Boundary Layer Theory

50
- Prof. Dr. Norbert Ebeling Boundary Layer Theory Lecture notes

description

this gives a detailed description of boundry layer theory. Trust me it would be useful for u. I made it for seminar.

Transcript of Boundary Layer Theory

  • -

    Prof. Dr. Norbert Ebeling

    Boundary Layer TheoryLecture notes

  • Prof. Dr. N. Ebeling Boundary Layer Theory - 1 -

    Contents : 1) General fluid mechanics / Newton fluids 1.1) Euler's law of hydrostatics 1.2) Friction 1.3) Dimensionless numbers 1.4) Laminar flow in a tube 2) Conservation equations 2.1) Mass balance for = const. 2.2) Euler's and Bernoulli's equations 2.3) Navier-Stokes equations 3) Boundary layers 3.1) Boundary layers on a flat plate 3.2) Friction forces on a plate 3.3) Boundary layer on an obstacle 4) Potential and stream functions 5) Law of Kutta-Joukowski 6) Exact calculation of the Boundary layer thickness 6.1) Conservation of mass (continuity equation) 6.2) Navier-Stokes and Blasius equations 6.3) Friction 7) Thermal Boundary layer

    8) Mass Transfer Boundary layer equation 9) Turbulent Boundary layer 10) Burbling 11) Bibliography 12) Acknowledgment

  • (dz) dydx

    iDu

    = dmDti

    dF

    = 0ut

    i

    u = u

    x

    DuDt

    if

    = dx dy dzdm i i i

    x

    y

    z

    i e x uj e y v general definitionsk e z w

    Prof. Dr. N. Ebeling Boundary Layer Theory - 2 -

    1) General fluid mechanics / Newton Fluids

    General definitions

    Acceleration :

    stationary :

    frequently :

    volume force: (e.g. g )

    i i iu u u u

    = + u + v + w t x y z

    DuDt

  • 1dF

    2dF

    x

    F f dx dy dz = dx

    x

    i i i i i

    dp dy dzdF = i i

    x

    p f =

    x

    i

    x 1 2 f dV + dF = dF i i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 3 -

    1.1) Euler's law of hydrostatics

    x xf

  • = + u

    y

    i

    u =

    y

    i

    inertial forcefriction force

    + dyy

    i

    ( ) = dy dx dzFRF ydA

    i i i

    {

    Prof. Dr. N. Ebeling Boundary Layer Theory - 4 -

    1.2) Friction

    Moving fluid : ( Couette - flow )

    Newton fluid

    Schlichting :

    1.3) Dimensionless numbers :

    Reynolds number

    Re ~

  • u dx dy dz u

    xRe ~ dx dy dz

    y

    dm

    upcurlybracketleftupcurlybracketmidupcurlybracketright

    i i i i i

    i i i

    u u ~ ; =

    y yu

    x d y i

    u ~

    y dy i

    v dRe =

    i with =

    Prof. Dr. N. Ebeling Boundary Layer Theory - 5 -

    or any comparable speed v else

    laminar flow : high friction forces,low inertial forces

    avoided by friction

    deciding

    2

    V v

    v ddRe = = v

    d

    i ii i

    i

  • AA

    FC = p si

    21 u

    2p

    i i

    ( or ) analogouswC

    ( )R2m

    d dp = or

    dx u

    2

    ii

    Froude -number

    vFr g d

    =

    i

    Rw

    FC = p si

    Prof. Dr. N. Ebeling Boundary Layer Theory - 6 -

    ascending force

    s

    Bernoulli :

    Pipe :

    Gravity influence :

  • 64 =

    ReR

    r dp du = = -

    2 dx dr i i

    22R dp ru(r) = - 1

    4 dx R

    i i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 7 -

    1.4) Laminar flow in a tube

    extremely high

    nearly no initial forces, no influence of dm or !

    Hagen-Poisseulle :

    Derivation :

    Integration with u (r = R) = 0 leads to :

    2

    d dp 64 64 = =

    dx v d v d v

    2

    i ii

    i i ii

    2 2dpp r - p + dx r - 2 r dx = 0dx

    pi pi pi

    i i i i i

  • v + = 0

    yu

    x

    R

    0

    V = u (r) 2 drpi i i4

    R dpV = - 8 dx

    pi

    i ii

    2

    2V R p

    u = = R 8 l

    pi

    ii i

    ( )u 2RRe =

    i i

    64 = laminar !!

    Re

    Prof. Dr. N. Ebeling Boundary Layer Theory - 8 -

    2) Conservation equations Important conservation equations for describing continuous flow ( cartesian coordinates ) :

    2.1) Mass balance for = const.

    212

    p d =

    u l

    ii i

  • 1 y zu i i 2 = u y z i i 2 + v x z i i( )1 2 2u - u y = + v x i i

    u p u = -

    x x

    i i

    x

    Du udV = dV u = + dFDt x

    i i i i i

    u v + = 0

    x y

    Prof. Dr. N. Ebeling Boundary Layer Theory - 9 -

    2.2) Euler's and Bernoulli's equations Eulers equation ( one direction, pipe ):

    Integration : W = F l leads to Bernoulli's equation

  • xu - p u = + f

    x x

    i i i

    2 2 2 2

    1 1 1

    u = p - g h

    2 i i i

    ( ) = dy dx dzRdF y

    i i i

    u u p u + v = -

    x y x

    DuDt

    upcurlybracketleftupcurlybracketmidupcurlybracketright

    i i i

    v

    Prof. Dr. N. Ebeling Boundary Layer Theory - 10 -

    Mechanical energy balance : Bernoulli incl. hydrostatics

    Euler (2 directions ):

    v leads to a higher value of u

    2.3) Navier - Stokes - equation Bernoulli and Euler neglect friction

    u

    y =

    i

  • 2 2

    x 2 2

    u u p u + v = f - + +

    x y xu u

    y x

    i i i i

    2 2

    y 2 2p

    v + u = f - + + v v v vy x y y x

    i i i i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 11 -

    Navier - Stokes - Equations ( Can be simplified in a boundary layer (later))

    3) Introduction to Boundary layers

    3.1) Boundary layers on a flat plate

    No influence of the viscosity but directly on the wall

    Boundary layer phenomena :

    ( Schlichting )

    2 2

    2 2

    u = +

    yRuf

    x i

    x RxDu p

    = f - + fDt x

    i i

  • 22u u

    ~

    x

    i i

    x ~

    u

    i

    2

    u u ~ ; ~ u

    x x y

    i

    2 2

    2u

    u = = u

    x y y

    i i i

    99 (x) x

    = 5 u

    ii

    Prof. Dr. N. Ebeling Boundary Layer Theory - 12 -

    Thickness of a boundary layer, laminar on a plate

    inertial force = friction force ( Navier -Stokes )

    ( ) = f xu

  • ( )iy = 0

    (x) = U - u(x,y) dy U

    i i

    valuelow

    99 is arbitrary

    99 (x) 5 x =

    lRel

    i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 13 -

    Dimensionless :

    A non - arbitrary value : displacement thickness

    3.2) Friction forces on a plate :

    high value

    991

    3i

    i

  • u( ) = yw

    w

    x i

    W Ww

    2

    S(Surface)

    F F = c = =

    E u b l

    2

    i i

    ( )l

    W W0

    F = b x dxi i

    l 1 3 2

    W0

    F ~ b u x dx

    i i i i i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 14 -

    xu

    ~ with ~ uw

    i

    i

    3 u

    ~ wx

    i i

    13 2

    WF ~ b u 2 l i i i i i3

    24 2

    b 2 u l ~

    b u l4

    wc

    i i i i i

    i i i

  • l ~

    Rewc

    1,1328 =

    Rewc

    Prof. Dr. N. Ebeling Boundary Layer Theory - 15 -

    3.3) Boundary layer on an obstacle : Navier - Stokes :

    Far away from the obstacle (stream line) :

    ( )dU l dpU = - no frictiondx dxi idU dp

    and are related to Bernoullidx dx

  • = w ds i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 16 -

    4) Potential and Stream functions For describing vortex streams ( and comparable ) :

    Circulation :

    Potential streams (no friction ) : no rotation

    Mass balance ; conservation equation :

    11

    22

    v = =

    t x

    = = -

    t

    1 v u = -

    2 x y

    u

    y

    v u = 0 ; - = 0

    x y

    v + = 0

    yu

    x

  • u = ; v = - y x

    + - = 0y xx y

    2 2

    2 2 + = 0x y

    = ; v = y

    ux

    Prof. Dr. N. Ebeling Boundary Layer Theory - 17 -

    Stream function (definition ) :

    Conservation equation :

    No rotation :

    Potential function :

    Potential streams

    1 v u v u = - ; - = 0

    2 x y x y

    i

  • 2 2

    2 2u u

    + = 0x y

    ( )p = f u, v

    2

    2v u u v

    - - + = 0y x y x x x y

    u u p u + v = - + 0

    x y x i i i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 18 -

    Streams without any rotation :

    also conservation equation :

    Insert in Navier - Stokes :

    leads to Bernoulli for v = 0 - no friction ! - no rotation - no friction

    v u - = 0

    x y

    u v + = 0

    x y

  • 2 2v u - = 0 - = 0

    x y x y x y

    2 2

    2 2 + = 0x y

    Prof. Dr. N. Ebeling Boundary Layer Theory - 19 -

    Model frequently used : On the obstacle : boundary layer in the vicinity , but outside the layer : no friction

    potential function :

    No rotation :

    Conservation equations :

    Stream function :

    Conservation equations o.k.

    u = ; v = x y

    u = ; v = - y x

  • = w ds

    i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 20 -

    from definition :

    Stream line : ( no v : ) -> = constant

    Circulation :

    Example :

    here : = 0 ( all possible ways )

    airfoil : high speed

    low speed

    u + v = 0x y

    i i

    0

  • ( ) = 2 r r pi i i iPotential- and flowfunctions as well as velocitys for some elementary potential flows

    flow streamline

    translational flow

    source flow

    ( productiveness E )

    potential vortex stream

    ( circulation I' )

    source-drain flow

    ( productiveness E, distance h )

    dipole flow

    ( dipole moment M )

    ( )x,y ( )x,y ( )u x,y ( )v x,y

    U x + V y

    E ln r

    2pi

    2 pi

    1

    2

    E r ln

    2 rpi

    2M x

    2 rpi

    U y - V x

    E

    2

    pi

    ln r2

    pi

    ( )1 2E - 2 pi

    2M y

    2 r

    pi

    U

    2E x

    2 rpi

    2y

    2 r

    pi

    2 21 2

    E x + h x -

    2 r r

    pi

    2 2

    4M y - x

    2 rpi

    V

    2E y

    2 rpi

    2x

    2 rpi

    2 21 2

    Ey 1 1 -

    2 r r pi

    4M 2xy

    2 r

    pi

    lr

    w ~ = 0

    Prof. Dr. N. Ebeling Boundary Layer Theory - 21 -

    assumption : ; obviously :

    One exception : including the centre :

    (see also: Gersten, K. : Einfhrung in die Strmungsmechanik, Bertelsm. Univ.Verlag, 1st edition, page 130 )

  • radyield : E = w 2 rpii i

    for x = r : E = u 2 xpii i

    Eu =

    2 x ( or r )pi

    2 2E = ln x + y

    2

    pii

    2 2 2 2

    E 1 1 1u = = 2x

    x 2 2x + y x + y pi

    i i i i

    2E x

    u = 2 rpii

    E E y = = arctg

    2 2 x pi pi

    i i

    E yu = = arctg

    y 2 y x

    pi i

    radspring : V = w 2 r hpi i i i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 22 -

    Spring :

  • 21

    arctg x = x 1 + x

    ( )

    ( )yx

    yx

    u = x

    i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 23 -

    Bronstein :

    the rest is the same

    For application :

    airfoil :

    ( )2

    2 2yx

    E 1 1 xu =

    2 x x1 + pii i i

    2E x

    u = 2 rpii

    stream = of model streams

  • AF =b l pi i

    ( ) 2A 1F =b l 2u2 i i i i

    2AF = 2 l b ui i i i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 24 -

    5) Law of Kutta - Joukowski simple example : flat plate :

    Kutta - Joukowski

    = 2 u l

    i i

    AF = b u i i i

  • : u = Uy

    2

    2u u

    + v = x y

    uu

    y

    i i i

    = 0 : u = 0, v = 0y

    u

    yx

    i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 25 -

    6) Exact calculation of the Boundary layer thickness

    Boundary layer on a plate :

    For similarity y/ (x) is important

    v + = 0

    yu

    x

    ( ) x v x ~ u

    i

  • m = =

    y m yu

    i

    ( ) = u f mu i

    ( )1 1 = 2 u f m2 xx

    i i i i i

    = y 2 x

    um

    ii i

    ( ) = 2 x f m 2 xu

    u u

    i i i i i

    i i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 26 -

    Definition :

    ( the factor 2 is arbitrary but helpful )

    Idea : Stream function :

    = -

    xv

    ( ) = 2 x u f m i i i i

    ( )

    Schlichtingsays

    dimensionlessstream function

    = 2 x u f m

    upcurlybracketleftupcurlybracketmidupcurlybracketright

    i i i i

  • ( ) m 2 x u f m x

    +

    i i i i i

    3-

    2u 1 = y - x

    2 2m

    x

    i i ii

    3-

    122

    u u = f - y x x

    x 2 x 2 x

    ii i i i i

    i i i

    ( ) uv = - = m f - fx 2 x

    i

    i ii

    ( ) 3-21 = u f m y - x2 2uu

    x

    i i i i i

    i

    u v = m f - f

    2 x y 2 xu

    y y

    i i

    i i ii i

    ( ) 1 = f m - 2 xu

    u mx

    i i i

    i

    ( ) 2 x u f m i i i i i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 27 -

    6.1) Conservation of mass (continuity equation)

  • u u u u uv = f + y f

    2 x 2 x 2 x 2 x 2 x

    m

    y

    upcurlybracketleftupcurlybracketmidupcurlybracketright

    i ii i i i i

    i i i i i i i i

    u v + = 0

    x y

    ( ) = m f - f2 xu

    v

    ii i

    i

    ( ) = f mu u i( ) 1 = f m m - 2 x

    uu

    x

    i i i

    i

    ( ) uu = u f m y 2 x

    i i i i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 28 -

    Conti - equation

    6.2) Navier-Stokes and Blasius equations Navier-Stokes for the boundary layer on a flat plate :

    f 2 x 2 x

    u u

    ii i

    i i i

    ( ) 1 = m f m 2 xv

    uy

    i i i

    i

  • ( )2 2 = f m 2 x 2 xu uu

    uy

    i i i

    i i i i

    2

    2u u u

    u + v = x y y

    i i i

    f + f f = 0Blasius - Equation

    i

    m = 0 f = 0 , f = 0m : f = 1

    ( )m = 0 i.e. y = 0 u = 0 and f = 0( )m i.e. y u = u and f = 1

    ( ) uv = m f - f2 x

    i

    i ii

    for y = 0 v and f have to be 0

    Prof. Dr. N. Ebeling Boundary Layer Theory - 29 -

    with :

    Inserting and differentation leads directly to :

    side conditions :

    ( )u = u f m i

  • characteristic parameters for the boundary layer on a longitudinal flown plate

    0,4696

    1,2168

    0,4696

    0,7385

    ( )1 = lim - f wf

    ( )20

    = f 1 - f d

    Prof. Dr. N. Ebeling Boundary Layer Theory - 30 -

    There is a function f(m), but there is no equation. description of f(m) : Thickness of the boundary layer :

    (see also : Schlichting, H. , Gersten, K. (2006): Grenzschicht - Theorie, Springer , 10th Ed., page 158 )

    (nach : Schlichting, H. , Gersten, K. (2006): Grenzschicht - Theorie, Springer , 10th Ed., page 159 )

  • 2

    99 = y for u = 0.99 u i99 = y for f = 0.99

    Prof. Dr. N. Ebeling Boundary Layer Theory - 31 -

    (see also : Incropera, F.P.; DeWitt, D.P.: Fundamentals of Heat and Mass Transfer, Wiley, 4th Ed., page 352 )

    Attention : f and deviate from Schlichting in factor !

    Flat plate laminar boundary layer functions

    0,0 0,0000 0,000 0,470

    0,4 0,0191 0,133 0,468

    0,8 0,0750 0,265 0,462

    1,2 0,1683 0,394 0,448

    1,6 0,2970 0,517 0,420

    2,0 0,4596 0,630 0,378

    2,4 0,6520 0,729 0,322

    2,8 0,8704 0,812 0,260

    3,2 1,1095 0,876 0,197

    3,6 1,3647 0,923 0,139

    4,0 1,6306 0,956 0,091

    4,4 1,9035 0,976 0,055

    4,8 2,1814 0,988 0,031

    5,2 2,4621 0,994 0,016

    5,6 2,7436 0,997 0,007

    6,0 3,0264 0,999 0,003

    6,4 3,3086 1,000 0,001

    6,8 3,5914 1,000 0,000

    f um = y x

    df u =

    dm u

    2

    2d fdm

  • uu = u f y

    2 x

    ii i

    w

    w

    uu = u f

    y 2 x

    i ii i

    w

    uu 0,4696 = u

    y x2

    i ii

    l

    w w

    0

    F = b dx i i

    l 12

    w

    0

    uF = 0,332 u b x dx

    i i i i i il 1

    2

    0

    with x dx = 2 l

    i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 32 -

    6.3) Friction :

    Plate ( 1 side ) :

    w

    u = 0,332 u

    x

    i i i

    i

  • ww

    Fc

    u b l 2

    = i i i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 33 -

    ( see also 3.2 )

    7) Thermal boundary layer

    Conservation equation for heat :

    convection :

    22

    p 2T u

    c u + v = + x yT T

    y y i i i i i i

    w

    1.328c

    Re=

  • ( ) T dx dz dyy

    i i i

    ( )c pQ = m c T i i( )p Tc dy dz u dxx

    i i i i i i

    udP = dx dz dyy

    i i i i

    u =

    y

    i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 34 -

    convection :

    > 0

    conduction :

    < 0

    friction :

    > 0

    Compare the conservation equations for heat with Navier-Stokes !

    T A

    y i i

  • 2p 2 T T T

    c u + v = x y y

    i i i i

    2

    2u u u

    + v = x y y

    i i i

    2

    2p

    2

    2

    u u uu + v

    cx y y =

    TT Tu v

    yx y

    i ii i

    i

    i i i

    2

    2

    2

    2

    u u uu + v

    x y y =

    TT Tu v

    yx y

    Pr

    i i

    i

    i i i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 35 -

    ( heat from friction neglected )

    Navier-Stokes adapted to a boundary layer (see also 6) )

  • ( )wq = T - T i

    w

    Tq = - y

    i

    u

    w

    T-

    y =

    T - T

    i

    ( )T Tw

    w

    -

    y = T

    - 1T

    i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 36 -

    For gases Pr 1. Independent from the condition u and T behave equal.

  • wu

    u =

    y

    i

    u = 0,4696

    2 x

    i i

    i il

    10 2

    1b dxu x

    = 0,4696 2 b l

    i ii i i

    i i

    2

    u 4 l = 0,4696

    2 l

    i ii i

    i i

    1+

    2 = 0,664 Re

    l

    i i

    Nu = 0,664 Rei

    wwith u = 0

    Prof. Dr. N. Ebeling Boundary Layer Theory - 37 -

  • 5Re = 5 10i

    , sudden

    Prof. Dr. N. Ebeling Boundary Layer Theory - 38 -

    There is evidence that for Pr 1 :

    see also : Vauck, W.R.A., Mller, H.A.: "Grundoperationen chemischer Verfahrenstechnik" , Wiley, 11th Edition (2001)

    8) Mass transfer boundary layer equation

    9) Turbulent Boundary layer Plate : turbulent from on

    virtual friction

    turbulent layer : 2 layers

    viscous sublayer

    1132Nu = 0,664 Re Pri i

    2A A A

    AB 2 c c c

    u + v = D x y y

    i i i

  • fx

    50 =

    cRe 2

    v

    x

    i

    ( ) ( ) ( )( )

    u x,y,t = u x,y + u x,y,tv x,y,t = v....

    u = average ; u = 0p (x,y,t) = p (x,y) + p (x,y,t)

    u u u u u + u + u + u + v.....

    x x x x

    i i i i i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 39 -

    Viscous sublayer :

    Turbulent boundary layers

    Conservation equations :

    Navier - Stokes ( for boundary layers ) :

    u u v v u v + + + = 0 ; + = 0

    x x y y x y

  • u u u uu + u + v + v

    x x y y.....

    =

    i i i i

    ( )2

    2u u du u

    u + v = u + - u v x y dx y y

    i i i i i i

    u uu = 0 , u = 0

    x x

    i i

    2 2

    2 2d u u

    - + + dx y y

    =

    Prof. Dr. N. Ebeling Boundary Layer Theory - 40 -

    Average :

    2 2

    2 2dp u u

    - + + dx y y

    =

    i

    ( )dp dU - U Bernoullidx dx= i i

    ( )u uu + v u vx y y

    i i i

  • lu

    =

    y

    i

    ( )t = - u v is usually negative

    u v

    i i

    i

    t- u v

    = + with = u

    y

    u y

    i

    i i

    ~ l u yu i

    2t

    u u = l

    y y

    i i i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 41 -

    laminar sheer stress :

    turbulent sheer stress :

    : turbulent kinematic viscosity

    l = length of mixing way l = f ( distance to the wall )

    laminar sublayer

    v ~ u

  • dpFlat plate : = 0dx

    du dpU = - dx dxi

    Prof. Dr. N. Ebeling Boundary Layer Theory - 42 -

    Degree of turbulence :

    10) Burbling

    Stream line along a body different from a flat plate outside the boundary layer ( no friction : )

    ( see Bernoulli and Navier-Stokes )

    ( )2 2 213u

    u + v + w T =

    u

    i

  • 22u u dp u

    u + v = - + x y dx y

    i i i i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 43 -

    low speed - high pressure

    When friction and pressure increase, debonding occurs.

    In the layer :

    2

    2dp uIf has a high value, mustdx y

    become positive

  • Prof. Dr. N. Ebeling Boundary Layer Theory - 44 -

    Result :

    (nach : Schlichting, H. , Gersten, K. (2006): Grenzschicht - Theorie, Springer , 10th Ed., page 37 )

    (nach : Schlichting, H. , Gersten, K. (2006): Grenzschicht - Theorie, Springer , 10th Ed., page 39 )

  • burbling from point A on

    Prof. Dr. N. Ebeling Boundary Layer Theory - 45 -

    Turbulent flow : + instead of : burbling occurs later

    (nach : Gersten, K. : Einfhrung in die Strmungsmechanik, Bertelsm. Univ.Verlag, 1st edition, page 110 )

    (nach : Gersten, K. : Einfhrung in die Strmungsmechanik, Bertelsm. Univ.Verlag, 1st edition, page 111 )

  • w c = 0

    u D u DRe = =

    i i i

    laminar

    laminar, but burbling

    } turbulent

    ww 2

    2

    sphere :F

    c = u

    D2 4

    pii i i

    w c = 0

    Prof. Dr. N. Ebeling Boundary Layer Theory - 46 -

    creeping flow :

    d'Alembert : no friction (and no burbling)

    (nach : Gersten, K. : Einfhrung in die Strmungsmechanik, Bertelsm. Univ.Verlag, 1st edition, page 114 )

    (nach : Gersten, K. : Einfhrung in die Strmungsmechanik,Bertelsm. Univ.Verlag, 1st edition, page 112 )

  • f d =

    uSr i

    Prof. Dr. N. Ebeling Boundary Layer Theory - 47 -

    Periodic stream due to debonding :

    Strouhal - Number :

  • Prof. Dr. N. Ebeling Boundary Layer Theory - 48 -

    11) Bibliography

    - Gersten, K. : Einfhrung in die Strmungsmechanik, Shaker; 1st edition (2003), ISBN-13: 978-3832210397 - Schlichting, H., Gersten, K. : Grenzschicht - Theorie, Springer Verlag, 10th edition (2006), ISBN-13: 978-3540230045 - Incropera, F.P., DeWitt, D.P.: Fundamentals of Heat and Mass Transfer, Wiley, 5th edition (2001) , ISBN-10: 9755030654 - Vauck, W.R.A., Mller, H.A.: "Grundoperationen chemischer Verfahrens- technik" , Wiley, 11th Edition (2000), ISBN -10: 3527309640 - Bronstein, I.N., Semendjajew, K.A., Musiol, G., Muehlig, H. : Taschenbuch der Mathematik, Deutsch, 7th edition (2008) , ISBN-13: 978-3817120079

    12) Acknowledgment I would like to thank my student assistant Matthias Kemper for his contribution to this work.