Bound Layer

download Bound Layer

of 27

Transcript of Bound Layer

  • 8/12/2019 Bound Layer

    1/27

    Atmospheric boundary layers and

    turbulence I

    Wind loading and structural response

    Lecture 6 Dr. J.D. Holmes

  • 8/12/2019 Bound Layer

    2/27

    Atmospheric boundary layers and turbulence

    0

    5

    10

    15

    20

    25

    30

    35

    0 1 2 3 4 5

    Time (minutes)

    Windspeed(m/s)

    153 metres 64 metres 12 metres

    Wind speeds from 3 different levels recorded from a synoptic gale

  • 8/12/2019 Bound Layer

    3/27

    Atmospheric boundary layers and turbulence

    Features of the wind speed variation :

    Increase in mean (average) speed with height

    Turbulence (gustiness) at each height level

    Broad range of frequencies in the fluctuations

    Similarity in gust patterns at lower frequencies

  • 8/12/2019 Bound Layer

    4/27

    Atmospheric boundary layers and turbulence

    Mean wind speed profiles :

    Logarithmic law

    0 - surface shear stress a - air density

    )(z,offunctionaisdz

    Ud0a

    z

    u .constantdz

    Ud

    constantlog.)/1(U zuk e

    integrating w.r.t. z :

    u = friction velocity = (0/a)

  • 8/12/2019 Bound Layer

    5/27

    Atmospheric boundary layers and turbulence

    Logarithmic law

    k = von Karmans constant (constant for all surfaces)

    )(z/zlogk

    u(z)U 0e

    zo= roughness length (constant for a given ground surface)

    logarithmic law - only valid for z >zo and z < about 100 m

  • 8/12/2019 Bound Layer

    6/27

    Atmospheric boundary layers and turbulence

    Modified logarithmic law for very rough surfaces

    (forests, urban)

    zh= zero-plane displacement

    o

    he

    z

    z-zlog

    k

    u(z)U

    zhis about 0.75 times the average height of the roughness

  • 8/12/2019 Bound Layer

    7/27

    Atmospheric boundary layers and turbulence

    logarithmic law applied to two different heights

    or with zero-plane displacement :

    o2e

    o1e

    2

    1

    /zzlog/zzlog

    )(zU)(zU

    oh2e

    oh1e

    2

    1

    )/zz(zlog

    )/zz(zlog

    )(zU

    )(zU

  • 8/12/2019 Bound Layer

    8/27

    Atmospheric boundary layers and turbulence

    Surface drag coefficient :

    Non-dimensional surface shear stress :

    from logarithmic law :

    2

    10

    2

    2

    10

    0

    U

    u

    U

    o

    e10z

    10log

    k

    uU

    2

    10log

    o

    e

    z

    k

  • 8/12/2019 Bound Layer

    9/27

    Atmospheric boundary layers and turbulence

    Terrain types :

    Terrain Type Roughness

    Length (m)Surface Drag

    Coefficient

    Very flat terrain (snow, desert) 0.001 - 0.005 0.0020.003

    Open terrain (grassland, few trees) 0.010.05 0.0030.006

    Suburban terrain (buildings 3-5 m) 0.10.5 0.00750.02

    Dense urban (buildings 10-30 m) 15 0.030.3

  • 8/12/2019 Bound Layer

    10/27

    Atmospheric boundary layers and turbulence

    Power law

    = changes with terrain roughness and height range

    10

    )( 10z

    UzU

    )/(log1

    0zzrefe

    zref= reference height

  • 8/12/2019 Bound Layer

    11/27

    Atmospheric boundary layers and turbulence

    Matching of power and logarithmic laws :

    0

    20

    40

    60

    80

    100

    0.0 0.5 1.0 1.5

    Height,z

    (m)

    Logarithmic law

    Power law

    zo= 0.02 m = 0.128 zref= 50 metres

  • 8/12/2019 Bound Layer

    12/27

    Atmospheric boundary layers and turbulence

    Mean wind speed profiles over the ocean:

    Surface drag coefficient () and roughness length (zo) vary with meanwind speed

    g - gravitational constant a - empirical constant

    substituting :

    a lies between 0.01 and 0.02

    g

    Ua

    g

    auz

    2

    10*2

    o (Charnock, 1955)

    2

    o

    ez

    10log

    k

    2

    oe

    10o

    10/zlog

    Uk

    g

    az

    Implicit relationship between zoand U10

  • 8/12/2019 Bound Layer

    13/27

    Atmospheric boundary layers and turbulence

    Mean wind speed profiles over the ocean:

    Assume g = 9.81 m/s2 ; a = 0.0144 (Garratt) ; k =0.41

    Applicable to non-hurricane conditions

    U10(m/s) Roughness Length (mm)

    10 0.21

    15 0.59

    20 1.22

    25 2.17

    30 3.51

  • 8/12/2019 Bound Layer

    14/27

    Atmospheric boundary layers and turbulence

    Relationship between upper level and surface winds : Geostrophic drag coefficient

    Rossby Number :

    balloon measurements : Cg= 0.16 Ro-0.09

    g

    *

    U

    uC g

    o

    g

    fz

    URo

    (Lettau, 1959)

    U10, terrain 1 u*,terrain 1 Ug u*,terrain 2 U10, terrain 2Log law Lettau Lettau Log law

    Can be used to determine wind speed near ground level over different terrains :

  • 8/12/2019 Bound Layer

    15/27

    Atmospheric boundary layers and turbulence

    Mean wind profiles in hurricanes : Aircraft flights down to 200 metres

    Sonic radar (SODAR) measurements in Okinawa

    Drop-sonde (probe dropped from aircraft - tracked by satellite) : recently started

    Tower measurements not enough

    usually in outer radius of hurricane and/or higher latitudes

  • 8/12/2019 Bound Layer

    16/27

    Atmospheric boundary layers and turbulence

    Mean wind profiles in hurricanes :

    Northern coastline of Western Australia

    Exmouth

    EXMOUTH

    GULF

    North

    West CapeUS Navy

    antennas

    100 km

    Profiles from 390 m mast in late nineteen-seventies

  • 8/12/2019 Bound Layer

    17/27

    Atmospheric boundary layers and turbulence

    Mean wind profiles in hurricanes : In region of maximum winds : steep logarithmic profile to 60-200 m

    Nearly constant mean wind speed at greater heights

    10

    100

    1000

    0.0 1.0 2.0

    U(z)/U(10)

    Heig

    htz,

    (m)

    )3.0/10(log

    )3.0/(logUU 10z

    e

    e z for z < 100 m

    Uz=U100 for z 100 m

  • 8/12/2019 Bound Layer

    18/27

    Atmospheric boundary layers and turbulence

    Mean wind profiles in thunderstorms (downbursts) : Doppler radar

    Model of Oseguera and Bowles (stationary downburst):

    Some tower measurements (not enough)

    r - radial coordinate

    R - characteristic radius

    z*- characteristic height out of the boundary layer

    - characteristic height in the boundary layer

    - scaling factor

    z/z/zr/R2

    eee12r

    RU

    2

    Horizontal wind profile shows peak at 50-100 m

  • 8/12/2019 Bound Layer

    19/27

    Atmospheric boundary layers and turbulence

    Mean wind profiles in thunderstorms (downbursts) :Model of Oseguera and Bowles (stationary downburst) :

    R = 1000 m

    r/R = 1.121

    z*= 200 metres

    = 30 metres

    = 0.25 (1/sec) 0

    200

    400

    600

    0 20 40 60

    Wind speed (m/s)

    Height(m)

    r/R = 1.121

  • 8/12/2019 Bound Layer

    20/27

    Atmospheric boundary layers and turbulence

    Mean wind profiles in thunderstorms (downbursts) :Add component constant with height (moving downburst) :

    R = 1000 m

    r/R = 1.121

    z*= 60 metres

    = 50 metres

    = 1.3 (1/sec)0

    200

    400

    600

    0 20 40 60 80 100

    Wind speed (m/s)

    Height(m)

    Uconst= 35 m/s

  • 8/12/2019 Bound Layer

    21/27

    Atmospheric boundary layers and turbulence

    0

    5

    10

    15

    20

    25

    30

    35

    0 1 2 3 4 5

    Time (minutes)

    Windspe

    ed(m/s)

    153 metres 64 metres 12 metres

    Turbulence represents the fluctuations (gusts) in the wind speed

    It can usually be represented as a stationary random process

  • 8/12/2019 Bound Layer

    22/27

    Atmospheric boundary layers and turbulence

    Components of turbulence :

    u(t) - longitudinal - parallel to mean wind direction

    - parallel to ground (usually horizontal)

    ground

    U+u(t)

    w(t) - right angles to ground (usually vertical)

    w(t)

    v(t) - parallel to ground - right angles to u(t)

    v(t)

  • 8/12/2019 Bound Layer

    23/27

    Atmospheric boundary layers and turbulence

    Turbulence intensities :

    standard deviation of u(t) :

    Iu= u /U (longitudinal turbulence intensity) (non dimensional)

    21

    2

    0

    })(1

    { dtUtUT

    T

    u

    Iv= v /U (lateral turbulence intensity)

    Iw= w /U (vertical turbulence intensity)

  • 8/12/2019 Bound Layer

    24/27

    Atmospheric boundary layers and turbulence

    Turbulence intensities :

    v 2.2u*

    Iu= u /U

    from logarithmic law

    0e0e z/zlog

    1

    z/zlog/0.4u

    2.5u

    0ev

    z/zlog

    0.88I

    w 1.37u* 0ew

    z/zlog

    0.55I

    near the ground, u 2.5u*

  • 8/12/2019 Bound Layer

    25/27

    Atmospheric boundary layers and turbulence

    Turbulence intensities :

    rural terrain, zo = 0.04 m :

    Height, z (m) Iu

    2 0.26

    5 0.21

    10 0.18

    20 0.16

    50 0.14

    100 0.13

  • 8/12/2019 Bound Layer

    26/27

    Atmospheric boundary layers and turbulence

    Probability density :

    for u(t) :

    The components of turbulence (constantU) can generally berepresented quite well by the Gaussian, or normal, p.d.f. :

    2

    uu

    u

    Uu

    2

    1exp

    2

    1uf

    2

    vv

    v

    v

    2

    1exp

    2

    1vffor v(t) :

    for w(t) :

    2

    ww

    w

    w

    2

    1exp

    2

    1wf

  • 8/12/2019 Bound Layer

    27/27

    End of Lecture 6

    John Holmes225-405-3789 [email protected]