Boudary Coditions

download Boudary Coditions

of 10

Transcript of Boudary Coditions

  • 8/20/2019 Boudary Coditions

    1/25

    5-1

    Section 6: Boundary Module

    Getting Started: Ansoft

    HFSS 8.0

  • 8/20/2019 Boudary Coditions

    2/25

    5-2

    Synopsis

    General Overview Boundary Types, Definitions, and Parameters

    Source Types, Definitions, and Parameters

    nterface !ayout

     "ssi#nin# Boundaries $ace Selection

    Precedence

     "ssumptions %t&e 'outer( Boundary)

    Boundary Setup *+ercise Part 1 Define Boundaries in *+ample

    odel Details of Port Definition and .reation

    Si/e and Position ode .ount

    De#enerate odes

    .ali0ration, mpedance, and Polari/ation

    Gap Source Ports

    Boundary Setup *+ercise Part 2 "dd ports to *+ample odel

  • 8/20/2019 Boudary Coditions

    3/25

    5-

    HFSS Boundary List

    Perfect * and Perfect 34atural

    deal *lectrically or a#netically .onductin# Boundaries

    '4atural( denotes Perfect * 'cancellation( 0e&avior 

    $inite .onductivity

    !ossy *lectrically .onductin# Boundary, wit& user-provided conductivity

    and permea0ility

    mpedance sed for simulatin# 't&in film resistor( materials, wit& user-provided

    resistance and reactance in Ω3

    6adiation

     "n 'a0sor0in# 0oundary condition,( used at t&e perip&ery of a pro7ect in

    w&ic& radiation is e+pected suc& as an antenna structure

    Symmetry  " 0oundary w&ic& ena0les modelin# of only a su0-section of a structure

    in w&ic& field symmetry 0e&avior is assured8

    9Perfect *: and 9Perfect : su0cate#ories

    aster and Slave

    '!in;ed( 0oundary conditions for unit-cell studies of infinitely replicatin#

    #eometry %e8#8 an antenna array)

  • 8/20/2019 Boudary Coditions

    4/25

    5-<

    HFSS Boundary Descriptions: Perfect E and

    Perfect H/Natural

    Parameters: None Perfect E  is a perfect electrical conductor=

    $orces *-field perpendicular to t&e surface

    6epresent metal surfaces, #round planes,

    ideal cavity walls, etc8

    Perfect H  is a perfect ma#netic conductor 

    $orces -field perpendicular to surface, *-field tan#ential

    Does not e+ist in t&e real world, 0ut

    represents useful 0oundary constraint for

    modelin#

    Natural  denotes effect of Perfect H  applied

    on top of some ot&er %e8#8 Perfect *) 0oundary

    'Deletes( t&e Perfect E condition, permittin#

    0ut not requiring  tan#ential electrical fields8

    Opens a '&ole( in t&e Perfect E  plane

    Perfect E Boundary* 

    Perfect H Boundary 

      ‘Natural’ Boundary 

    lar  perpendicu E 

    continuous E 

     parallel  E 

    *NOE: !"en you define a solid o#$ect as a

    ‘%erf&conductor’ in t"e Material Setu%' a

    Perfect E #oundary condition is a%%lied to its

    e(terior surfaces)) 

  • 8/20/2019 Boudary Coditions

    5/25

    5-5

    HFSS Boundary Descriptions: Finite

    Conductivity

    Parameters: onducti+ity andPermea#ility  $inite .onductivity is a lossy

    electrical conductor  *-field forced perpendicular, as wit&

    Perfect E 

    owever, surface impedance ta;esinto account resistive and reactive

    surface losses

    ser inputs conductivity %in

    siemens3meter) and relative

    permea0ility %unitless)

    sed for non-ideal conductor

    analysis=

    ,inite onducti+ity Boundary 

     g attenuatinlar  perpendicu E    ,

    *NOE: !"en you define a solid o#$ect

    as a non-ideal metal .e/g/ co%%er'

    aluminum0 in t"e Material Setu% module'

    and it is set to ‘Sol+e Surface’' a ,inite

    onducti+ity #oundary is automatically

    a%%lied to its e(terior faces)) 

  • 8/20/2019 Boudary Coditions

    6/25

    5->

    HFSS Boundary Descriptions: Impedance

    Parameters: 1esistance and1eactance' o"ms2square .  Ω3 0 3m%edance 0oundary is a direct, user-

    defined surface impedance se to represent t"in film resistors

    se to represent reacti+e loads 6eactance will NO vary wit&

    fre?uency, so does not represent

    a lumped 'capacitor( or 'inductor(

    over a fre?uency 0and8

    .alculate re?uired impedance from

    desired lumped value, widt&, and len#t& !en#t& %in direction of current flow) ÷ 

    @idt& A num0er of 's?uares(

    mpedance per s?uare A Desired

    !umped mpedance ÷ num0er of

    s?uares

    EXAMPLE: Resistor in Wilkenson Power Divider 

    6esistor is 85 mils lon# %in direction of flow) and< mils wide8 Desired lumped value is 5 o&ms8

     square N 

     R R

     N 

    lumped 

     sheet    /40875.

    35

    875.04

    5.3

    Ω===

    ==

  • 8/20/2019 Boudary Coditions

    7/255-

    HFSS Boundary Descriptions: adiation

    Parameters: None  " 1adiation 0oundary is an a#sor#ing#oundary condition, used to mimic continued

    propa#ation 0eyond t&e 0oundary plane

     "0sorption is ac&ieved via a second-

    order im%edance calculation

    Boundary s&ould 0e constructed correctly for

    proper a0sorption

    Distance $or stron# radiators %e8#8

    antennas) no closer t&an λ3< to any

    structure8 $or wea; radiators %e8#8 a

    0ent circuit trace) no closer t&an λ31C to

    any structure

    Orientation T&e radiation 0oundarya0sor0s 0est w&en incident ener#y flow

    is normal  to its surface

    S&ape T&e 0oundary must 0e

    conca+e to all incident fields from wit&in

    t&e modeled space

    Note #oundary does not

    follo4 ‘#rea5’ at tail end

    of "orn/ oing so

    4ould result in a con+e(

    surface to interior

    radiation/

    Boundary is λ3< away from

    &orn aperture in all directions8

  • 8/20/2019 Boudary Coditions

    8/255-

    HFSS Boundary Descriptions: adiation!

    cont"

    6adiation 0oundary a0sorption profile

    vs8 incidence an#le is s&own at left 4ote t&at a0sorption falls off

    si#nificantly as incidence e+ceeds

  • 8/20/2019 Boudary Coditions

    9/255-F

    HFSS Boundary Descriptions: Symmetry

    Parameters: y%e .Perfect E or Perfect H0 Symmetry  0oundaries permit modelin# of

    only a fraction of t&e entire structure under

    analysis

    Two Symmetry Options

    Perfect E : *-fields are perpendicular to t&esymmetry surface

    Perfect H : *-fields are tan#ential to t&e

    symmetry surface

    Symmetry 0oundaries also &ave furt&er

    implications to t&e Boundary ana#er and

    $ields Post Processin# *+istence of a Symmetry Boundary will

    prompt 'Port mpedance ultiplier( verification

    *+istence of a symmetry 0oundary allows for

    near- and far-field calculation of t&e 'entire(

    structure

    .onductive ed#es, < sides

    "is rectangular 4a+eguide contains a

    symmetric %ro%agating mode' 4"ic" could

    #e modeled using "alf t"e +olume

    +ertically////

    Perfect * Symmetry %top)

    888or &ori/ontally8

    Perfect Symmetry

    %left side)

  • 8/20/2019 Boudary Coditions

    10/255-1C

    HFSS Boundary Descriptions: Symmetry!

    cont"

    Geometric symmetry does not

    necessarily imply field symmetry

    for &i#&er-order modes

    Symmetry 0oundaries can act as

    mode filters

     "s s&own at left, t&e ne+t &i#&erpropa#atin# wave#uide mode is

    not  symmetric a0out t&e vertical

    center plane of t&e wave#uide

    T&erefore one symmetry case is

    valid, w&ile t&e ot&er is notE

    mplication 7se caution 4"enusing symmetry to assure t"at real

    #e"a+ior in t"e de+ice is not filtered

    out #y your #oundary conditions)) 

    Perfect E Symmetry .to%0

    Perfect H Symmetry 

    .rig"t side0

    T*2C ode in @6FC

    Properly represented wit&

    Perfect * Symmetry

    ode can not occur properly

    wit& Perfect Symmetry

  • 8/20/2019 Boudary Coditions

    11/25

    5-11

    HFSS Boundary Descriptions: #aster/Slave

    Boundaries

    Parameters: oordinate system'master2sla+e %airing' and %"asing  Master  and Sla+e 0oundaries are used

    to model a unit cell of a repeatin#

    structure

     "lso referred to as lin5ed #oundaries aster and Slave 0oundaries are

    always %aired  one master to one slave

    T&e fields on t&e slave surface are

    constrained to 0e identical to t&ose on

    t&e master surface, wit& a p&ase s&ift8

    onstraints T&e master and slave surfaces must 0e

    of identical s&apes and si/es

     " coordinate system must 0e identified

    on t&e master and slave 0oundary to

    identify point-to-point correspondence7nit ell Model of End-,ire !a+eguide 9rray 

    @G Port

    %0ottom) Ground Plane

    Perfectly atc&ed !ayer 

    %top)

    Slave Boundaryaster Boundary

    Origin

  • 8/20/2019 Boudary Coditions

    12/25

    5-12

    HFSS Source List

    Port ost .ommonly sed Source8 ts use results in S-parameter output

    from $SS8

    Two Su0cate#ories 'Standard( Ports and 'Gap Source( Ports

     "pply to Surface%s) of solids or to s&eet o07ects

    ncident @ave

    sed for 6.S or Propa#ation Studies %e8#8 $re?uency-SelectiveSurfaces)

    6esults must 0e post-processed in $ields odule no S-parameters

    can 0e provided

     "pplies to entire +olume of modeled space

    Holta#e Drop or .urrent Source 'deal( volta#e or current e+citations

     "pply to Surface%s) of solids or to s&eet o07ects

    a#netic Bias nternal $ield Bias for nonreciprocal %ferrite) material pro0lems

     "pplies to entire solid o#$ect  representin# ferrite material

  • 8/20/2019 Boudary Coditions

    13/25

    5-1

    HFSS Source Descriptions: Port

    Parameters: Mode ount' ali#ration'3m%edance' Polari=ation' 3m%/ Multi%lier   " %ort  is an aperture t&rou#& w&ic&

    #uided electroma#netic field ener#y is

    in7ected into a D $SS model8 T&ere

    are two types

    Standard  Ports T&e aperture is solvedusin# a 2D ei#ensolution w&ic& locates

    all re?uested propa#atin# modes

    .&aracteristic impedance is

    calculated from t&e 2D solution

    mpedance and .ali0ration !ines

    provide furt&er control >a% Source Ports "ppro+imated field

    e+citation is placed on t&e #ap source

    port surface

    .&aracteristic impedance is

    provided 0y t&e user durin# setup

    EXAMPLE STANDARD PORTS

    EXAMPLE GAP-SOURCE PORTS

  • 8/20/2019 Boudary Coditions

    14/25

    5-1<

    HFSS Source Descriptions: Incident $ave

    Parameters: Poynting

  • 8/20/2019 Boudary Coditions

    15/25

    5-15

    HFSS Source Descriptions: %olta&e Drop and

    Current Source

    *+ample Holta#e

    Drop %0etween

    trace and #round)

    *+ample .urrent

    Source %alon# trace

    or across #ap)

    Parameters: irection and Magnitude

     " +oltage dro% would 0e used toe+cite a volta#e 0etween two metal

    structures %e8#8 a trace and a #round)

     " current source would 0e used to

    e+cite a current alon# a trace, or

    across a #ap %e8#8 across a slotantenna)

    Bot& are 'ideal( source e+citations,

    wit&out impedance definitions 4o S-Parameter Output

    ser applies condition to a 2D or D

    o07ect created in t&e #eometry Hector identifyin# t&e direction of t&e

    volta#e drop or t&e direction of t&e

    current flow is also re?uired

  • 8/20/2019 Boudary Coditions

    16/25

    5-1>

    HFSS Source Descriptions: #a&netic Bias

    Parameters: Magnitude and

    irection or  E(ternally Pro+ided  T&e magnetic #ias source is used

    only to provide internal 0iasin# -

    field values for models containin#

    nonreciprocal %ferrite) materials8

    Bias may 0e uniform field %enterparameters directly in $SS)888

    Parameters are direction and

    ma#nitude of t&e field

    888or 0ias may 0e non-uniform

    %imported from e+ternal

    a#netostatic solution pac;a#e)  "nsoft(s D * $ield

    Simulator  provides t&is

    analysis and output

     "pply source to selected D solid

    o07ect %e8#8 ferrite puc;)

  • 8/20/2019 Boudary Coditions

    17/25

    5-1

    Sources/Boundaries and Ei&enmode

    Solutions

     "n Eigenmode solution is a direct solution of t&e resonant

    modes of a closed structure

     "s a result, some of t&e sources and 0oundaries discussed so

    far are not  availa0le for an *i#enmode pro7ect8 T&ese are  "ll *+citation Sources

    Ports

    Holta#e Drop and .urrent Sources

    a#netic Bias

    ncident @aves

    T&e only unavaila0le 0oundary type is 6adiation Boundary

     " Perfectly Matc"ed 8ayer  construction is possi0le as a

    replacement

  • 8/20/2019 Boudary Coditions

    18/25

    5-1

    '(e HFSS Source/Boundary Setup Interface

    Side Window

      oordinate ,ields and 

      Sna% O%tions

    Source/Boundary Li!

      S"o4s all sources and

    #oundaries currently

    assigned to t"e %ro$ect

    and t"eir status? allo4sselection for +ie4ing'

    editing' and deletion

    Source/Boundary Con!ro"

      9llo4s Naming' contains e(ecution

    controls .9ssign' lear' 7nits///0

    Boundary A!!ri#u!e $ie"d

      1egion 8ayout c"anges to %ro+ide

    entry fields for selected source or #oundary 

    c"aracteristics and o%tions/

    Source/Boundary Dro%-Down

      8ists all source or #oundary ty%es'

    #ased on radio #utton selected 

    Gra%&ica" 'iew Window

      S"o4s geometry' %ermits

     %oint-and-clic5 selection'

    +ector definition' and 

    assignment/

    Source/Boundary Se"ec!ion Bu!!on

    Menu and Too"#ar 

    Pic( O%!ion  ontrols selection o%tions

    in gra%"ical 4indo4 

  • 8/20/2019 Boudary Coditions

    19/25

    5-1F

    Boundary #ana&er: )*+ect/Face Selection

    T&e >ra%"ical Pic5  options %1) control

    t&e result of clic;in# in t&e #rap&icalview window8

    O#$ect : mouse-clic5 selects

    e(terior of entire o#$ect 

    ,ace: mouse-clic5 selects

    closest face of o#$ect 

    Boundary : mouse-clic5 selectsclosest e(isting #oundary

    condition .if any0

    To s&ift your focus to an o07ect or face

    deeper into t&e model, use t&e ri#&t

    mouse menu %2) c&oice Ne(t Be"ind ,

    or t&e &ot;ey 94:

    Selected faces will &i#&li#&t in a #rid

    pattern selected o07ects will &ave

    t&eir wireframe &i#&li#&ted

    ultiple faces may 0e selected

    simultaneously a second clic;

    deselects already-selected faces

    18

    28

    NOE: "e same gra%"ical +ie4 mani%ulation

    s"ortcuts for rotation' %anning' and =ooming found

    in t"e ra4 module also 4or5 "ere? t"e +isi#ility

    icon also assists o#$ect2face selection #y ‘"iding’

    e(terior o#$ects/

  • 8/20/2019 Boudary Coditions

    20/25

    5-2C

    Boundary #ana&er: )*+ect/Face Selection!

    cont"

    T&e *dit menu %) provides furt&er

    Select options, includin# ,aces3ntersection

    ,aces intersection opens a list

    0o+ containin# all o07ects in

    t&e model

    Selectin# two touc&in# o07ects

    from t&e list will prompt t&einterface to automatically find

    all intersectin# faces

    Note: only e(terior faces in

    intersection are selected' not

    faces of one o#$ect 4"ic" are

    inside t"e )o"u*e of t"e ot"er  T&e *dit menu Select option By

    Name %

  • 8/20/2019 Boudary Coditions

    21/25

    5-21

    Boundary ,ssi&nment: -eneral Procedure

    Select Source orBoundary  radio 0utton,

    and desired type from

    t&e drop-down listin#

    Select t&e face or faces

    on w&ic& you wis& to

    apply t&e

    source30oundary

    condition

    %"0ove 2 steps

    interc&an#ea0le)

    $ill in any necessary

    parameters for t&e

    source30oundary 4ame t&e

    source30oundary, and

    press t&e 9ssign 0utton

    18 Select source or 0oundary and type

    28 Select face%s)

    8 $ill in Parameters as necessary

  • 8/20/2019 Boudary Coditions

    22/25

    5-22

    Boundary ,ssi&nment: Precedence

    Boundary assi#nments are

    order de%endent : Boundaries assi#ned later

    supercede t&ose

    assi#ned earlier over any

    s&ared surfaces

    Ports are t&e e+ception

    t&ey always supercede

    any earlier or later

    assi#nments

    Ports will sort to t&e

    0ottom of t&e

    0oundary list to

    reflect t&is fact Boundaries can 0e

    re-prioriti/ed usin#

    t&e odel menu

    3n t"e %ictured e(am%le' t"e ‘radiation’

    #oundary o+erlays t"e orange rectangle.on t"e #ac5 face0 4"ic" 4as earlier

    assigned as t"e %ort/ Ports' "o4e+er'

    al4ays ta5e %recedence' and s"o4 at t"e

    #ottom of t"e #oundary listing/

  • 8/20/2019 Boudary Coditions

    23/25

    5-2

    Boundary ,ssi&nment: Default Boundary

     "ny e(terior  face of t&e

    modeled #eometry not #iven

    a user-defined 0oundary

    condition is assumed to 0e

    a Perfect E  Default 0oundary called

    outer 

    ma#ine entire model

    0uried in solid metal

    unless you instruct

    ot&erwise

    To view 0oundaries and see

    if you missed an

    assi#nment, use t&e

    Boundary is%lay  pic; from

    t&e Model  menu Grap&ical window s&ows

    0ot& user and auto-

    assi#ned 0oundaries

  • 8/20/2019 Boudary Coditions

    24/25

    5-2<

    Boundary Setup E.ercise Part

    @e will practice 0y

    assi#nin# 0oundaries to a.oa+ to icrostrip

    transformer model

    T&is e+ercise is only Part @ 

    of t&e entire operation

    e+citation assi#nment will0e covered after a detailed

    description of $SS

    sources and port

    assi#nment

    n t&e a+well Pro$ect

    Manager , find t&e pro7ectentitled A #nd&e(er   and

    O%en it

    Once open, proceed to

    Setu% Boundaries2Sources

    NOE: "e model for t"is e(ercise is nearly

    identical to t"at used in t"e Material Setu%

    e(ercise' #ut "as #een s%lit in "alf along t"e a(is

    of t"e microstri% and coa( feed to demonstrate

    symmetry #oundary a%%lication as 4ell/

  • 8/20/2019 Boudary Coditions

    25/25

    5-25

    Boundary Setup E.ercise: 'race #etali0ation

    NOE: Since solid Material %arameters are already

    a%%lied' t"ere is already a #oundary on t"e e(terior of t"emetal o#$ects A%in' A%in@' and A%inC/ !e only need to

    a%%ly t"e surface metali=ation for t"e actual microstri%

    trace line' and define outer radiation' ground %lane' and

    symmetry #oundaries/

    18 Select t&e Boundary  radio Button8

    28 $rom t&e list of availa0le 0oundaries, select Perfect E /

    8 Set t&e Grap&ical Pic; option to ,ace/