z

d 2 z

d´ 2

Initial Singularity : Ws g´!¡´0¡ 1

4

1

(´ + ´0)2

LM In°ation : Ws g!0

º2 ¡ 14

´2

·º =

3

2

1 ¡ ° 2

1 ¡ 3 ° 2

¸

P (k) » k3

¯¯v(¡²)

z(¡²)

¯¯2

A. Sagnotti – Moriond EW 2013

Page 11: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

Numerical Power Spectra

11

²Á ´ ¡_H

H2; ´Á ´

VÁÁV

nS ¡ 1 = 2( ´Á ¡ 3 ²Á) ;

nT ¡ 1 = ¡ 2 ²ÁPS;T »

Zdk

kknS;T¡1

Key features: 1. Harder “kicks” make ϕ reach later the attractor 2. Even with mild kicks the time scale is 103- 104 in t M ! 3. η re-equilibrates slowly

A. Sagnotti – Moriond EW 2013

Page 12: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

Analytic Power Spectra

12

WKB: vk(¡ ²) »1

4pjWs(¡²) ¡ k2j

exp

µZ ¡²

¡´?

pjWs(y) ¡ k2j dy

A. Sagnotti – Moriond EW 2013

Page 13: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

Analytic Power Spectra

13

WKB: vk(¡ ²) »1

4pjWs(¡²) ¡ k2j

exp

µZ ¡²

¡´?

pjWs(y) ¡ k2j dy

WIGGLES : cfr. Q.M. resonant transmission

A. Sagnotti – Moriond EW 2013

Page 14: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

An Observable Window ?

14

WMAP9 power spectrum :

NOTE : ¯¯¢C`

C`

¯¯ =

r2

2` + 1

(Dudas, Kitazawa, Patil, AS, 2013, in progress) A. Sagnotti – Moriond EW 2013

Page 15: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

An Observable Window ?

15

WMAP9 power spectrum :

But with a harder “kick”…

(Dudas, Kitazawa, Patil, AS, 2013, in progress) A. Sagnotti – Moriond EW 2013

Qualitatively the low-k tail

Page 16: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

16

Thank you for your attention

Another way of presenting the results in slide 15 2 parameters to adjust : “hardness” of kick & time of horizon exit

A. Sagnotti – Moriond EW 2013

Page 17: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

Summary & Outlook

17

• BRANE SUSY BREAKING (d ≤ 10) : “critical” exponential potentials

• “HARD” exponential of BSB + “MILD” exponential (for inflation) :

WIDE IR depression of scalar spectrum (~ 6 e-folds)

[MILDER IR enhancement of tensor spectrum]

LARGE quadrupole depression & qualitatively next few multipoles !

[ LARGE CLASS of integrable potentials with climbing (to appear) ]

A. Sagnotti – Moriond EW 2013

WITH “short” inflation (~ 60 e-folds) :

BISPECTRUM ?

Page 18: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

18

Extra slides

A. Sagnotti – Moriond EW 2013

Page 19: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

19

Scales

A. Sagnotti – Moriond EW 2013

• BSB potential: T10 =1

(® 0)5! T4 =

1

(® 0)2

µRp® 0

¶6

=¡M¢4

• Attractor Power spectra:

PS(k) =1

16¼GN ²

µH?

¶2 µk

a H?

¶nS¡1

PT (k) =1

¼GN ²

µH?

¶2 µk

a H?

¶ns¡1

nS = 1¡ 6² + 2´ nT = ¡ 2 ²

² = 8¼GN

µV 0

V

¶2

; ´ = 16¼GN

µV 00

V

¶2

• COBE normalization & bounds on ∈:

H? ¼ 1015 £ (²)12 GeV

¹M ¼ 6:5 1016 £ (²)14 GeV

10¡4 <PT

PS< 1:28 ! 10¡5 < ² < 0:08

3:5 1015 GeV < M < 3 1016 GeV

3 1012 GeV < H? < 3:4 1014 GeV

Page 20: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

Integrable Scalar Potentials, I (climbing+barrier)

20

A number of exactly solvable (exp-like) potentials can be identified with techniques drawn from the theory of integrable systems. For instance, if V (Á) = ¸

³e

2° ' + e 2 ° '

´

(Fré, A.S., Sorin, to appear)

e' = e'0

·sinh(!°¿)

cosh !(¿ ¡ ¿0)

¸ °

1¡°2

eA = eA0

"cosh°

2

!(¿ ¡ ¿0)

sinh(!°¿)

# 1

1¡°2

!2 =¸

°

p1¡ °2 e 2A0

p1¡°2

Qualitatively : as in the figure

Letting :

ds2 = ¡ e 2A d¿ 2 + e2Ad¡1 dx ¢ dx

Page 21: Brane SUSY Breaking and Inflation – implications for ... · Tree – level BSB SUSY broken at string scale in open sector, exact in closed Stable vacuum Goldstino in open sector

21 A. Sagnotti – Moriond EW 2013

Integrable Scalar Potentials, II (graceful exit)

An integrable potential where climbing is followed by a graceful exit.

(Fré, A.S., Sorin, to appear)

ds2 = ¡ e¡ 2A d¿2 + e2Ad¡1 dx ¢ dx

V(') = arctan¡e¡ 2'

¢

A = log¡x y¢

; ' = log

µx

y

z = x + i y

L = 2 Imh¡ _z2 ¡ 8 C log z ¡ 8 D

i

Imh_z2 ¡ 8 C log z ¡ 8 D

i= 0 (H: C:)

System solved by a contour integral, and the shape of the contour is determined so that t is REAL

t =

Z z

a

dzrlog

³zz0

´