Borehole Elemental Concentration Logs ... - Korea Science

11
149 ์ง€๊ตฌ๋ฌผ๋ฆฌ์™€ ๋ฌผ๋ฆฌํƒ์‚ฌ Geophysics and Geophysical Exploration ISSN 1229-1064 (Print) Vol. 22, No. 3, 2019, p. 149~159 https://doi.org/10.7582/GGE.2019.22.3.149 ISSN 2384-051X (Online) ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต: ์›๋ฆฌ, ์—ฐ๊ตฌ๋™ํ–ฅ ๋ฐ ํ–ฅํ›„ ๊ณผ์ œ ์‹ ์ œํ˜„ยทํ™ฉ์„ธํ˜ธ* ํ•œ๊ตญ์ง€์งˆ์ž์›์—ฐ๊ตฌ์› ์ง€์งˆํ™˜๊ฒฝ์—ฐ๊ตฌ๋ณธ๋ถ€ Borehole Elemental Concentration Logs: Theory, Current Trends and Next Level Jehyun Shin and Seho Hwang* Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources ์š” ์•ฝ: ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต( ์ค‘์„ฑ์ž- ๊ฐ๋งˆ์ŠคํŽ™ํŠธ๋กœ์Šค์ฝ”ํ”ผ๊ฒ€์ธต) ์€ ์ค‘์„ฑ์ž์„ ์›์˜ ๋น„ํƒ„์„ฑ์‚ฐ๋ž€๊ณผ ์ค‘์„ฑ์žํฌํš ์ž‘์šฉ์œผ๋กœ๋ถ€ํ„ฐ ์ƒ์„ฑ ๋˜๋Š” ๊ฐ๋งˆ์„ ์„ ์ธก์ •ํ•˜์—ฌ ์ง€์ธต์˜ ์›์œ„์น˜ ๊ด‘๋ฌผ์กฐ์„ฑ์„ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ ์ด๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์ง€์ธต์˜ ๊ด‘๋ฌผ์กฐ์„ฑ ํ‰๊ฐ€๋Š” ์ฝ”์–ด ์— ๋Œ€ํ•œ X ์„  ํšŒ์ ˆ๋ฒ•, X ์„  ํ˜•๊ด‘๋ถ„์„๋ฒ• ๋“ฑ์˜ ์‹ค๋‚ด ์‹œํ—˜์ž๋ฃŒ๋ฅผ ์ฃผ๋กœ ์ด์šฉํ•˜๊ณ  ์žˆ์œผ๋‚˜ ์ด๋Š” ์กฐ์‚ฌ ๊ตฌ๊ฐ„์˜ ๊ทนํžˆ ์ผ๋ถ€๋ถ„์— ๋Œ€ ํ•œ ๊ฒฐ๊ณผ์ด๋ฉฐ ํŠนํžˆ, ์œ ์ฒด์˜ ์œ ๋™ ๊ฒฝ๋กœ ๊ตฌ๊ฐ„์€ ์ฃผ๋กœ ํŒŒ์‡„๋Œ€ ๋ฐ ์‚ฌ์งˆ์ธต์ธ๋ฐ ์ด ๊ตฌ๊ฐ„๋“ค์˜ ์ฝ”์–ด ํšŒ์ˆ˜์œจ์ด ๋ถˆ๋Ÿ‰ํ•˜์—ฌ ์กฐ์‚ฌ ๊ตฌ๊ฐ„ ์ „์ฒด์— ๋Œ€ํ•œ ๊ด‘๋ฌผ์กฐ์„ฑ ํ‰๊ฐ€๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์‹œ์ถ”๊ณต ์ „ ๊ตฌ๊ฐ„์— ๋Œ€ํ•œ ์›์œ„์น˜ ๊ด‘๋ฌผ์กฐ์„ฑ ์ถ”์ • ๊ธฐ์ˆ ๊ฐœ๋ฐœ์€ ์ง€์ค‘ํ™˜๊ฒฝ ํ‰๊ฐ€์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ๊ธฐ์ˆ ์€ ์ „ํ†ต, ๋น„์ „ํ†ต ์ €๋ฅ˜์ธต ํ‰๊ฐ€๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์ตœ๊ทผ๊นŒ์ง€ ์žฅ๋น„ ๊ฐœ๋ฐœ ๋ฐ ๊ด€๋ จ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋Š” ๋ถ„์•ผ์ด์ง€๋งŒ ๋ช‡ ๊ฐœ ์„œ๋น„์ŠคํšŒ์‚ฌ์˜ ๋…์ ๊ธฐ์ˆ ๋กœ ์ž์„ธํ•œ ์ •๋ณด ๋ฏธ๊ณต๊ฐœ, ๋‹ค์–‘ํ•œ ์ง€์ธต ๋ฐ ์ธ๊ณต๋ชจํ˜•์„ ์ด์šฉ ํ•œ ํ™”ํ•™- ๊ด‘๋ฌผํ•™ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ๊ตฌ์ถ• ๋ฌธ์ œ ๋“ฑ์œผ๋กœ ๊ตญ๋‚ด ์—ฐ๊ตฌ์— ์ง์ ‘์ ์œผ๋กœ ์ ์šฉํ•˜๊ธฐ์—๋Š” ์–ด๋ ค์›€์ด ์žˆ์—ˆ๋‹ค. ์ด ํ•ด์„ค๋…ผ๋ฌธ์— ์„œ๋Š” ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต์˜ ๊ธฐ๋ณธ์›๋ฆฌ, ์‹œ์Šคํ…œ ๊ตฌ์„ฑ, ๊ต์ •์‹œ์„ค, ๊ตญ์™ธ ๊ธฐ ๊ฐœ๋ฐœ๋œ ๊ฒ€์ธต์‹œ์Šคํ…œ ๋ถ„์„ ๋ฐ ์—ฐ๊ตฌ๊ฐœ๋ฐœ ๋™ํ–ฅ ๋“ฑ์„ ํ†ต ํ•ด ํ•ด๋‹น ๊ธฐ์ˆ ์„ ์†Œ๊ฐœํ•˜๊ณ , ๊ตญ๋‚ด ์‹œ์Šคํ…œ ์ œ์ž‘์„ ์œ„ํ•œ ๊ธฐ์ˆ  ์ ์šฉ ๋ฐฉ์•ˆ์„ ๊ฒ€ํ† ํ•˜์˜€๋‹ค. ์ฃผ์š”์–ด: ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต, ์ค‘์„ฑ์ž์„ ์›, ๊ฐ๋งˆ์„ , ๊ด‘๋ฌผ์กฐ์„ฑ, ์ง€์ค‘ํ™˜๊ฒฝ Abstract: Borehole elemental concentration logging, measuring neutron-induced gamma rays by inelastic scattering and neutron capture interactions between neutron and formation, delivers concentrations of the most common elements found in the minerals and fluids of subsurface formation. X-ray diffraction and X-ray fluorescence analysis from core samples are traditionally used to understand formation composition and mineralogy, but it represents only part of formations. Additionally, it is difficult to obtain elemental analysis over the whole intervals because of poor core recovery zones such as fractures or sand layers mainly responsible for groundwater flow. The development of borehole technique for in situ elemental analysis plays a key role in assessing subsurface environment. Although this technology has advanced consistently starting from conventional and unconventional resources evaluation, it has been considered as exclusive techniques of some major service company. As regards domestic research and development, it has still remained an unexplored field because of some barriers such as the deficiency of detailed information on tools and calibration facility for chemistry and mineralogy database. This article reviews the basic theory of spectroscopy measurements, system configuration, calibration facility, and current status. In addition, this article introduces the domestic researches and self- development status on borehole elemental concentration tools. Keywords: Borehole elemental concentration logging, neutron source, gamma ray, formation composition, subsurface environment ์„œ ๋ก  ํ† ์–‘๊ณผ ์•”๋ฐ˜, ์ง€ํ•˜์ˆ˜ ๋“ฑ ์ง€์ค‘ ๋งค์ฒด๋“ค์˜ ๋‹ค์–‘ํ•œ ๋ฌผ์„ฑ์„ ์›์œ„ ์น˜(in situ) ์—์„œ ์ธก์ • ๋˜๋Š” ์ถ”์ •ํ•˜๋Š” ๋ฌผ๋ฆฌ๊ฒ€์ธต(geophysical well logging) ๊ธฐ๋ฒ• ์ค‘ ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต(borehole elemental con- centration logs) ์€ ์ค‘์„ฑ์ž์„ ์›(neutron source) ์„ ์ด์šฉํ•˜์—ฌ ์ง€ ์ธต์˜ ๊ด‘๋ฌผ์กฐ์„ฑ์„ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ ๋กœ์„œ ์ตœ๊ทผ๊นŒ์ง€ ์žฅ๋น„ ๊ฐœ ๋ฐœ ๋ฐ ๊ด€๋ จ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋Š” ๋ถ„์•ผ์ด๋‹ค. ์ „ํ†ต์ ์ธ ๋ฌผ๋ฆฌ๊ฒ€์ธต์€ ์ง€์ธต์˜ ์ฒด์  ๋ฌผ์„ฑ(bulk physical property) ์„ ์ถ”์ • Received: 19 August 2019; Revised: 30 August 2019; Accepted: 30 August 2019 *Corresponding author E-mail: [email protected] Address: 124, Gwahak-ro, Youseong-gu, Daejeon 34132, Korea โ“’2019, Korean Society of Earth and Exploration Geophysicists This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ํ•ด ์„ค

Transcript of Borehole Elemental Concentration Logs ... - Korea Science

Page 1: Borehole Elemental Concentration Logs ... - Korea Science

149

์ง€๊ตฌ๋ฌผ๋ฆฌ์™€ ๋ฌผ๋ฆฌํƒ์‚ฌ Geophysics and Geophysical Exploration ISSN 1229-1064 (Print)

Vol. 22, No. 3, 2019, p. 149~159 https://doi.org/10.7582/GGE.2019.22.3.149 ISSN 2384-051X (Online)

์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต: ์›๋ฆฌ, ์—ฐ๊ตฌ๋™ํ–ฅ ๋ฐ ํ–ฅํ›„ ๊ณผ์ œ

์‹ ์ œํ˜„ยทํ™ฉ์„ธํ˜ธ*

ํ•œ๊ตญ์ง€์งˆ์ž์›์—ฐ๊ตฌ์› ์ง€์งˆํ™˜๊ฒฝ์—ฐ๊ตฌ๋ณธ๋ถ€

Borehole Elemental Concentration Logs: Theory, Current Trends and Next Level

Jehyun Shin and Seho Hwang*

Geologic Environment Division, Korea Institute of Geoscience and Mineral Resources

์š” ์•ฝ: ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต(์ค‘์„ฑ์ž-๊ฐ๋งˆ์ŠคํŽ™ํŠธ๋กœ์Šค์ฝ”ํ”ผ๊ฒ€์ธต)์€ ์ค‘์„ฑ์ž์„ ์›์˜ ๋น„ํƒ„์„ฑ์‚ฐ๋ž€๊ณผ ์ค‘์„ฑ์žํฌํš ์ž‘์šฉ์œผ๋กœ๋ถ€ํ„ฐ ์ƒ์„ฑ

๋˜๋Š” ๊ฐ๋งˆ์„ ์„ ์ธก์ •ํ•˜์—ฌ ์ง€์ธต์˜ ์›์œ„์น˜ ๊ด‘๋ฌผ์กฐ์„ฑ์„ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ ์ด๋‹ค. ์ผ๋ฐ˜์ ์œผ๋กœ ์ง€์ธต์˜ ๊ด‘๋ฌผ์กฐ์„ฑ ํ‰๊ฐ€๋Š” ์ฝ”์–ด

์— ๋Œ€ํ•œ X์„  ํšŒ์ ˆ๋ฒ•, X์„  ํ˜•๊ด‘๋ถ„์„๋ฒ• ๋“ฑ์˜ ์‹ค๋‚ด ์‹œํ—˜์ž๋ฃŒ๋ฅผ ์ฃผ๋กœ ์ด์šฉํ•˜๊ณ  ์žˆ์œผ๋‚˜ ์ด๋Š” ์กฐ์‚ฌ ๊ตฌ๊ฐ„์˜ ๊ทนํžˆ ์ผ๋ถ€๋ถ„์— ๋Œ€

ํ•œ ๊ฒฐ๊ณผ์ด๋ฉฐ ํŠนํžˆ, ์œ ์ฒด์˜ ์œ ๋™ ๊ฒฝ๋กœ ๊ตฌ๊ฐ„์€ ์ฃผ๋กœ ํŒŒ์‡„๋Œ€ ๋ฐ ์‚ฌ์งˆ์ธต์ธ๋ฐ ์ด ๊ตฌ๊ฐ„๋“ค์˜ ์ฝ”์–ด ํšŒ์ˆ˜์œจ์ด ๋ถˆ๋Ÿ‰ํ•˜์—ฌ ์กฐ์‚ฌ ๊ตฌ๊ฐ„

์ „์ฒด์— ๋Œ€ํ•œ ๊ด‘๋ฌผ์กฐ์„ฑ ํ‰๊ฐ€๋Š” ํ•œ๊ณ„๊ฐ€ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์‹œ์ถ”๊ณต ์ „ ๊ตฌ๊ฐ„์— ๋Œ€ํ•œ ์›์œ„์น˜ ๊ด‘๋ฌผ์กฐ์„ฑ ์ถ”์ • ๊ธฐ์ˆ ๊ฐœ๋ฐœ์€ ์ง€์ค‘ํ™˜๊ฒฝ

ํ‰๊ฐ€์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ๊ธฐ์ˆ ์€ ์ „ํ†ต, ๋น„์ „ํ†ต ์ €๋ฅ˜์ธต ํ‰๊ฐ€๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์ตœ๊ทผ๊นŒ์ง€ ์žฅ๋น„ ๊ฐœ๋ฐœ ๋ฐ ๊ด€๋ จ ์—ฐ๊ตฌ๊ฐ€

ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋Š” ๋ถ„์•ผ์ด์ง€๋งŒ ๋ช‡ ๊ฐœ ์„œ๋น„์ŠคํšŒ์‚ฌ์˜ ๋…์ ๊ธฐ์ˆ ๋กœ ์ž์„ธํ•œ ์ •๋ณด ๋ฏธ๊ณต๊ฐœ, ๋‹ค์–‘ํ•œ ์ง€์ธต ๋ฐ ์ธ๊ณต๋ชจํ˜•์„ ์ด์šฉ

ํ•œ ํ™”ํ•™-๊ด‘๋ฌผํ•™ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค ๊ตฌ์ถ• ๋ฌธ์ œ ๋“ฑ์œผ๋กœ ๊ตญ๋‚ด ์—ฐ๊ตฌ์— ์ง์ ‘์ ์œผ๋กœ ์ ์šฉํ•˜๊ธฐ์—๋Š” ์–ด๋ ค์›€์ด ์žˆ์—ˆ๋‹ค. ์ด ํ•ด์„ค๋…ผ๋ฌธ์—

์„œ๋Š” ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต์˜ ๊ธฐ๋ณธ์›๋ฆฌ, ์‹œ์Šคํ…œ ๊ตฌ์„ฑ, ๊ต์ •์‹œ์„ค, ๊ตญ์™ธ ๊ธฐ ๊ฐœ๋ฐœ๋œ ๊ฒ€์ธต์‹œ์Šคํ…œ ๋ถ„์„ ๋ฐ ์—ฐ๊ตฌ๊ฐœ๋ฐœ ๋™ํ–ฅ ๋“ฑ์„ ํ†ต

ํ•ด ํ•ด๋‹น ๊ธฐ์ˆ ์„ ์†Œ๊ฐœํ•˜๊ณ , ๊ตญ๋‚ด ์‹œ์Šคํ…œ ์ œ์ž‘์„ ์œ„ํ•œ ๊ธฐ์ˆ  ์ ์šฉ ๋ฐฉ์•ˆ์„ ๊ฒ€ํ† ํ•˜์˜€๋‹ค.

์ฃผ์š”์–ด: ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต, ์ค‘์„ฑ์ž์„ ์›, ๊ฐ๋งˆ์„ , ๊ด‘๋ฌผ์กฐ์„ฑ, ์ง€์ค‘ํ™˜๊ฒฝ

Abstract: Borehole elemental concentration logging, measuring neutron-induced gamma rays by inelastic scattering and

neutron capture interactions between neutron and formation, delivers concentrations of the most common elements found

in the minerals and fluids of subsurface formation. X-ray diffraction and X-ray fluorescence analysis from core samples

are traditionally used to understand formation composition and mineralogy, but it represents only part of formations.

Additionally, it is difficult to obtain elemental analysis over the whole intervals because of poor core recovery zones

such as fractures or sand layers mainly responsible for groundwater flow. The development of borehole technique for

in situ elemental analysis plays a key role in assessing subsurface environment. Although this technology has advanced

consistently starting from conventional and unconventional resources evaluation, it has been considered as exclusive

techniques of some major service company. As regards domestic research and development, it has still remained an

unexplored field because of some barriers such as the deficiency of detailed information on tools and calibration facility

for chemistry and mineralogy database. This article reviews the basic theory of spectroscopy measurements, system

configuration, calibration facility, and current status. In addition, this article introduces the domestic researches and self-

development status on borehole elemental concentration tools.

Keywords: Borehole elemental concentration logging, neutron source, gamma ray, formation composition, subsurface

environment

์„œ ๋ก 

ํ† ์–‘๊ณผ ์•”๋ฐ˜, ์ง€ํ•˜์ˆ˜ ๋“ฑ ์ง€์ค‘ ๋งค์ฒด๋“ค์˜ ๋‹ค์–‘ํ•œ ๋ฌผ์„ฑ์„ ์›์œ„

์น˜(in situ)์—์„œ ์ธก์ • ๋˜๋Š” ์ถ”์ •ํ•˜๋Š” ๋ฌผ๋ฆฌ๊ฒ€์ธต(geophysical well

logging) ๊ธฐ๋ฒ• ์ค‘ ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต(borehole elemental con-

centration logs)์€ ์ค‘์„ฑ์ž์„ ์›(neutron source)์„ ์ด์šฉํ•˜์—ฌ ์ง€

์ธต์˜ ๊ด‘๋ฌผ์กฐ์„ฑ์„ ์ถ”์ •ํ•  ์ˆ˜ ์žˆ๋Š” ๊ธฐ์ˆ ๋กœ์„œ ์ตœ๊ทผ๊นŒ์ง€ ์žฅ๋น„ ๊ฐœ

๋ฐœ ๋ฐ ๊ด€๋ จ ์—ฐ๊ตฌ๊ฐ€ ํ™œ๋ฐœํžˆ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋Š” ๋ถ„์•ผ์ด๋‹ค. ์ „ํ†ต์ ์ธ

๋ฌผ๋ฆฌ๊ฒ€์ธต์€ ์ง€์ธต์˜ ์ฒด์  ๋ฌผ์„ฑ(bulk physical property)์„ ์ถ”์ •

Received: 19 August 2019; Revised: 30 August 2019;

Accepted: 30 August 2019

*Corresponding author

E-mail: [email protected]

Address: 124, Gwahak-ro, Youseong-gu, Daejeon 34132, Korea

โ“’2019, Korean Society of Earth and Exploration Geophysicists

This is an Open Access article distributed under the terms of the Creative

Commons Attribution Non-Commercial License (http://creativecommons.org/

licenses/by-nc/3.0/) which permits unrestricted non-commercial use, distribution,

and reproduction in any medium, provided the original work is properly cited.

ํ•ด ์„ค

Page 2: Borehole Elemental Concentration Logs ... - Korea Science

150 ์‹ ์ œํ˜„ยทํ™ฉ์„ธํ˜ธ

ํ•˜๋Š” ๊ธฐ์ˆ ์ด์ง€๋งŒ ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต ๊ธฐ๋ฒ•์€ ์ง€์ธต์„ ๊ตฌ์„ฑํ•˜๋Š”

์กฐ์„ฑ๊ด‘๋ฌผ์„ ํŒŒ์•…ํ•˜๋Š” ๊ธฐ์ˆ ์ด๋‹ค(Fig. 1). ์ผ๋ฐ˜์ ์œผ๋กœ ์ง€์ธต์˜ ๊ด‘

๋ฌผ์กฐ์„ฑ ํ‰๊ฐ€๋Š” ์ฝ”์–ด์— ๋Œ€ํ•œ X์„  ํšŒ์ ˆ๋ฒ•(X-ray diffraction

analysis, XRD), X์„  ํ˜•๊ด‘๋ถ„์„๋ฒ•(X-ray fluorescence analysis,

XRF) ๋“ฑ์˜ ์‹ค๋‚ด ์‹œํ—˜์ž๋ฃŒ๋ฅผ ์ฃผ๋กœ ์ด์šฉํ•˜๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ์ด๋Š”

์กฐ์‚ฌ ๊ตฌ๊ฐ„์˜ ๊ทนํžˆ ์ผ๋ถ€๋ถ„์— ๋Œ€ํ•œ ๊ฒฐ๊ณผ์ด๋ฉฐ ํŠนํžˆ, ์œ ์ฒด์˜ ์œ ๋™

๊ฒฝ๋กœ ๊ตฌ๊ฐ„์€ ์ฃผ๋กœ ํŒŒ์‡„๋Œ€ ๋ฐ ์‚ฌ์งˆ์ธต์ธ๋ฐ ์ด ๊ตฌ๊ฐ„๋“ค์˜ ์ฝ”์–ด ํšŒ

์ˆ˜์œจ(core recovery)์ด ๋ถˆ๋Ÿ‰ํ•˜์—ฌ ์กฐ์‚ฌ ๊ตฌ๊ฐ„ ์ „์ฒด์— ๋Œ€ํ•œ ๊ด‘๋ฌผ

์กฐ์„ฑ ํ‰๊ฐ€๋Š” ๋งค์šฐ ์–ด๋ ต๋‹ค. ๋”ฐ๋ผ์„œ ์‹œ์ถ”๊ณต ์ „ ๊ตฌ๊ฐ„์— ๋Œ€ํ•œ ์›์œ„

์น˜ ๊ด‘๋ฌผ์กฐ์„ฑ ์ถ”์ • ๊ธฐ์ˆ ์€ ์ง€์ค‘ํ™˜๊ฒฝ(subsurface environment)

ํ‰๊ฐ€์— ์ค‘์š”ํ•œ ์—ญํ• ์„ ํ•  ์ˆ˜ ์žˆ์œผ๋ฉฐ ๊ทธ ํ™œ์šฉ๋ฒ”์œ„ ๋˜ํ•œ ๋‹ค์–‘

ํ•˜๋‹ค.

Baker (1957)๋Š” ์‹œ์ถ”๊ณต ์กฐ๊ฑด์„ ๋ชจ์‚ฌํ•œ ๋‹ค์–‘ํ•œ ์ธ๊ณต ์ง€์ธต

(artificial formation)์„ ๋Œ€์ƒ์œผ๋กœ ์ค‘์„ฑ์ž ํฌํš ๊ฐ๋งˆ์„ (neutron

captured gamma-ray)์˜ ์—๋„ˆ์ง€ ์ŠคํŽ™ํŠธ๋Ÿผ(energy spectrum)์œผ

๋กœ๋ถ€ํ„ฐ ์›์†Œ๋ฅผ ์ถ”์ •ํ•˜์—ฌ ๋ฐฉ์‚ฌ๋Šฅ๊ฒ€์ธต์˜ ์ ์šฉ ๊ฐ€๋Šฅ์„ฑ์„ ์†Œ๊ฐœํ•œ

๋ฐ” ์žˆ์œผ๋ฉฐ, ์ด๋Š” ์ด ๊ธฐ์ˆ ์˜ ์‹œ์ž‘์ด๋ผ๊ณ  ๋ณผ ์ˆ˜ ์žˆ๋‹ค. ์ดํ›„ ์›์œ„

์น˜ ๋ถ„์„์ด๋ผ๋Š” ํฐ ์ด์ ์„ ๊ฐ–๊ณ  ๋งŽ์€ ๊ด€๋ จ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰๋˜์–ด ์™”

์œผ๋‚˜ ์žฅ๋น„ ์ž์ฒด์˜ ์ „์ž์  ์„ฑ๋Šฅ ๋ฌธ์ œ, ๊ณ„์ธก ์‹œ์Šคํ…œ์˜ ์ •๋ฐ€๋„

(precision) ๋ฐ ์ •ํ™•๋„(accuracy) ๋ฏธํก, ์ •๋Ÿ‰์  ๋ถ„์„์„ ์œ„ํ•œ ๊ต

์ •(calibration)์˜ ์–ด๋ ค์›€, ๊ฒ€์ธต์†๋„(logging speed)์™€ ์˜จ๋„์˜ ๋ฏผ

๊ฐ๋„ ๋“ฑ์˜ ์—ฌ๋Ÿฌ ๊ฐ€์ง€ ๊ธฐ์ˆ ์ ์ธ ๋ฌธ์ œ์ ์„ ๊ฐ€์ง€๊ณ  ์žˆ์—ˆ๋‹ค

(Muench and Osoba, 1957; Tittman and Nelligan, 1960;

Engesser and Thompson, 1967; Culver et al., 1974). ์ด๋Ÿฌํ•œ

์ดˆ๊ธฐ ์—ฐ๊ตฌ์— ๋Œ€ํ•œ ํ•œ๊ณ„์ ์„ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ˆ˜๋…„์˜ ์ง€์†์ ์ธ

์—ฐ๊ตฌ๋ฅผ ๊ฑฐ์ณ ๋งŽ์€ ๊ณ ์„ฑ๋Šฅ ์ค‘์„ฑ์ž-๊ฐ๋งˆ์ŠคํŽ™ํŠธ๋กœ์Šค์ฝ”ํ”ผ๊ฒ€์ธต๊ธฐ

(neutron-induced gamma ray spectroscopy sonde)๊ฐ€ ๊ฐœ๋ฐœ๋˜์—ˆ

์œผ๋ฉฐ, ๋‹ค์–‘ํ•œ ์ง€์ธต ์ฝ”์–ด๋ฅผ ์ด์šฉํ•œ ํ™”ํ•™-๊ด‘๋ฌผํ•™ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค

(chemistry and mineralogy database) ๊ตฌ์ถ•, ๊ธฐ์กด์˜ ์—ญ์‚ฐ ๋ฐฉ๋ฒ•

์„ ๋ณด์™„ํ•œ ์ƒˆ๋กœ์šด ๋ชจ๋ธ ๋…๋ฆฝ์  ์—ญ์‚ฐ ๊ธฐ๋ฒ•(model-independent

inversion method)์˜ ๊ฐœ๋ฐœ ๋“ฑ์œผ๋กœ ๋ณต์žกํ•œ ์ง€์ธต์— ๋Œ€ํ•ด ์ •ํ™•๋„

๋†’์€ ์ •๋Ÿ‰์  ๋ถ„์„์„ ํ•˜๊ณ ์ž ๋…ธ๋ ฅํ•˜์˜€๋‹ค(Pemper et al., 2006;

Galford et al., 2009; Radtke et al., 2012; Craddock et al.,

2013; Freedman et al., 2014).

ํ˜„์žฌ ๋ฐฉ์‚ฌ๋Šฅ๊ฒ€์ธต์„ ์ด์šฉํ•œ ์•”์„ ๊ด‘๋ฌผ์กฐ์„ฑ ํ‰๊ฐ€์— ๋Œ€ํ•œ ๊ตญ์™ธ

๊ธฐ์ˆ ์€ ์™„์„ฑ๋‹จ๊ณ„๋กœ ์ „ํ†ต, ๋น„์ „ํ†ต ์ €๋ฅ˜์ธต ํ‰๊ฐ€์— ๋งŽ์ด ์ด์šฉ๋˜๊ณ 

์žˆ์ง€๋งŒ ์ด๋Š” ๋ช‡ ๊ฐœ์˜ ์ฃผ์š” ์„œ๋น„์Šค ํšŒ์‚ฌ์˜ ๋…์  ๊ธฐ์ˆ ๋กœ ์žฅ๋น„ ํŒ

๋งค ์—†์ด ๊ณ ๊ฐ€์˜ ์„œ๋น„์Šค๋งŒ ์‹ค์‹œํ•˜๊ณ  ์žˆ์–ด ์ž๋ฃŒ์ทจ๋“ ์‹œ์Šคํ…œ์˜

์ •ํ™•ํ•œ ์ œ์› ๋ฐ ์ž๋ฃŒ์ฒ˜๋ฆฌ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ๋“ฑ์„ ๊ณต๊ฐœํ•˜์ง€ ์•Š๊ณ  ์žˆ๋‹ค.

์ด ํ•ด์„ค๋…ผ๋ฌธ์—์„œ๋Š” ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต์˜ ๊ธฐ๋ณธ์›๋ฆฌ, ์‹œ์Šคํ…œ ๊ตฌ

์„ฑ, ๊ต์ •์‹œ์„ค, ๊ตญ์™ธ ๊ธฐ ๊ฐœ๋ฐœ๋œ ๊ฒ€์ธต์‹œ์Šคํ…œ ๋ถ„์„, ๊ตญ์™ธ ์—ฐ๊ตฌ๊ฐœ๋ฐœ

๋™ํ–ฅ ๋ฐ ๊ตญ๋‚ด ๊ด€๋ จ ์—ฐ๊ตฌ์— ๋Œ€ํ•ด ์†Œ๊ฐœํ•˜๊ณ  ์ด ์‹œ์Šคํ…œ ์ œ์ž‘์„ ์œ„

ํ•œ ๊ตญ๋‚ด ๊ธฐ์ˆ  ์ ์šฉ ๋ฐฉ์•ˆ์„ ๊ฒ€ํ† ํ•˜์˜€๋‹ค.

์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต

๊ธฐ๋ณธ ์›๋ฆฌ

์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต๊ธฐ์˜ ์ค‘์„ฑ์ž์„ ์›์—์„œ ๋ฐœ์ƒ๋˜๋Š” ๋†’์€ ์—๋„ˆ

Fig. 1. Conceptual sketch for borehole elemental concentration logs. Borehole elemental concentration logging, also referred to as neutron-

induced gamma ray spectroscopy, delivers in situ concentrations of the most common elements found in the minerals and fluids of subsurface

formation.

Page 3: Borehole Elemental Concentration Logs ... - Korea Science

์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต: ์›๋ฆฌ, ์—ฐ๊ตฌ๋™ํ–ฅ ๋ฐ ํ–ฅํ›„ ๊ณผ์ œ 151

์ง€์˜ ๊ณ ์† ์ค‘์„ฑ์ž(fast neutron)๋Š” ์ง€์ธต๊ณผ ๋ฐ˜์‘ํ•˜์—ฌ ๋น ๋ฅธ ์†๋„

๋กœ ์—๋„ˆ์ง€๋ฅผ ์ƒ์‹คํ•˜๋ฉด์„œ ์—ด์ค‘์„ฑ์ž ์˜์—ญ(thermal energy level)

์œผ๋กœ ๊ฐ์†(moderation)๋œ๋‹ค. ์ด๋•Œ, ์ดˆ๊ธฐ ๋งˆ์ดํฌ๋กœ์ดˆ(micro-

second) ๋™์•ˆ ์—๋„ˆ์ง€๊ฐ€ ์•ฝ 1 MeV ์ดํ•˜๋กœ ๋–จ์–ด์ง€๊ธฐ ์ „ ์ค‘์„ฑ์ž

๋Š” ๋น„ํƒ„์„ฑ์‚ฐ๋ž€(inelastic scattering) ์ƒํ˜ธ์ž‘์šฉ์„ ํ•˜๊ฒŒ ๋˜๊ณ , ๋ฐ˜

๋ฉด 0.025 eV์˜ ์—ด์ค‘์„ฑ์ž๋Š” ์›์žํ•ต(atomic nuclei)์— ํก์ฐฉ๋˜์–ด

์ค‘์„ฑ์žํฌํš(neutron capture) ์ž‘์šฉ์„ ํ•˜์—ฌ ๊ฐ๊ฐ ๊ฐ๋งˆ์„ ์„ ๋ฐฉ์ถœ

ํ•œ๋‹ค(Fig. 2). ์ด ๋‘ ๊ฐ€์ง€ ์ƒํ˜ธ์ž‘์šฉ์— ์˜ํ•œ ๊ณ ์—๋„ˆ์ง€์˜ ๊ฐ๋งˆ์„ 

์ŠคํŽ™ํŠธ๋Ÿผ์„ ๊ฒ€์ถœ๊ธฐ๋กœ๋ถ€ํ„ฐ ์ธก์ •ํ•˜์—ฌ ๊ฐ๋งˆ์„ ์ŠคํŽ™ํŠธ๋Ÿผ(gamma-

ray spectrum)์„ ๊ตฌํ˜„ํ•˜๊ณ  ๊ฐ ์›์†Œ์˜ ํ‘œ์ค€์ŠคํŽ™ํŠธ๋Ÿผ(elemental

Fig. 2. Primary neutron-gamma interactions in borehole elemental concentration logs. Inelastic neutron scattering occurs when fast neutrons

collide with atomic nuclei, and excited nucleus emits inelastic gamma rays to return to a deexcited state (top). Neutron capture occurs when

thermal neutrons are absorbed by atomic nuclei, and the capturing atom generates gamma rays to return to a deexcited state (bottom).

Fig. 3. Good agreement between six elemental concentrations measured on core (red) and those derived by applying the oxide closure principle

to the yields of the Elemental Concentration Sonde (Barson et al., 2005).

Page 4: Borehole Elemental Concentration Logs ... - Korea Science

152 ์‹ ์ œํ˜„ยทํ™ฉ์„ธํ˜ธ

standard spectrum)์„ ๊ธฐ๋ฐ˜์œผ๋กœ ์›์†Œ๋ฅผ ๊ตฌ๋ถ„ํ•˜๋Š” ๊ฒƒ์ด ์•”์„๊ตฌ

์„ฑ์„ฑ๋ถ„๊ฒ€์ธต์˜ ๊ธฐ๋ณธ ์›๋ฆฌ์ด๋‹ค. ์›์†Œ์˜ ํ‘œ์ค€์ŠคํŽ™ํŠธ๋Ÿผ์€ ์•Œ๋ ค์ง„

ํ™”ํ•™ ์„ฑ๋ถ„์˜ ์ง€์ธต์—์„œ ์–ป์„ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์˜ˆ๋กœ ์‹ค๋ฆฌ์ฝ˜(Silicon)๊ณผ

์นผ์Š˜(Calcium)์˜ ํ‘œ์ค€์ŠคํŽ™ํŠธ๋Ÿผ์€ ์ˆœ์ˆ˜ ์‚ฌ์•”(clean sandstone,

SiO2)๊ณผ ์„ํšŒ์•”(limestone, CaCO3) ๋ชจํ˜•์—์„œ ํš๋“์ด ๊ฐ€๋Šฅํ•˜๋‹ค

(์ˆ˜์†Œ, ์‚ฐ์†Œ, ํƒ„์†Œ์˜ ํ‘œ์ค€์€ ๋ฌผ(H2O)๊ณผ ์˜ค์ผ(CnHm) ํƒฑํฌ์—์„œ

ํš๋“).

์ธก์ •๋œ ์ŠคํŽ™ํŠธ๋Ÿผ์€ oxide closure model (Grau and Schweitzer,

1989; Grau et al., 1989; Hertzog et al., 1989) ํ˜น์€ Elemental

Log Analysis (Quirein et al., 1986)๊ฐ™์€ ๋ฐ˜๋ณต ์—ญ์‚ฐ ๊ธฐ๋ฒ•

(iteration inversion technique)์— ์ ์šฉํ•˜์—ฌ ๊ฐ ์›์†Œ๋“ค์˜ ์งˆ๋Ÿ‰๋ถ„

์œจ(elemental weight fraction)์„ ์‚ฐ์ถœํ•œ๋‹ค. Fig. 3์€ oxide

closure model๋กœ ๊ตฌํ•ด์ง„ 6๊ฐœ์˜ ์›์†Œ์— ๋Œ€ํ•œ ์˜ˆ๋กœ ์ฝ”์–ด ๋ถ„์„๊ณผ

์ข‹์€ ์ƒ๊ด€์„ฑ์„ ๋ณด์—ฌ์ค€๋‹ค(Barson et al., 2005). ์‚ฐ์ถœ๋œ ์›์†Œ๋“ค

์€ ์ •ํ™•ํ•œ ์›์†Œ์™€ ๊ด‘๋ฌผ ์‚ฌ์ด์˜ ์‹คํ—˜ ๊ด€๊ณ„์‹์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ์ˆœ

์ฐจ ์ฒ˜๋ฆฌ ๊ธฐ๋ฒ•์ธ SpectroLith algorithm (Herron and Herron,

1996) ํ˜น์€ ELANPlus advanced multimineral log analysis

(Techlog ELANPlus module of Schlumberger) ๋“ฑ์˜ ๋ชจ๋ธ๋ง ํ”„

๋กœ๊ทธ๋žจ์„ ์ด์šฉํ•˜์—ฌ ๊ด‘๋ฌผ๋กœ ํ™˜์‚ฐํ•œ๋‹ค. ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต์˜ ์ž

๋ฃŒ ์ทจ๋“ ๋ฐ ์ฒ˜๋ฆฌ ์ ˆ์ฐจ๋Š” Fig. 4์™€ ๊ฐ™๋‹ค.

๊ฐ๋งˆ์„ ์ŠคํŽ™ํŠธ๋Ÿผ์œผ๋กœ๋ถ€ํ„ฐ ์ถ”์ •ํ•˜๋Š” ์ง€์ธต์„ ๊ตฌ์„ฑํ•˜๋Š” ์ฃผ์š” ์›

์†Œ๋“ค์€ ๋น„ํƒ„์„ฑ์‚ฐ๋ž€๊ณผ ์ค‘์„ฑ์žํฌํš ๋ชจ๋“œ์— ๋”ฐ๋ผ ๊ฐ๊ธฐ ๋‹ค๋ฅด๋ฉฐ ์ด

์ค‘ Al, Ba, Ca, Fe, Mg, S, Si ๋“ฑ์€ ๋‘ ๊ฐ€์ง€ ์ƒํ˜ธ์ž‘์šฉ์— ๋ชจ๋‘

๋‚˜ํƒ€๋‚˜๋Š” ์›์†Œ๋กœ ์•Œ๋ ค์ ธ ์žˆ๋‹ค(Table 1, Radtke et al., 2012).

์‹œ์Šคํ…œ ๊ตฌ์„ฑ

์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต ์กด๋ฐ๋Š” ํฌ๊ฒŒ ์ค‘์„ฑ์ž์„ ์›, ๊ฐ๋งˆ์„  ๊ฒ€์ถœ๊ธฐ,

์ž๋ฃŒ์ทจ๋“ ๋ฐ ํ†ต์‹  ๋ชจ๋“ˆ๋กœ ๊ตฌ์„ฑ๋œ๋‹ค. ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต์˜ ์„ ์›

์€ ์ฃผ๋กœ AmBe ํ™”ํ•™์„ ์›(chemical source) ํ˜น์€ ์ค‘์„ฑ์ž๋ฐœ์ƒ์žฅ

์น˜(neutron generator)๋ฅผ ์ด์šฉํ•œ๋‹ค. AmBe ํ™”ํ•™์„ ์›์€ ์•„๋ฉ”๋ฆฌ

์Š˜(americium, 241Am)๊ณผ ๋ฒ ๋ฆด๋ฅจ(beryllium, 9Be)์˜ ํ˜ผํ•ฉ๋ฌผ๋กœ ํ•ต

๋ฐ˜์‘(nuclear reaction)์˜ ๋ถ€์‚ฐ๋ฌผ(by-product)๋กœ๋ถ€ํ„ฐ ์ค‘์„ฑ์ž๋ฅผ

๋ฐœ์ƒํ•œ๋‹ค. ์•„๋ฉ”๋ฆฌ์Š˜์ด ๋“ค๋œฌ ์ƒํƒœ(excite state)์˜ ๋„ตํˆฌ๋Š„(nep-

tunium)์œผ๋กœ ๋ถ•๊ดดํ•˜๋ฉด์„œ 5.5 MeV์˜ ์•ŒํŒŒ์ž…์ž(alpha particle)

๋ฅผ ๋ฐฉ์ถœํ•˜์—ฌ ๋ฒ ๋ฆด๋ฅจ๊ณผ ๋ฐ˜์‘ํ•˜์—ฌ 4 MeV์˜ ์ดˆ๋‹น 4 ร— 107๊ฐœ

(neutron/s)์˜ ์ค‘์„ฑ์ž๋ฅผ ๋ฐœ์ƒํ•œ๋‹ค. ์ค‘์„ฑ์ž๋ฐœ์ƒ์žฅ์น˜๋Š” ํ•ต์œตํ•ฉ๋ฐ˜

์‘(fusion reaction)์œผ๋กœ๋ถ€ํ„ฐ ์ค‘์„ฑ์ž๋ฅผ ์ƒ์‚ฐํ•˜๋Š” ์ž๊ธฐ์ œ์–ด ์ž…์ž

๊ฐ€์†๊ธฐ(self-contained particle accelerator)๋กœ 14 MeV์˜ 3 ร— 108

neutron/s์˜ ์ถœ๋ ฅ์„ ๊ฐ€์ง„๋‹ค.

AmBe ํ™”ํ•™์„ ์›์€ ์˜ˆ์ƒ๋œ ์—๋„ˆ์ง€ ๋ฒ”์œ„์—์„œ ์ƒ๋Œ€์ ์œผ๋กœ ์•ˆ

์ •์ ์ธ ์ค‘์„ฑ์ž๋ฅผ ์ƒ์‚ฐํ•˜๋ฉฐ, ํŽ„์Šค์ค‘์„ฑ์ž๋ฐœ์ƒ์žฅ์น˜(pulsed neutron

generator, PNG)๋Š” ๋†’์€ ์—๋„ˆ์ง€์˜ ๋งŽ์€ ์ค‘์„ฑ์ž๋ฅผ ๋ฐœ์ƒ์‹œํ‚ค๊ณ 

์ค‘์„ฑ์ž๋ฅผ ํ•ญ์ƒ ๋ฐœ์ƒ์‹œํ‚ค๋Š” ํ™”ํ•™์„ ์›์— ๋น„ํ•ด ์‹ ํ˜ธ๋ฅผ ์ค„๋•Œ๋งŒ ์ค‘

์„ฑ์ž๋ฅผ ๋ฐœ์ƒ์‹œํ‚ค๋ฏ€๋กœ ์•ˆ์ „์„ฑ์„ ๊ฐ€์ง„๋‹ค. ํ•˜์ง€๋งŒ ์ค‘์„ฑ์ž๋ฐœ์ƒ์žฅ

์น˜์˜ ๋‹จ์ ์œผ๋กœ๋Š” ์ถœ๋ ฅ์ด ์˜จ๋„, ์žฅ์น˜ ์ „์›(tool power), ํ‰๊ท ์ˆ˜

Table 1. Elements determined through capture and inelastic gamma

spectroscopy (Radtke et al., 2012).

Element Description Capture Inelastic

Al Aluminum โ— โ—

Ba Barium โ— โ—

C Carbon โ—

Ca Calcium โ— โ—

Cl Chlorine โ—

Cu Copper โ—

Fe Iron โ— โ—

Gd Gadolinium โ—

H Hydrogen โ—

K Potassium โ—

Mg Magnesium โ— โ—

Mn Manganese โ—

Na Sodium โ—

Ni Nickel โ—

O Oxygen โ—

S Sulfur โ— โ—

Si Silicon โ— โ—

Ti Titanium โ—

Fig. 4. Multi-step process from acquisition to interpretation in

borehole elemental concentration logs. Inelastic and capture gamma-

ray from nuclear interaction are converted to elemental yields using

elemental standards. Elemental weight fractions are computed based

on iteration inversion techniques. Elemental analysis programs

convert weight fractions to mineralogy.

Page 5: Borehole Elemental Concentration Logs ... - Korea Science

์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต: ์›๋ฆฌ, ์—ฐ๊ตฌ๋™ํ–ฅ ๋ฐ ํ–ฅํ›„ ๊ณผ์ œ 153

๋ช…(lifetime) ๋“ฑ์— ์˜ํ•ด ๊ฐ€๋ณ€์ ์ผ ์ˆ˜ ์žˆ๋‹ค.

๋ฐฉ์‚ฌ์„  ๊ฒ€์ถœ๊ธฐ๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ ์„ฌ๊ด‘๊ฒ€์ถœ๊ธฐ(scintillation detector)

์™€ ๋ฐ˜๋„์ฒด๊ฒ€์ถœ๊ธฐ(semiconductor)๊ฐ€ ์žˆ์œผ๋ฉฐ, ์„ฌ๊ด‘๊ฒ€์ถœ๊ธฐ๋Š” ๋ฌด๊ธฐ

์„ฌ๊ด‘์ฒด(inorganic scintillator)์™€ ํ”Œ๋ผ์Šคํ‹ฑ, ์•ก์ฒด์„ฌ๊ด‘์ฒด ๋“ฑ์˜ ์œ 

๊ธฐ์„ฌ๊ด‘์ฒด(organic scintillator)๋กœ ๋‚˜๋‰˜๊ณ  ๊ฒ€์ถœ๊ธฐ๋งˆ๋‹ค ํŠน์„ฑ ์ฐจ์ด

๊ฐ€ ์žˆ๋‹ค. ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต ์‹œ์Šคํ…œ์—์„œ ๋ฐฉ์‚ฌ์„  ๊ฒ€์ถœ๊ธฐ์— ๋Œ€ํ•œ

์„ ์ •์€ ์ง€์ธต์˜ ๊ฐ๋งˆ์„  ์—๋„ˆ์ง€ ์ŠคํŽ™ํŠธ๋Ÿผ ์ทจ๋“์— ๋ถ„ํ•ด๋Šฅ์„ ๋†’์ผ

์ˆ˜ ์žˆ๋Š” ๋งค์šฐ ์ค‘์š”ํ•œ ์š”์†Œ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ์‹œ์Šคํ…œ ๊ตฌ์„ฑ์„ ์œ„ํ•œ

๋ฐฉ์‚ฌ์„  ๊ฒ€์ถœ๊ธฐ์˜ ์ด์ƒ์  ์กฐ๊ฑด์€ ๋†’์€ ๊ณ„์ธก ํšจ์œจ(detection

efficiency), ์„ฌ๊ด‘ ํšจ์œจ(scintillation efficiency), ์„ ํ˜•์„ฑ(linearity)

์„ ๊ฐ€์ง€๋ฉฐ ์งง์€ ๊ฐ์‡„์‹œ๊ฐ„, ๋ฌด ์กฐํ•ด์„ฑ(hygroscopic), ์˜จ๋„์— ๋Œ€

ํ•œ ์•ˆ์ •์„ฑ ๋“ฑ์ด ์žˆ๋‹ค. ์„ฌ๊ด‘๊ฒ€์ถœ๊ธฐ ์ค‘ ๋ฌด๊ธฐ์„ฌ๊ด‘์ฒด๋Š” ์ผ๋ฐ˜์ ์œผ๋กœ

๊ฐ€์‹œ๊ด‘์„ ์„ ๋ฐฉ์ถœํ•  ํ™•๋ฅ ์„ ๋†’์ด๊ธฐ ์œ„ํ•˜์—ฌ ์†Œ๋Ÿ‰์˜ ๋ถˆ์ˆœ๋ฌผ์„ ์ฒจ

๊ฐ€ํ•˜๋ฉฐ ๋†’์€ ์„ฌ๊ด‘ ํšจ์œจ๊ณผ ์„ ํ˜•์„ฑ์„ ๊ฐ€์ง€๊ณ  ์›์ž๋ฒˆํ˜ธ๊ฐ€ ๋†’์•„

๊ฐ๋งˆ์„  ๊ณ„์ธก์— ์‚ฌ์šฉ๋˜๋Š” ๋ฐ˜๋ฉด, ์œ ๊ธฐ์„ฌ๊ด‘์ฒด๋Š” ์œ ๊ธฐ๋ฌผ์งˆ๋กœ ๊ตฌ์„ฑ

๋˜๋ฉฐ ์„ฌ๊ด‘ ํšจ์œจ์ด ๋‚ฎ๊ณ  ์›์ž๋ฒˆํ˜ธ๊ฐ€ ๋‚ฎ์•„ ์ ์ ˆ์น˜ ์•Š๋‹ค. ๊ณ ์ˆœ๋„

์ €๋งˆ๋Š„ ๊ฒ€์ถœ๊ธฐ(High Purity Germanium, HPGe), ์นด๋“œ๋ฎดํ…”๋ฃจ๋ผ

์ด๋“œ(Cadmium Telluride, CdTe) ๋“ฑ์˜ ๋ฐ˜๋„์ฒด๊ฒ€์ถœ๊ธฐ๋Š” ์„ฌ๊ด‘๊ฒ€

์ถœ๊ธฐ์— ๋น„ํ•˜์—ฌ ๋†’์€ ์—๋„ˆ์ง€ ๋ถ„ํ•ด๋Šฅ(resolution)์„ ๊ฐ€์ง€๊ณ  ๋‚ฎ์€

์—๋„ˆ์ง€ ์˜์—ญ(10 keV ์ดํ•˜)๊นŒ์ง€ ์ธก์ • ๊ฐ€๋Šฅํ•˜์ง€๋งŒ ์ง€์†์ ์ธ ๋ƒ‰

๊ฐ์ด ํ•„์š”ํ•ด ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต์— ์ด์šฉ๋˜๊ธฐ์—๋Š” ํ•œ๊ณ„๋ฅผ ๊ฐ€์ง„

๋‹ค. ๋ฌผ๋ฆฌ๊ฒ€์ธต์— ์‚ฌ์šฉ๋˜๋Š” ๋ฌด๊ธฐ์„ฌ๊ด‘์ฒด ์ค‘ NaI(Tl)์€ ์ผ๋ฐ˜์ ์œผ๋กœ

๋„๋ฆฌ ์“ฐ์ด๋Š” ๊ฒ€์ถœ๊ธฐ๋กœ ๋†’์€ ๋ฐœ๊ด‘๋Ÿ‰(light output)์„ ๊ฐ€์ง€๋ฉฐ ๊ฐ€

๊ฒฉ์ด ์ €๋ ดํ•˜์ง€๋งŒ ํฌ๊ธฐ๊ฐ€ ํด์ˆ˜๋ก ๋ถ„ํ•ด๋Šฅ์ด ๋–จ์–ด์ง€๋Š” ๋‹จ์ ์ด ์žˆ

์–ด, ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต์—๋Š” BGO (bismuth germanate)๊ฐ€ ๊ทธ๋™

์•ˆ ์ด์šฉ๋˜์–ด ์™”์œผ๋ฉฐ ๋น„์Šค๋ฌดํŠธ(bismuth)์˜ ๋†’์€ ์›์ž๋ฒˆํ˜ธ(93)์™€

๋ฐ€๋„(7.13)๋กœ ์ธํ•ด ํšจ๊ณผ์ ์ธ ๊ฐ๋งˆ์„  ์ธก์ •์— ์šฉ์ดํ•˜๊ณ  ๋‹ค์–‘ํ•œ

๋ชจ์–‘(geometry)์œผ๋กœ ์ œ์ž‘์ด ๊ฐ€๋Šฅํ•˜์˜€๋‹ค. ์ตœ๊ทผ์—๋Š” ๋†’์€ ๋ฐ€๋„์™€

๊ณ ๋ถ„ํ•ด๋Šฅ, ์ž‘์€ ๋ฐฐ๊ฒฝ๊ฐ’์˜ ํŠน์ง•์„ ๊ฐ€์ง€๋Š” ๋‹ค์–‘ํ•œ ๋ฐฉ์‚ฌ์„  ๊ฒ€์ถœ๊ธฐ

๊ฐ€ ๊ฐœ๋ฐœ๋˜์–ด ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต์— ์ด์šฉ๋˜๊ณ  ์žˆ๋‹ค(Van Loef et

al., 2001; Stoller et al., 2011).

๊ฐ๋งˆ์ŠคํŽ™ํŠธ๋Ÿผ ์ธก์ • ๋ชจ๋“ˆ์€ ์„ฌ๊ด‘์ฒด์™€ ๊ด‘์ „์ž ์ฆ๋ฐฐ๊ด€(photo-

multiplier, PMT)์„ ํฌํ•จํ•˜๋Š” ๊ฒ€์ถœ๊ธฐ์™€ ์„ฌ๊ด‘์ฒด์˜ ์ถœ๋ ฅ ์‹ ํ˜ธ๋ฅผ

์ ๋ถ„ํ•œ ๊ฒฐ๊ณผ์ธ ์—์ง€(edge) ์‹ ํ˜ธ ํ˜•ํƒœ์˜ ๊ณ ์ฃผํŒŒ ๋Œ€์—ญ ํŠน์„ฑ์˜ ์ถœ

๋ ฅ์‹ ํ˜ธ๋ฅผ ๋งŒ๋“œ๋Š” ์ „์น˜ ์ฆํญ๊ธฐ(preamp), ์ด๋ฅผ ์•„๋‚ ๋กœ๊ทธ ์‹ ํ˜ธ ์ฒ˜

๋ฆฌํ•˜์—ฌ ์ข…ํ˜•(bell-shape)์„ ๊ฐ–๋Š” ์ €์ฃผํŒŒ ๋Œ€์—ญ์˜ ์‹ ํ˜ธ๋ฅผ ๋งŒ๋“œ๋Š”

์ฆํญ๊ธฐ(amp), ๊ณ ์ „์•• ๊ณต๊ธ‰ ์žฅ์น˜(High Voltage, HV), ๋‹ค์ฑ„๋„ ๋ถ„

์„๊ธฐ(Multichannel Analyzer, MCA)๋กœ ๊ตฌ์„ฑ๋œ๋‹ค(Fig. 5). ํ˜„์žฅ

์— ์ ์šฉ๋  ๊ฐ๋งˆ ์ŠคํŽ™ํŠธ๋Ÿผ ์ธก์ • ๋ชจ๋“ˆ์˜ ์š”๊ฑด์€ ํฐ ๊ณ„์ˆ˜์œจ์˜ ์•ˆ

์ •์  ์ธก์ •(high count rate application), ์ €์ „๋ ฅ ์‚ฌ์šฉ(low power

consumption), ์˜จ๋„ ์•ˆ์ •์„ฑ(temperature stabilization) ๋“ฑ์ด ์žˆ

๋‹ค. ํŠนํžˆ, ํฐ ๊ณ„์ˆ˜์œจ(์˜ˆ๋กœ LaBr3:Ce์™€ PNG์˜ ์กฐํ•ฉ์˜ ๊ฒฝ์šฐ

2,500,000 count/s ์ด์ƒ)์„ ๊ฐ€์ง„ ๋น ๋ฅธ ์‹ ํ˜ธ๋“ค์˜ ์ฒ˜๋ฆฌ๋ฅผ ์œ„ํ•ด์„œ

์ „๋ฌธํ™”๋œ ์ „์ž์žฅ์น˜๊ฐ€ ์š”๊ตฌ๋œ๋‹ค.

๊ต์ • ์‹œ์„ค

์›์†Œ ํ‘œ์ค€์ŠคํŽ™ํŠธ๋Ÿผ ๊ตฌ์ถ• ๋ฐ ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต๊ธฐ์˜ ์ œ์ž‘, ์„ฑ

๋Šฅํ…Œ์ŠคํŠธ๋ฅผ ์œ„ํ•ด์„œ๋Š” ๋‹ค์–‘ํ•œ ์‹œํ—˜ ์ง€์ธต(test formation)๊ณผ ์‹œ์ถ”

Fig. 5. Schematic of the measurement module for gamma ray detection. Gamma rays enter the scintillator causing a flash of light. The

photomultiplier tube converts the light to a current, which it amplifies many times. The analog signal is further amplified and converted to a

digital value. The amplitude of the signal is determined by a pulse height analyzer.

Fig. 6. Elemental standards and tool calibration at Environmental Effects Calibration Facility (EECF, Schlumberger). Standards are derived by

using slabs of formation rocks and simulated formation with known geochemical and lithologic composition (Abound et al., 2014).

Page 6: Borehole Elemental Concentration Logs ... - Korea Science

154 ์‹ ์ œํ˜„ยทํ™ฉ์„ธํ˜ธ

๊ณต ํ™˜๊ฒฝ(environmental condition)์„ ๊ตฌํ˜„ํ•œ ๊ต์ • ์‹œ์„ค์ด ํ•„์ˆ˜

์ ์ด๋‹ค. ๋ฏธ๊ตญ ์Š๋Ÿผ๋ฒ„์ €็คพ(Schlumberger Limited)์—์„œ๋Š” 1985

๋…„ ํœด์Šคํ„ด์— Environmental Effects Calibration Facility (EECF)

๋ฅผ ์กฐ์„ฑ, ๋‹ค์–‘ํ•œ ์‹œํ—˜ ์ง€์ธต์„ ๊ตฌํ˜„ํ•˜์—ฌ ์ค‘์„ฑ์ž ๋ฐ ๋ฐ€๋„๊ฒ€์ธต์—

๋Œ€ํ•œ ์‹œํ—˜์„ ์‹ค์‹œํ•˜๊ณ  ์žˆ๋‹ค. ๋ณธ ์‹œํ—˜ ์ง€์ธต์€ ๋‹ค์–‘ํ•œ ์ง€์งˆ, ๊ณต

๊ทน๋ฅ  ๋ฐ ์‹œ์ถ”๊ณต ํฌ๊ธฐ, ๋จธ๋“œ ํƒ€์ž…, ๋จธ๋“œ๋Ÿ‰, ์—ผ๋„, ์ผ€์ด์‹ฑ ๋“ฑ์˜ ์‹œ

์ถ”๊ณต ํ™˜๊ฒฝ์„ ๋ชจ์‚ฌํ•˜์˜€๋‹ค. ๋˜ํ•œ ํ™”ํ•™ ์กฐ์„ฑ์„ ์•Œ๊ณ  ์žˆ๋Š” ์•”์„์˜

ํ‰ํŒ(slab) ํ˜น์€ ๋ชจํ˜• ์ง€์ธต(simulated formation)์„ ์ด์šฉํ•˜์—ฌ ๋‹ค

์–‘ํ•œ ์›์†Œ์— ๋Œ€ํ•œ ์žฅ๋น„์˜ ์ •ํ™•ํ•œ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ฐ˜์‘ ํ‘œ์ค€์„ ๋„์ถœ

ํ•˜๊ณ  ๊ฐœ๋ฐœ๋œ ์žฅ๋น„์— ๋Œ€ํ•œ ๊ต์ •์„ ์‹ค์‹œํ•œ๋‹ค(Fig. 6). ํœด์Šคํ„ด์—

์œ„์น˜ํ•œ Baker Atlas Instrument Characterization Center (ICC)

์—๋Š” ์‹œ์ถ”๊ณต ํฌ๊ธฐ, ๊ณต๊ทน, ๋ฐ€๋„, ์ง€์ธต ๋“ฑ์„ ๋‹ค์–‘ํ™”ํ•˜์—ฌ ์•ฝ 90๊ฐœ

์˜ ๋ชจํ˜•์ด ๊ตฌ์ถ•๋˜์–ด ์žˆ๋‹ค. ๋ชจํ˜•์€ ์ผ๋ฐ˜์ ์œผ๋กœ ์ง๊ฒฝ 1.2 ~ 1.5

m, ๋†’์ด 1.5 m์˜ ์•”์„์œผ๋กœ ๋œ ๊ฒƒ์ด ๋Œ€๋ถ€๋ถ„์ด๋ฉฐ ์ผ๋ถ€๋Š” ์•Œ๋ ค์ง„

ํ™”ํ•™๋ฌผ์งˆ๋กœ ๋งŒ๋“ค๊ธฐ๋„ ํ•˜์˜€๋‹ค(Pemper et al., 2006).

๊ตญ๋‚ด ๋ฐฉ์‚ฌ๋Šฅ๊ฒ€์ธต ๊ต์ •์žฅ ์‹œ์„ค์€ ํ•œ๊ตญ์ง€์งˆ์ž์›์—ฐ๊ตฌ์› ํฌํ•ญ์ง€

์งˆ์ž์›์‹ค์ฆ์—ฐ๊ตฌ์„ผํ„ฐ์— ๋ฌผ์„ ๊ฐ€๋“ ์ฑ„์šด ์ˆ˜์กฐ, ํ™”๊ฐ•์•”(granite),

์„ํšŒ์•”(limestone), ๋ชจํ˜• ์‹œ์ถ”๊ณต 2๊ฐœ, ์•Œ๋ฃจ๋ฏธ๋Š„ ๋ธ”๋ก ๋“ฑ์„ ๊ธฐ๋ฐ˜

์œผ๋กœ ๊ตฌ์ถ•๋˜์–ด ์žˆ์œผ๋ฉฐ ํ™”๊ฐ•์•”๊ณผ ์„ํšŒ์•” ๋ธ”๋ก์€ 4์ธ์น˜๋กœ ์‹œ์ถ”

ํ•˜์—ฌ ์ฝ”์–ด๋ฅผ ํš๋“ํ•˜์˜€๋‹ค(Fig. 7). ๊ฐ ๋ชจํ˜•์˜ ํฌ๊ธฐ๋Š” ์ง๊ฒฝ 0.7 ~

2.0 m, ๋†’์ด 1.2 ~ 3.0 m๋กœ ๋ชจํ˜• ์‹œ์ถ”๊ณต์—๋Š” ๋ชจ๋ž˜ ํ˜น์€ ๊ธ€๋ผ

์Šค๋น„๋“œ(glass bead) ๋“ฑ์„ ์ฑ„์›Œ ๋„ฃ์–ด ์ธ๊ณต ์ง€์ธต์„ ๊ตฌ์„ฑํ•  ์ˆ˜ ์žˆ

๋‹ค. ์ถ”ํ›„ ๋‹ค์–‘ํ•œ ์ง€์ธต์— ๋Œ€ํ•ด ์ถ”๊ฐ€ ๋ธ”๋ก์„ ์ œ์ž‘, ์„ค์น˜ํ•  ๊ณ„ํš

์ด๋ฉฐ ๋ธ”๋ก์— ๋Œ€ํ•œ ๋ฌผ๋ฆฌ๊ฒ€์ธต ๊ธฐ์ดˆ ์‹คํ—˜, ๊ต์ • ๋ฐ ์ฝ”์–ด ์‹ค๋‚ด์‹œํ—˜

์„ ํ†ตํ•ด ๊ตญ๋‚ด ์ง€์ธต์— ๋Œ€ํ•œ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค๋ฅผ ์ถ•์ ํ•˜๋ ค๊ณ  ํ•œ๋‹ค.

๊ตญ์™ธ ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต ์‹œ์Šคํ…œ ํ˜„ํ™ฉ

์ค‘์„ฑ์ž๋ฅผ ์ด์šฉํ•œ ๊ฐ๋งˆ์ŠคํŽ™ํŠธ๋กœ์Šค์ฝ”ํ”ผ์˜ ์ดˆ๊ธฐ ์—ฐ๊ตฌ๋Š” 1950

๋…„๋Œ€ ์‹œ์ž‘ํ•˜์˜€์ง€๋งŒ ๋ณธ๊ฒฉ์ ์ธ ์—ฐ๊ตฌ๋Š” 1970๋…„ ์ค‘๋ฐ˜ ์˜ค์ผ ํฌํ™”๋„

(oil saturation)๋ฅผ ๊ตฌํ•˜๊ธฐ ์œ„ํ•œ ๋น„ํƒ„์„ฑ๋ชจ๋“œ์—์„œ ํƒ„์†Œ์™€ ์ˆ˜์†Œ๋ฅผ

์ธก์ •ํ•˜๋Š” Carbon/Oxygen (C/O) log๋ฅผ ์ค‘์‹ฌ์œผ๋กœ ์‹œ์ž‘๋˜์—ˆ๋‹ค

(Lock and Hoyer, 1974; Schultz and Smith, 1974). 1980๋…„ ๋ง

์Š๋Ÿผ๋ฒ„์ €็คพ๋Š” NGT (natural gamma ray tool), GST (gamma

ray spectrometer tool) ๋ฐ AACT (aluminum activation clay

tool)๋ฅผ ์กฐํ•ฉํ•˜์—ฌ Geochemical Logging Tool (GLT)์„ ์ œ์ž‘ํ•˜

์˜€์œผ๋ฉฐ, minitron tritium ์„ ์›๊ณผ NaI(Tl) ๊ฒ€์ถœ๊ธฐ, 256 ์ฑ„๋„ ๋ถ„

์„๊ธฐ(channel analyzer)๋ฅผ ์ด์šฉํ•˜์—ฌ Al, Ca, Fe, Gd, K, S, Si,

Th, Ti, U ์›์†Œ๋ฅผ ์ธก์ •ํ•˜์˜€๋‹ค(Hertzog, 1980). Elemental

Capture Spectroscopy (ECS, Herron, 1995)๋Š” ํ™”ํ•™์„ ์›์ธ

16Ci AmBe๊ณผ BGO ๊ฒ€์ถœ๊ธฐ๋ฅผ ์ด์šฉํ•˜์˜€์œผ๋ฉฐ 600 keV์—์„œ 8

MeV์˜ ํฌํš๋ชจ๋“œ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ์ธก์ •ํ•˜์—ฌ ์…ฐ์ผ๊ฐ€์Šค(shale gas) ๊ฐœ

๋ฐœ์— ์ ์šฉ๋˜์—ˆ๋‹ค(Herron and Herron, 1996; Barson et al.,

2005). ๊ทธ ํ›„ 2009๋…„ ํ•ผ๋ฆฌ๋ฒ„ํ„ด็คพ(Halliburton)์—์„œ ์ถœ์‹œํ•œ

GEM๋„ ECS์™€ ๋น„์Šทํ•œ ์‚ฌ์–‘์œผ๋กœ ๊ฐ™์€ ์„ ์›๊ณผ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์ด์šฉ

ํ•˜์—ฌ ์ข€ ๋” ๋„“์€ ์—๋„ˆ์ง€ ์˜์—ญ(600 keV ~ 9.5 MeV)์—์„œ ๋งŽ์€

์›์†Œ๋“ค์„ ์ธก์ •ํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค(Galford et al., 2009).

์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต์€ ๋†’์€ ์—๋„ˆ์ง€๋กœ ๋งŽ์€ ์ค‘์„ฑ์ž๋ฅผ ์ถœ๋ ฅํ•˜๋Š”

ํŽ„์Šค์ค‘์„ฑ์ž๋ฐœ์ƒ์žฅ์น˜์™€ ๊ณ„์ˆ˜์œจ์˜ ์ธก์ • ๋Šฅ๋ ฅ๊ณผ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„ํ•ด๋Šฅ

์„ ๋†’์ธ ๊ณ ์„ฑ๋Šฅ์˜ ๊ฐ๋งˆ์„ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์ด์šฉํ•˜๋ฉด์„œ ๊ด€๋ จ ์—ฐ๊ตฌ ๋ฐ

์žฅ๋น„ ์ œ์ž‘์— ํ•œ ๋‹จ๊ณ„ ๋„์•ฝ์ด ์žˆ์—ˆ๋‹ค. 2010๋…„๋Œ€๋ถ€ํ„ฐ ์ค‘์„ฑ์ž๋ฐœ

์ƒ์žฅ์น˜๋ฅผ ์„ ์›์œผ๋กœ ์ด์šฉํ•œ ๊ฒ€์ธต๊ธฐ๊ฐ€ ์ถœ์‹œ๋˜์—ˆ์œผ๋ฉฐ, ๋ฒ ์ด์ปคํœด

์ฆˆ็คพ(Baker Hughes Incorporated)์˜ Formation Lithology eX-

plorerTM (FLeX, 2010)๋Š” ํŽ„์Šค์ค‘์„ฑ์ž๋ฐœ์ƒ์žฅ์น˜์™€ 3 ร— 6์ธ์น˜ ํฌ

๊ธฐ์˜ BGO๋ฅผ ํƒ‘์žฌํ•˜๊ณ  ๊ณ ๊ฐ•๋„ ํ‹ฐํƒ€๋Š„ ํ•˜์šฐ์ง•(titanium

housing)๊ณผ ์ฐจํ๋ฅผ ์œ„ํ•œ ํƒ„ํ™”๋ถ•์†Œ(boron carbide)๋ฅผ ์ด์šฉํ•ด ์ œ

์ž‘ํ•˜์—ฌ ๋น„ํƒ„์„ฑ๋ชจ๋“œ์™€ ํฌํš๋ชจ๋“œ์˜ ์—๋„ˆ์ง€ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ์ธก์ •ํ•˜์˜€

Fig. 7. Radioactive logging calibration facility at KIGAM Pohang Branch: (a) water tank, (b) granite, (c) limestone, (d) physical model (sand),

(e) physical model (glass bead), (f) aluminum block, (g) calibration block layout, and (h) the whole view of calibration facility.

Page 7: Borehole Elemental Concentration Logs ... - Korea Science

์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต: ์›๋ฆฌ, ์—ฐ๊ตฌ๋™ํ–ฅ ๋ฐ ํ–ฅํ›„ ๊ณผ์ œ 155

๋‹ค(Li et al., 2011). ์Š๋Ÿผ๋ฒ„์ €็คพ์˜ Litho ScannerTM๋Š” ๊ธฐ์กด์˜

๊ฒ€์ถœ๊ธฐ ๋ณด๋‹ค ๋†’์€ ๋ถ„ํ•ด๋Šฅ์„ ๊ฐ€์ง€๋Š” ์„ธ๋ฅจ ํ•จ์œ  ๋ž€ํƒ€๋Š„ ๋ธŒ๋กฌํ™”

๋ฌผ(cerium-doped lanthanum bromide, LaBr3:Ce) ๊ฒ€์ถœ๊ธฐ๋ฅผ ์ด

์šฉํ•˜์—ฌ ์ŠคํŽ™ํŠธ๋Ÿผ์˜ ๋ถ„ํ•ด๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  ๊ณ ์†๋„์˜ ์ „์ž๊ธฐ์ˆ ์„

๊ธฐ๋ฐ˜์œผ๋กœ ๋†’์€ ๊ณ„์ˆ˜์œจ์˜ ๋น ๋ฅธ ์ธก์ •์„ ๊ฐ€๋Šฅํ•˜๊ฒŒ ํ•˜์—ฌ ๋น ๋ฅธ ๊ฒ€

์ธต ์†๋„(1,097 m/h)๋ฅผ ๊ตฌํ˜„ํ•˜์˜€๋‹ค. ์ด๋Š” ๋†’์€ ์ค‘์„ฑ์ž ์ถœ๋ ฅ, ๊ณ„

์ˆ˜์œจ ์ธก์ • ๋Šฅ๋ ฅ, ์ŠคํŽ™ํŠธ๋Ÿผ ๋ถ„ํ•ด๋Šฅ ํ–ฅ์ƒ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋น„ํƒ„์„ฑ๋ชจ๋“œ

์™€ ํฌํš๋ชจ๋“œ์˜ ์ŠคํŽ™ํŠธ๋Ÿผ์„ ๋ถ„๋ฆฌํ•˜๋Š” ๊ธฐ์ˆ ๋กœ ๊ธฐ์กด์˜ ์žฅ๋น„๋ณด๋‹ค

๋” ๋งŽ์€ ์›์†Œ ์ธก์ •์ด ๊ฐ€๋Šฅํ•˜์˜€๋‹ค(Gonzalez et al., 2013; Yan

et al., 2018). ๋ฏธ๊ตญ๋ฟ๋งŒ ์•„๋‹ˆ๋ผ ํ˜ธ์ฃผ, ํ”„๋ž‘์Šค์—์„œ๋„ ๊ด€๋ จ ๋ถ„์•ผ

์—ฐ๊ตฌ๊ฐ€ ์žˆ์—ˆ์œผ๋ฉฐ, SODERN, BHP ๋นŒ๋ฆฌํ„ด(BHP Billiton),

CSIRO์—์„œ๋Š” ๊ด‘์ฒด ํ’ˆ์œ„(ore grade) ํ‰๊ฐ€๋ฅผ ์œ„ํ•ด ์ค‘์„ฑ์ž๋ฐœ์ƒ์žฅ

์น˜์™€ ๋ž€ํƒ€๋Š„ ๋ธŒ๋กฌํ™”๋ฌผ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์ด์šฉํ•˜์—ฌ 30 cm์˜ ๋ถ„ํ•ด๋Šฅ์—

์‹ฌ๋„ 400 m๊นŒ์ง€ ์ธก์ • ๊ฐ€๋Šฅํ•œ FastGradeTM๋ฅผ ๊ณต๋™ ๊ฐœ๋ฐœํ•˜์—ฌ

ํ˜ธ์ฃผ ํ•„๋ฐ”๋ผ(Pilbara)์˜ ์ฒ ๊ด‘์‚ฐ์— ์ตœ์ดˆ๋กœ ์ ์šฉํ•˜์˜€๋‹ค(Smith et

al., 2015).

๊ฐ€์žฅ ์ตœ๊ทผ ๊ฐœ๋ฐœ๋œ ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต๊ธฐ๋Š” ์Š๋Ÿผ๋ฒ„์ €็คพ์˜

Pulsar multifunction spectroscopy (Grover, 2017)์ด๋ฉฐ ํŽ„์Šค์ค‘

์„ฑ์ž๋ฐœ์ƒ์žฅ์น˜์™€ ๊ธฐ์กด์˜ 1๊ฐœ์˜ ๊ฒ€์ถœ๊ธฐ๋ฅผ ์ด์šฉํ•˜๋Š” ๊ฒ€์ธต๊ธฐ์™€ ๋‹ฌ

๋ฆฌ ์ด 4๊ฐœ์˜ ๊ฒ€์ถœ๊ธฐ(compact neutron monitor (CNM), near

and far LaBr3, yttrium aluminum perovskite (YAP))๋ฅผ ์ด์šฉํ•˜

์˜€๋‹ค(Fig. 8). ๋™์‹œ์— ์‹œ๊ฐ„์˜์—ญ๊ณผ ์—๋„ˆ์ง€์˜์—ญ์˜ ์ธก์ •์ด ๊ฐ€๋Šฅํ•˜

๋ฉฐ ์‹œ๊ฐ„์˜์—ญ์—๋Š” ๊ฐ€์Šคํฌํ™”๋„๋ฅผ ๊ตฌํ•˜๊ธฐ ์œ„ํ•œ ํฌํš๋‹จ๋ฉด์ 

(capture cross section), ๊ณต๊ทน๋ฅ , ๊ณ ์†์ค‘์„ฑ์ž๋‹จ๋ฉด์ (fast-neutron

cross section)๊ณผ ์—๋„ˆ์ง€์˜์—ญ์—๋Š” ์ง€์ธต ์›์†Œ์ถ”์ •์„ ์œ„ํ•œ ๋น„ํƒ„์„ฑ

/ํƒ„์„ฑ๋ชจ๋“œ, C/O ratio, TOC (total organic carbon) ๋“ฑ์„ ๊ฐ๊ฐ ๊ตฌ

Fig. 8. Tool architecture of Pulsar multifunction spectroscopy. Tool consists of high-performance pulsed neutron generator (PNG) and 4

detectors: CNM, far LaBr3, near LaBr3, YAP (Grover, 2017).

Table 2. Major specifications for borehole elemental concentration tools. Blank cells means no records found to match criteria.

Tool Measurement specifications Mechanical specifications

Elemental Capture Spectroscopy

(Schlumberger)

logging speed 549 m/h max. temperature 177 degC

range of measurement 600 keV to 8 MeV max. pressure 138 MPa

vertical resolution 18 inch borehole size 6.5 ~ 20 inch

accuracy 2% Outside diameter 5 inch

depth of investigation 9 inch length / weight 3.09 m / 138 kg

GEM(Halliburton)

logging speed 278 m/h max. temperature 177 degC

range of measurement 600 keV to 9.5 MeV max. pressure 138 MPa

vertical resolution 18 inch borehole size 6-24 inch

sampling rate 10 samples/m Outside diameter 5 inch

depth of investigation 6 inch length / weight 2.94 m / 166 kg

FLeX(Baker Hughes)

logging speed 186 m/h max. temperature 177 degC

range of measurement 0.5 to 10 MeV max. pressure 138 MPa

No. of channel 256 borehole size 6 ~ 22 inch

sampling rate Outside diameter 4.87 inch

depth of investigationinelastic 8.5 inchcapture 21 inch

length / weight 4.8 m /

Litho Scanner(Schlumberger)

logging speed 1,097 m/h max. temperature 177 degC

range of measurement 1 to 10 MeV max. pressure 138 MPa

vertical resolution 18 inch borehole size 5.5 ~ 24 inch

sampling rate Outside diameter 4.5 inch

depth of investigation 7 ~ 9 inch length / weight 2.74 m / 132 kg

Pulsar multifunction spectroscopy

(Schlumberger)

logging speed 61 m/h (inelastic capture mode) max. temperature 175 degC

range of measurement 1 to 10 MeV max. pressure 103.4 MPa

vertical resolution borehole size 23/8 ~ 95/8 inch

sampling rate Outside diameter 1.72 inch

depth of investigation length / weight 5.58 m / 40 kg

Page 8: Borehole Elemental Concentration Logs ... - Korea Science

156 ์‹ ์ œํ˜„ยทํ™ฉ์„ธํ˜ธ

ํ˜„ํ•˜๋Š” ๋‹ค๋ชฉ์  ์žฅ๋น„์ด๋‹ค(Rose et al., 2015; Millot et al.,

2017).

๊ตญ์™ธ์—์„œ ์ด๋ฏธ ๊ฐœ๋ฐœ๋œ ์ฃผ์š” ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต๊ธฐ์˜ ์ธก์ • ๊ด€

๋ จ ์‚ฌํ•ญ ๋ฐ ๊ธฐ๊ณ„์  ์„ธ๋ถ€ ํŠน์ง•๋“ค์„ Table 2์— ์ •๋ฆฌํ•˜์˜€์œผ๋ฉฐ, ๊ธฐ

์ˆ  ๊ฐœ๋ฐœ์— ๋”ฐ๋ผ ํฌ๊ธฐ(์ง๊ฒฝ, ๊ธธ์ด)๊ฐ€ ์ž‘์•„์ง€๊ณ  ๋†’์€ ์˜จ๋„/์••๋ ฅ์—

์„œ๋„ ์ธก์ •์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ ๊ฒ€์ธต์†๋„๋„ ํ–ฅ์ƒ๋˜๊ณ  ์žˆ๋Š” ๊ฒƒ์„ ์•Œ ์ˆ˜

์žˆ๋‹ค. ๋˜ํ•œ ๊ฐ ๊ฒ€์ธต๊ธฐ๋งˆ๋‹ค ์‚ฌ์šฉ ์„ ์› ๋ฐ ๊ฒ€์ถœ๊ธฐ, ์ž๋ฃŒ์ฒ˜๋ฆฌ ๋ฐฉ

์‹์— ๋”ฐ๋ผ ์ธก์ •๋˜๋Š” ์›์†Œ๋„ ๊ฐ๊ธฐ ๋‹ค๋ฅด๋ฉฐ, ์ดˆ๊ธฐ ๋ชจ๋ธ์ธ

Geochemical Logging Tool์€ 9๊ฐœ์˜ ์›์†Œ ์ธก์ •์ด ๊ฐ€๋Šฅํ•˜์˜€์ง€

๋งŒ ๊ด€๋ จ ๋ถ„์•ผ ๊ธฐ์ˆ  ๋ฐœ์ „์— ๋”ฐ๋ผ์„œ ์ง€์ธต์—์„œ ์ถ”์ถœํ•  ์ˆ˜ ์žˆ๋Š” ์›

์†Œ์ˆ˜๊ฐ€ ์ฆ๊ฐ€ํ•˜๋ฉด์„œ ์ตœ๊ทผ ๋ชจ๋ธ์—์„œ๋Š” ์•ฝ 20๊ฐœ์˜ ์›์†Œ ์ธก์ •์ด

๊ฐ€๋Šฅํ•˜๋‹ค(Table 3).

๊ตญ๋‚ด ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต ์—ฐ๊ตฌ ํ˜„ํ™ฉ

๊ตญ๋‚ด ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต ๊ด€๋ จ ์—ฐ๊ตฌ๋Š” Hwang (2015), Hwang

et al. (2018)์— ์˜ํ•ด ์ง„ํ–‰๋œ ๋ฐ” ์žˆ์œผ๋ฉฐ, ๋Ÿฌ์‹œ์•„ ์ œํ’ˆ์˜ ์ค‘์„ฑ์ž

๋ฐœ์ƒ์žฅ์น˜(ING-10-20-120T, VNIIA)๋ฅผ ์„ ์›์œผ๋กœ ์ด์šฉํ•˜์—ฌ ๊ฐ๋งˆ

์„ ๊ฒ€์ถœ๊ธฐ๋กœ ๋น„ํƒ„์„ฑ, ํฌํš๋ชจ๋“œ์˜ ๊ฐ๋งˆ์ŠคํŽ™ํŠธ๋Ÿผ์„ ์ธก์ •ํ•˜๋Š” ์‹ค

ํ—˜์‹ค ๊ทœ๋ชจ์˜ ๋ฐฉ์‚ฌ๋Šฅ๊ฒ€์ธต ์‹œ์Šคํ…œ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๊ฐ๋งˆ์„  ์ธก์ • ํ•˜

๋“œ์›จ์–ด์™€ ์†Œํ”„ํŠธ์›จ์–ด๋Š” ์ž์ฒด ๊ฐœ๋ฐœํ•˜์—ฌ ๋Œ€ํ˜• ์ˆ˜์กฐ, ์•”์„๋ชจํ˜•์—

์„œ ๊ณ„์ธก ์‹œํ—˜์„ ์ˆ˜ํ–‰ํ•˜์˜€์œผ๋ฉฐ, ์ด๋Š” ๊ตญ๋‚ด ์ตœ์ดˆ๋กœ ์ค‘์„ฑ์ž์„ ์›์„

์ด์šฉํ•˜์—ฌ ๊ฐ๋งˆ์ŠคํŽ™ํŠธ๋Ÿผ ์ธก์ •์ด ๊ฐ€๋Šฅํ•œ ์‹œ์Šคํ…œ์„ ์œตํ•ฉ์—ฐ๊ตฌ๋ฅผ

ํ†ตํ•ด ์›์ฒœ๊ธฐ์ˆ ์„ ๊ฐœ๋ฐœํ•œ ์ฒซ ์‚ฌ๋ก€์ด๋‹ค. ๋˜ํ•œ ๋ชฌํ…Œ์นด๋ฅผ๋กœ(Monte

Carlo) ์ˆ˜์น˜๋ชจ๋ธ๋ง์„ ์ด์šฉํ•˜์—ฌ ์ž์—ฐ๊ฐ๋งˆ์„ , ์ŠคํŽ™ํŠธ๋Ÿด์ž์—ฐ๊ฐ๋งˆ

์„ , ๋ฐ€๋„, ์ค‘์„ฑ์ž๊ฒ€์ธต ์žฅ๋น„์˜ ๊ฒ€๊ต์ •์„ ์‹ค์‹œํ•˜์˜€๊ณ  ์žฅ๋น„๊ฐœ๋ฐœ๊ณผ

Table 3. Suite of elements from borehole elemental concentration tools. Red, gray, and green colors denote elements estimated from natural

gamma, capture, and inelastic spectrum, respectively.

Fig. 9. Gamma ray spectra obtained in the physical model: (a) water tank, (b) granite and (c) limestone (Hwang, 2015).

Page 9: Borehole Elemental Concentration Logs ... - Korea Science

์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต: ์›๋ฆฌ, ์—ฐ๊ตฌ๋™ํ–ฅ ๋ฐ ํ–ฅํ›„ ๊ณผ์ œ 157

๊ด€๋ จ๋œ ๊ธฐ์ˆ  ํ™•๋ณด ์™ธ์— ์„ฑ๋Šฅ์‹œํ—˜์„ ์œ„ํ•œ ์ธํ”„๋ผ๋„ ๊ตฌ์ถ•ํ•˜์˜€๋‹ค

(Won et al., 2015). Fig. 9๋Š” ์ค‘์„ฑ์ž๋ฐœ์ƒ์žฅ์น˜์™€ BGO ๊ฒ€์ถœ๊ธฐ๋ฅผ

์ด์šฉํ•˜์—ฌ ์ˆ˜์กฐ, ํ™”๊ฐ•์•”, ์„ํšŒ์•” ๋ชจํ˜•์—์„œ ์ทจ๋“ํ•œ 0 ~ 10 MeV

์—๋„ˆ์ง€์˜์—ญ์˜ ๊ฐ๋งˆ์ŠคํŽ™ํŠธ๋Ÿผ์œผ๋กœ ๋ฌผ์—์„œ์˜ ์ˆ˜์†Œ(2.2 MeV), ์„

ํšŒ์•”์—์„œ์˜ ์นผ์Š˜(4.4, 6.4 MeV)์˜ ์—๋„ˆ์ง€ ํ”ผํฌ ๊ตฌ๋ถ„์„ ๋ณด์—ฌ์ค€

๋‹ค. ๊ฐœ๋ฐœ๋œ ์‹œ์Šคํ…œ์€ ์ง€์ƒ์—์„œ ์ธก์ •์ด ๊ฐ€๋Šฅํ•˜๋ฉฐ ์ด๋ฅผ ๊ตญ๋‚ด ๋‹ค

์–‘ํ•œ ํ˜„์žฅ์— ์ ์šฉํ•˜๊ธฐ ์œ„ํ•ด์„œ๋Š” ์‹œ์Šคํ…œ ๊ฐ ๋ชจ๋“ˆ์˜ ์†Œํ˜•ํ™”์™€

๊ฐœ๋ฐœํ•œ ์›์ฒœ ๊ธฐ์ˆ ์˜ ํ˜„์žฅ ํ™œ์šฉ์„ ์œ„ํ•œ ์ถ”๊ฐ€ ์—ฐ๊ตฌ๊ฐ€ ํ•„์š”ํ•œ ์‹ค

์ •์ด๋‹ค.

ํ˜„์žฌ ์ง€์ค‘ํ™˜๊ฒฝ์—์„œ ์•”์„-์œ ์ฒด์˜ ๋ฐ˜์‘์„ฑ ์˜ˆ์ธก์„ ์œ„ํ•œ ์•”์„

๊ด‘๋ฌผ์กฐ์„ฑ ํ‰๊ฐ€๊ธฐ์ˆ  ๊ฐœ๋ฐœ์˜ ์ผํ™˜์œผ๋กœ ๊ด€๋ จ ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜ํ–‰ ์ค‘์ด๋‹ค

(Shin et al., 2018). ์„ ์›-๊ฒ€์ถœ๊ธฐ์˜ ์ˆ˜์น˜๋ชจ์‚ฌ์™€ ์„ฑ๋Šฅ์‹œํ—˜์„ ํ†ต

ํ•ด ๊ฒ€์ถœ๊ธฐ ์„ ์ •, ์ตœ์  ๋ฐฐ์—ด ๋“ฑ์˜ ์กด๋ฐ ๊ตฌ์กฐ ๋ฐ ๋ชจ๋“ˆ์— ๋Œ€ํ•œ ๊ธฐ

ํ•˜๊ตฌ์กฐ๋ฅผ ์„ค๊ณ„ํ•˜๊ณ  ์ง€์ค‘ํ™˜๊ฒฝ ์กฐ๊ฑด์„ ๋งŒ์กฑํ•˜๋Š” ์†Œ๊ตฌ๊ฒฝ์šฉ ํ”„๋กœ

ํ† ํƒ€์ž… ์‹œ์Šคํ…œ์„ ์ œ์ž‘, ์‹œํ—˜๋ชจํ˜•์„ ์ด์šฉํ•˜์—ฌ ์„ฑ๋Šฅ ์‹œํ—˜์„ ์‹ค์‹œ

ํ•œ๋‹ค. ์ดํ›„ ์‹œํ—˜ ๊ฒฐ๊ณผ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์‹œ์Šคํ…œ ์„ค๊ณ„๋ฅผ ์ˆ˜์น˜๋ชจ์‚ฌ๋ฅผ

ํ†ตํ•ด ์žฌ ์‹ค์‹œํ•˜์—ฌ ํ…Œ์ŠคํŠธ๋ฒ ๋“œ์— ์ ์šฉํ•˜๊ณ  ๊ฐœ๋ฐœ๋œ ์žฅ๋น„๋กœ๋ถ€ํ„ฐ

์ง€์ธต์˜ ๊ตฌ์„ฑ ์›์†Œ๋ฅผ ์ถ”์ •, ์›์œ„์น˜๋กœ ์ธก์ •ํ•œ ๊ฒ€์ธต์ž๋ฃŒ์™€ ์‹œ์ถ”์ฝ”

์–ด์— ๋Œ€ํ•œ ์‹ค๋‚ด์‹œํ—˜ ๋ถ„์„ ๊ฒฐ๊ณผ์น˜๋ฅผ ๋น„๊ตํ•˜์—ฌ ๊ฒ€์ฆํ•˜๋Š” ์—ฐ๊ตฌ๋ฅผ

์ง„ํ–‰ ์ค‘์ด๋‹ค(Fig. 10).

๊ฒฐ ๋ก 

๋ฐฉ์‚ฌ๋Šฅ๊ฒ€์ธต๋ฒ•์„ ์ด์šฉํ•˜์—ฌ ์ง€์ธต์˜ ๊ตฌ์„ฑ์›์†Œ, ์กฐ์„ฑ๊ด‘๋ฌผ์„ ์ถ”

์ •ํ•˜๋Š” ๊ธฐ์ˆ ์€ 1950๋…„๋Œ€๋ถ€ํ„ฐ ์‹œ์ž‘๋˜์–ด ํŠนํžˆ ์„์œ ๋ถ„์•ผ์—์„œ ์ผ€

์ด์‹ฑ๋‚ด์˜ ์ €๋ฅ˜์ธต ํ‰๊ฐ€์™€ ์ตœ๊ทผ ์…ฐ์ผ๊ฐ€์Šค ๊ฐœ๋ฐœ๊นŒ์ง€ ์ ์šฉ๋˜์–ด ์™”

๋‹ค. ๋˜ํ•œ ์„ ์› ๋ฐ ๊ฒ€์ถœ๊ธฐ, ๊ณ„์ธก ๊ธฐ์ˆ ์˜ ๋น„์•ฝ์ ์ธ ๋ฐœ์ „์œผ๋กœ ๋งŽ

์€ ์›์†Œ์˜ ์ •๋Ÿ‰์ ์ธ ์ถ”์ •์ด ๊ฐ€๋Šฅํ•œ ์ƒˆ๋กœ์šด ๊ฒ€์ธต๊ธฐ๊ฐ€ ์ง€์†์ ์œผ

๋กœ ๊ฐœ๋ฐœ๋˜์–ด์˜ค๊ณ  ์žˆ๋‹ค. ๊ทธ๋Ÿฌ๋‚˜ ๋ณธ ๊ธฐ์ˆ ์€ ๋ช‡ ๊ฐœ์˜ ์„œ๋น„์Šค ํšŒ์‚ฌ

์˜ ๋…์  ๊ธฐ์ˆ ๋กœ ์žฅ๋น„ ์ œ์ž‘์— ๊ด€๋ จ๋œ ํŠนํ—ˆ์™€ ์žฅ๋น„ ํ™œ์šฉ์— ๋Œ€ํ•œ

์šฐ์ˆ˜์„ฑ์— ๋Œ€ํ•œ ๋…ผ๋ฌธ๋งŒ ๊ณต๊ฐœ๋˜์–ด ์žˆ๊ณ  ์„ค๊ณ„, ์ œ์ž‘, ์žฅ๋น„ ๊ต์ •,

์„ฑ๋Šฅ์‹œํ—˜ ๋ฐ ํ˜„์žฅ์ ์šฉ ๋“ฑ์˜ ๋ชจ๋“  ๊ณผ์ •์ด ๋น„๊ณต๊ฐœ๋กœ ๋˜์–ด ์žˆ์–ด

๊ตญ๋‚ด ์—ฐ๊ตฌ์— ๋ฐ”๋กœ ์ ์šฉํ•˜๊ธฐ์—๋Š” ์–ด๋ ค์›€์ด ์žˆ๋‹ค.

์ด๋ฅผ ๊ทน๋ณตํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‹œ์Šคํ…œ์˜ ์„ค๊ณ„๊ณผ์ •์€ ์ˆ˜์น˜๋ชจ์‚ฌ์™€ ๋‹ค

์–‘ํ•œ ๋ฌผ๋ฆฌ์‹œํ—˜์„ ๋ฐ”ํƒ•์œผ๋กœ ์ˆ˜ํ–‰ํ•˜๋ฉฐ, ์—ฌ๋Ÿฌ ์‹œ์ถ”๊ณต ํ™˜๊ฒฝ์„ ๋ชจ์‚ฌ

ํ•˜๋Š” ๊ตญ๋‚ด์˜ ๋‹ค์–‘ํ•œ ์ง€์ธต๊ณผ ์ธ๊ณต๋ชจํ˜•์„ ๊ตฌํ˜„ํ•˜์—ฌ ๋งŽ์€ ์›์†Œ์—

๋Œ€ํ•œ ์ŠคํŽ™ํŠธ๋Ÿผ ๋ฐ˜์‘ ํ‘œ์ค€์„ ๋„์ถœํ•˜๊ณ  ๊ฐœ๋ฐœ๋œ ์žฅ๋น„์˜ ๊ต์ • ์‹ค

์‹œ ๋ฐ ์ง€์†์ ์ธ ์„ฑ๋Šฅ๊ฐœ์„ ์„ ์ง„ํ–‰ํ•˜์—ฌ์•ผ ํ•œ๋‹ค. ์ตœ๊ทผ ์„ฑ๋Šฅ์ด ํ–ฅ

์ƒ๋œ ๋ชฌํ…Œ์นด๋ฅผ๋กœ ์ „์‚ฐ๋ชจ์‚ฌ ์ฝ”๋“œ์™€ ๋ถ„ํ•ด๋Šฅ ๋ฐ ํšจ์œจ ๋†’์€ ๊ฐ๋งˆ

์„  ๊ฒ€์ถœ๊ธฐ ๋“ฑ์„ ์ด์šฉํ•˜์—ฌ ๊ตญ๋‚ด ํ™˜๊ฒฝ์— ์ ํ•ฉํ•œ ์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€

์ธต๊ธฐ๋ฅผ ๊ฐœ๋ฐœํ•˜๊ณ  ๊ทธ ์ ์šฉ์„ฑ๊ณผ ์‹ ๋ขฐ์„ฑ์ด ๊ฒ€์ฆ๋œ๋‹ค๋ฉด ๊ด€๋ จ ์‹œ์žฅ

์˜ ํŒŒ๊ธ‰ํšจ๊ณผ๋Š” ๋งค์šฐ ํด ๊ฒƒ์œผ๋กœ ํŒ๋‹จ๋œ๋‹ค. ๋˜ํ•œ ์‹œ์Šคํ…œ ๊ฐœ๋ฐœ์˜

๋…์ž์ ์ธ ๊ตญ๋‚ด ์›์ฒœ๊ธฐ์ˆ ์„ ํ™•๋ณดํ•˜์—ฌ ์ž์—ฐ๊ฐ๋งˆ์„ , ์ŠคํŽ™ํŠธ๋Ÿด์ž

์—ฐ๊ฐ๋งˆ์„ , ๋ฐ€๋„๊ฒ€์ธต, ์ค‘์„ฑ์ž๊ฒ€์ธต ๋“ฑ ๋ฐฉ์‚ฌ๋Šฅ๊ฒ€์ธต ์žฅ๋น„ ๊ฐœ๋ฐœ์˜

๊ธฐ๋ฐ˜๊ธฐ์ˆ  ํ™•๋ณด๋„ ๊ฐ€๋Šฅํ•  ๊ฒƒ์ด๋‹ค.

์›์œ„์น˜์—์„œ ์ง€์ธต์˜ ์›์†Œ ๋ฐ ๊ด‘๋ฌผ์กฐ์„ฑ์„ ํ‰๊ฐ€ํ•˜๋Š” ๊ธฐ์ˆ ์€ ์˜ค

์—ผ๋ฌผ์งˆ์˜ ์ง€์ค‘์ €๊ฐ ํ‰๊ฐ€ ๊ณ„ํš ์ˆ˜๋ฆฝ, ๊ด‘๋ฌผ์ž์› ํ’ˆ์œ„ํ‰๊ฐ€, ์ง€ํ•˜

ํ๊ธฐ๋ฌผ์ฒ˜๋ถ„์žฅ ํ‰๊ฐ€ ๋“ฑ์˜ ์ง€์ค‘ํ™˜๊ฒฝ ํ‰๊ฐ€์— ์ƒˆ๋กœ์šด ํŒจ๋Ÿฌ๋‹ค์ž„์ด

๋  ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.

Fig. 10. Systematic procedure to develop borehole elemental concentration logging system (Shin et al., 2018).

Page 10: Borehole Elemental Concentration Logs ... - Korea Science

158 ์‹ ์ œํ˜„ยทํ™ฉ์„ธํ˜ธ

๊ฐ์‚ฌ์˜ ๊ธ€

๋ณธ ๊ฒฐ๊ณผ๋ฌผ์€ ํ™˜๊ฒฝ๋ถ€์˜ ์žฌ์›์œผ๋กœ ํ™˜๊ฒฝ์‚ฐ์—…๊ธฐ์ˆ ์›์˜ ์ง€์ค‘ํ™˜๊ฒฝ

์˜ค์—ผ์œ„ํ•ด๊ด€๋ฆฌ๊ธฐ์ˆ ๊ฐœ๋ฐœ์‚ฌ์—…์˜ ์ง€์›์„ ๋ฐ›์•„ ์—ฐ๊ตฌ๋˜์—ˆ์Šต๋‹ˆ๋‹ค(๊ณผ

์ œ๋ฒˆํ˜ธ: 2018002440004).

References

Aboud, M., Badry, R., Grau, J., Herron, S., Hamichi, F.,

Horkowitz, J., Hemingway, J., MacDonald, R., Saldungaray,

P., Stachiw, D., Stoller, C., and Williams, R. E., 2014, High-

definition spetroscopy-determining mineralogic complexity,

Oilfield Review, 26, 34-50.

Baker, P. E., 1957, Neutron capture gamma-ray spectra of earth

formations, SPE, 210, 97-101.

Barson, D., Christensen, R., Decoster, E., Grau, J., Herron, M.,

Herron, S., Guru, U. K., Jordan, M., Maher, T. M., Rylander,

E., and White, J., 2005, Spectroscopy: The key to rapid,

reliable petrophysical answers, Oilfield Review, 17(2), 14-33.

Craddock, P., Herron, S. L., Badry, R., Swager, L. I., Grau, J.

A., Horkowitz, J. P., and Rose, D. A., 2013, Hydrocarbon

saturation from total organic carbon logs derived from inelastic

and capture nuclear spectroscopy, SPE Annual Technical

Conference and Exhibition, 1-14.

Culver, R. B., Hopkinson E. C., and Youmans, A. H., 1974,

Carbon/Oxygen (C/O) logging instrumentation, SPEJ, 14(5),

463-470.

Engesser, F. C., and Thompson, W. E., 1967, Gamma rays

resulting from interactions of 14.7 MeV neutrons with various

elements, J. Nuclear Energy, 21(6), 487-507.

Freedman, R., Herron, S., Anand, V., Herron, M., May, D., and

Rose, D., 2014, New method for determining mineralogy and

matrix properties from elemental chemistry measured by

gamma ray spectroscopy logging tools, SPE Annual Technical

Conference and Exhibition, 1-16.

Galford, J., Truax, J., Hrametz, A., and Haramboure, C., 2009,

A new neutron-induced gamma-ray spectroscopy tool for

geochemical logging, SPWLA 50th Annual Logging Symposium,

1-14.

Gonzalez, J., Lewis, R., Hemingway, J., Grau, J., Rylander, E.,

and Schmitt, R., 2013, Determination of formation organic

carbon content using a new neutron-induced gamma ray

spectroscopy service that directly measures carbon, SPWLA

54th Annual Logging Symposium, 1-15.

Grau, J. A., and Schweitzer, J. S., 1989, Elemental concent-

rations from thermal neutron capture gamma-ray spectra in

geological formations, Nuclear Geophysics, 3(1), 1-9.

Grau, J. A., Schweitzer, J. S., Ellis, D. V., and Hertzog, R. C.,

1989, A geological model for gamma-ray spectroscopy logging

measurements, Nuclear Geophysics, 3(4), 351-359.

Grover, R., 2017, Tool enables complete cased-hole formation

evaluation, reservoir saturation modeling, J. Pet. Technol.,

69(10), 18-20.

Herron, S. L., and Herron, M. M., 1996, Quantitative lithology:

An application for open and cased hole spectroscopy, SPWLA

37th Annual Logging Symposium, 1-14.

Herron, S. L., 1995, 1996, Method and apparatus for determining

elemental concentrations for ฮณray spectroscopy tools, Process

Control and Quality, 8, N28-N29.

Hertzog, R. C., 1980, Laboratory and field evaluation of an

inelastic neutron scattering and capture gamma ray spectro-

metry tool, SPEJ, 20(5), 1-14.

Hertzog, R., Colson, L., Seeman, O., Oโ€™Brien, M., Scott, H.,

McKeon, D., Wraight, P., Grau, J., Ellis, D., Schweitzer, J.,

and Herron, M., 1989, Geochemical logging with spectro-

metry tools, SPE Formation Evaluation, 4(2), 153-162.

Hwang, S., 2015, Gamma spectroscopy well logging for physical

properties measurement in unconventional reservoirs, Ministry

of Trade, Industry and Energy (in Korean).

Hwang, S., Shin, J., Won, B., Kim, J., and Doh, T., 2018,

Laboratory experiments of neutron induced gamma ray

spectrometry tool, Conference of Near Surface Geoscience

2018, 24P2.

Li, F., Han X., and Mendez, F., 2011, Sigma measurement and

applications with a pulsed neutron mineralogy instrument,

SPWLA 52th Annual Logging Symposium, 1-8.

Lock, G. A., and Hoyer, W. A., 1974, Carbon-Oxygen (C/O)

log: Use and interpretation, J. Pet. Technol., 26(9), 1044-

1054.

Millot, P., Wong, F. K., Rose, D. A., Zhou, T., Grover, R.,

Sundaralingam, S., Amin, F., Prasodjo, A., Johare, D., and

Hui, K., 2017, Field test results in Malaysia wells of a new-

generation slim pulsed neutron logging tool, SPE/IATMI Asia

Pacific Oil & Gas Conference and Exhibition, 1-12.

Muench, N. L., and Osoba, J. S., 1957, Identification of earth

materials by induced gamma-ray spectral analysis, J. Pet.

Technol., 9(3), 89-92.

Pemper, R., Sommer, A., Guo, P., Jacobi, D., Longo, J., Bliven,

S., Rodriguez, E., Mendez, F., and Han, X., 2006, A new

pulsed neutron sonde for derivation of formation lithology

and mineralogy, SPE Annual Technical Conference and

Exhibition, 1-13.

Quirein, J., Kimminau, S., LaVigne, J., Singer, J., and Wendel,

F., 1986, A coherent framework for developing and applying

multiple formation evaluation models, SPWLA 27th Annual

Logging Symposium, 1-17.

Radtke, R. J., Lorente, M., Adolph, B., Berheide, M., Fricke, S.,

Grau, J., Herron, S., Horkowitz, J., Jorion, B., Madio, D.,

May, D., Miles, J., Perkins, L., Philip, O., Roscoe, B., Rose,

D., and Stoller, C., 2012, A new capture and inelastic

spectroscopy tool takes geochemical logging to the next level,

SPWLA 53th Annual Logging Symposium, 1-16.

Rose, D., Zhou, T., Beekman, S., Quinlan, T., Delgadillo, M.,

Gonzalez, G., Fricke, S., Thornton, J., Clinton, D., Gicquel,

F., Shestakova, I., Stephenson, K., Stoller, C., Philip, O.,

Marin, J., Mainier, S., Perchonok, B., and Bailly, J-P., 2015,

An innovative slim pulsed neutron logging tool, SPWLA 56th

Annual Logging Symposium, 1-23.

Page 11: Borehole Elemental Concentration Logs ... - Korea Science

์•”์„๊ตฌ์„ฑ์„ฑ๋ถ„๊ฒ€์ธต: ์›๋ฆฌ, ์—ฐ๊ตฌ๋™ํ–ฅ ๋ฐ ํ–ฅํ›„ ๊ณผ์ œ 159

Schultz, W. E., and Smith, H. D., 1974, Laboratory and field

evaluation of a Carbon/Oxygen (C/O) well logging system, J.

Pet. Technol., 26(10), 1103-1110.

Shin, J., Hwang, S., Kim, G., Lee, G., Lee, S. H., Kim, K. Y.,

Park, I., and Jeon, J., 2018, Borehole elemental concentration

logs for assessing subsurface environments, Proceedings of

2018 Korean Society of Soil and Groundwater environment

Special Symposium, 57 (in Korean).

Smith, C. P., Jeanneau, P., Maddever, R. A. M., Fraser, S. J.,

Rojc, A., Lofgrena, M. K., and Flahaut, V., 2015, PFTNA

logging tools and their contributions to in-situ elemental

analysis of mineral boreholes, wcsb7 proceedings, 157-164.

Stoller, C., Adolph, B., Berheide, M., Brill, T., Clevinger, P.,

Crary, S., Crowder, B., Fricke, S., Grau, J., Hackbart, M.,

Herron, S., Jorion, B., Lorente, M., Madio, D., Miles, J.,

Philip, O., Radtke, R. J., Roscoe, B., Shestakova, I., Ziegler,

W., and Menge, P. R., 2011, Use of LaBr3 for downhole

spectroscopic applications, IEEE Nuclear Science Symposium

and Medical Imaging Conference (NSS/MIC), 191-195.

Tittman, J., and Nelligan, W. B., 1960, Laboratory studies of a

pulsed neutron-source technique in well logging, J. Pet.

Technol., 12(7), 63-66.

Van Leof, E. V. D., Dorenbos, P., van Eijk, C. W. E., Kraemer,

K., and Guedel, H. U., 2001, High-energy-resolution scintillator:

Ce3+ activated LaBr3, Appl. Phys. Lett., 79(10), 1573-1475.

Yan, W., Feng, M., Wang, Y., Liu, S., Li, K., Zhao, X., and

Liang, W., 2018, The Application of a New Neutron Induced

Gamma Ray Spectroscopy Tool in Evaluation the Shale Gas

in Fuling Shale Gas Field, Open Journal of Yangtze Gas and

Oil, 3, 93-103.

Won, B., Hwang, S., Shin, J., Kim, J., Kim, K.-S., and Park, C.

J., 2015, Neutron induced capture gamma spectroscopy sonde

design and response analysis based on Monte Carlo simulation,

Geophys. and Geophys. Explor., 18(3), 154-161 (in Korean

with English abstract).