Boosting Oxygen Evolution Reaction in Non- Precious ...Electronic Supplementary Information Boosting...

13
Electronic Supplementary Information Boosting Oxygen Evolution Reaction in Non- Precious Catalyst by Structural and Electronic Engineering Guoge Zhang ab *, Junyi Yuan a , Yan Liu b , Wei Lu c , Nianqing Fu a , Wenfang Li a and Haitao Huang b * a School of Materials Science and Engineering, South China University of Technology, Guangzhou, P. R. China. b Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong. c University Research Facility in Materials Characterization and Device Fabrication, The Hong Kong Polytechnic University, Hong Kong. Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A. This journal is © The Royal Society of Chemistry 2018

Transcript of Boosting Oxygen Evolution Reaction in Non- Precious ...Electronic Supplementary Information Boosting...

Page 1: Boosting Oxygen Evolution Reaction in Non- Precious ...Electronic Supplementary Information Boosting Oxygen Evolution Reaction in Non-Precious Catalyst by Structural and Electronic

Electronic Supplementary Information

Boosting Oxygen Evolution Reaction in Non-

Precious Catalyst by Structural and Electronic

Engineering

Guoge Zhangab*, Junyi Yuana, Yan Liub, Wei Luc, Nianqing Fua, Wenfang Lia and

Haitao Huangb*

a School of Materials Science and Engineering, South China University of

Technology, Guangzhou, P. R. China.

b Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong.

c University Research Facility in Materials Characterization and Device Fabrication, The

Hong Kong Polytechnic University, Hong Kong.

Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A.This journal is © The Royal Society of Chemistry 2018

Page 2: Boosting Oxygen Evolution Reaction in Non- Precious ...Electronic Supplementary Information Boosting Oxygen Evolution Reaction in Non-Precious Catalyst by Structural and Electronic

Fig. S1. Optical image of plain nickel, anodic nickel (PNC), Ni3S2 nanorods and Ni3S2

nanorod@Ni-Fe LDH nanofilm

Fig. S2. (a) SEM, (b) TEM and (c) XRD of PNC

10 20 30 40 50 60 70

Ni

Ni

2 (o)

Inte

nsi

ty (

a. u

.)

Ni(OH)2

NiF2

~500 nm

500 nm

(a) (b)

(c)

Plain Ni PNC Ni3S2 Ni3S2@Ni-Fe LDH

Page 3: Boosting Oxygen Evolution Reaction in Non- Precious ...Electronic Supplementary Information Boosting Oxygen Evolution Reaction in Non-Precious Catalyst by Structural and Electronic

Fig. S3. Raman spectrum of vertically aligned Ni3S2 nanorods.

Fig. S4. (a) SEM and (b) XRD of plain nickel subject to sulfidization without additional

nickel salts.

200 400 600 800

Inte

nsity

/ (a

. u.)

Raman shift / cm-1

356

313206

230

~600 nm

1m

(a) (b)

20 40 60 80

Inte

nsi

ty /

(a.u

.)

2Theta / degree

NiS 01-086-2281

Ni3S

2 00-044-1418

Page 4: Boosting Oxygen Evolution Reaction in Non- Precious ...Electronic Supplementary Information Boosting Oxygen Evolution Reaction in Non-Precious Catalyst by Structural and Electronic

Fig. S5. (a) Top view and (b) cross section view SEM images, and (c) XRD of Ni3S2

nanowire obtained from sulfidization of plain nickel with additional nickel salts.

Fig. S6. Optical image of the sample after 10 min ultrasonic treatment in deionized

water.

Inte

nsity

/ (

a.u.

)

Ni9S

8 01-078-1886

NiS 01-086-2218

Ni3S

2 00-044-1418

20 40 60 80

2Theta / degree

Ni3S2 nanorod Ni3S2 nanowire

(a) (b)

5 m 2m

(c)

Page 5: Boosting Oxygen Evolution Reaction in Non- Precious ...Electronic Supplementary Information Boosting Oxygen Evolution Reaction in Non-Precious Catalyst by Structural and Electronic

Fig. S7. The energy dispersive X-ray spectroscopy (EDX) of (a) Ni3S2 nanorod and (b)

Ni-Fe LDH nanofilm.

Fig. S8. (a) Fe 2p XPS, (b) XRD and (c) Raman spectra of Ni3S2 nanorod@Ni-Fe LDH

nanofilm.

730 720 710 700

712.1Fe 2p1/2

Fe 2p3/2

Inte

nsi

ty /

(a. u

.)

Binding Energy /eV

725

20 40 60 80

(214

)

(122

)

(21

1)

(003

)

(10

1)

Inte

nsi

ty /

(a.u

.)

2Theta / degree

Ni 01-087-0712

Ni3S

2 00-044-1418

(11

0)

200 400 600 800

Ni3S

2

Ni3S

2

Ni3S

2

575

In

ten

sity

/(a.

u.)

Raman shift / cm-1

495

Ni3S

2

(a)

(b)

(a) (b)

(c)

Page 6: Boosting Oxygen Evolution Reaction in Non- Precious ...Electronic Supplementary Information Boosting Oxygen Evolution Reaction in Non-Precious Catalyst by Structural and Electronic

Fig. S9. (a) SEM image and (b) XRD of Ni3S2@Ni-Fe LDH after 40 hours’ water

electrolysis.

Fig. S10. (a) CV and (b) Tafel plot of Ni3S2@Ni-Fe LDH prepared on nickel foam in

1M KOH. CV Scan rate: 1 mV s-1.

20 40 60 80

Inte

nsity

/ (a

.u.)

2Theta / degree

(214)

(122)(211)(003)

(110)

(101)

*

*

*Ni

Ni3S

2

*

NiOOH

(001)

1.2 1.3 1.4 1.5

-50

0

50

100

150

200

250

1.42 V

Cu

rren

t den

sity

/ m

Ac

m-2

E / V vs. RHE

10 mA cm-2

400 nm

(a) (b)

0.0 0.5 1.0 1.5 2.01.38

1.40

1.42

1.44

1.46

1.48

Log (J / mA cm-2)

E /

V v

s. R

HE

38 mV dec-1

(b) (a)

Page 7: Boosting Oxygen Evolution Reaction in Non- Precious ...Electronic Supplementary Information Boosting Oxygen Evolution Reaction in Non-Precious Catalyst by Structural and Electronic

Fig. S11. CV plot of two kinds of Ni3S2 in 1M KOH. Scan rate: 1 mV s-1.

Fig. S12. Optical image of water electrocatalysis at the current density of 10 mA cm-2,

(a) aligned Ni3S2 nanorods and (b) entangled Ni3S2 nanowires. Electrolyte: 1 M KOH.

Fig. S13. (a) SEM and (b) XRD of Ni@Ni-Fe LDH.

1.2 1.3 1.4 1.5 1.6-10

0

10

20

30

Entangled Ni3S

2 nanowire

Cur

rent

den

sity

/ m

Ac

m-2

E / V vs. RHE

Vertically aligned Ni3S

2 nanorod

300 nm

(a) ~400 nm

(b)

20 40 60 80

NiNi

Ni

*

**

Inte

nsity

/ (a

.u.)

2Theta / degree

NiFe LDH

*

(b)

Aligned Ni3S2 nanorod Entangled Ni3S2 nanowire

(a)

Page 8: Boosting Oxygen Evolution Reaction in Non- Precious ...Electronic Supplementary Information Boosting Oxygen Evolution Reaction in Non-Precious Catalyst by Structural and Electronic

Fig. S14. (a) CV and (b) Tafel plot of Ni@Ni-Fe LDH in 1M KOH. CV Scan rate: 1

mV s-1.

Fig. S15. The variation of scan rate with current density in the potential range where

no Faradaic processes occur. (a) Ni3S2 nanorods, (b) Ni3S2@Ni-Fe LDH, (c) Ni@Ni-

Fe LDH.

1.2 1.3 1.4 1.5 1.6

0

2

4

6

8

10

Cur

rent

den

sity

/ m

A c

m-2

E / V vs. RHE-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4

1.48

1.49

1.50

1.51

1.52

1.53

1.54

E /

V v

s. R

HE

Log(J / mA cm-2)

44 mV dec-1

0.80 0.85 0.90 0.95 1.00 1.05

-0.04

-0.02

0.00

0.02

0.04

0.06

90 mV s-1

Cur

rent

/ m

A

E / V vs. RHE

10 mV s-1

Ni3S

2@NiFe LDH

0.80 0.85 0.90 0.95 1.00 1.05

-0.04

-0.02

0.00

0.02

0.04

Cu

rren

t / m

A

E / V vs. RHE

90 mV s-1

10 mV s-1

Ni3S

2 nanorod

0.80 0.85 0.90 0.95 1.00 1.05-0.004

-0.002

0.000

0.002

0.004

Cur

rent

/ m

A

E / V vs. RHE

90 mV s-1

10 mV s-1

Ni@Ni-Fe LDH

(a) (b)

(b) (a)

(c)

Page 9: Boosting Oxygen Evolution Reaction in Non- Precious ...Electronic Supplementary Information Boosting Oxygen Evolution Reaction in Non-Precious Catalyst by Structural and Electronic

Fig. S16. S 2p XPS spectra of Ni3S2@Ni-Fe LDH and Ni3S2 nanorod.

Fig. S17. Contact angle of (a) Ni3S2@Ni-Fe LDH, (b) Ni3S2 nanorod and (c) Ni@Ni-

Fe LDH.

158 160 162 164 166 168 170

Inde

nsity

/ a.

u.

Binding Energy / eV

Ni3S

2@Ni-Fe LDH

Ni3S

2 nanorod

S 2p

36.2o 63.6o

Ni3S2@Ni-Fe LDH Ni3S2 nanorod

(a) (b)

(c) Ni@Ni-Fe LDH

103.4o

163.3 eV

Page 10: Boosting Oxygen Evolution Reaction in Non- Precious ...Electronic Supplementary Information Boosting Oxygen Evolution Reaction in Non-Precious Catalyst by Structural and Electronic

Table S1. Performance comparison between Ni3S2@Ni-Fe LDH and recently reported

non precious OER catalysts.

Material Solution Current

collector

OverPotential

@ 10mA/cm2

mV

Tafel slope Reference

Ni3S2@NiFe

LDH

1M KOH Planar, nickel

foil

245 35 This work

3D, nickel

foam

190 38

CoNi(20:1)-P-

NS1

1M KOH Glassy carbon 273 45 Energy Environ. Sci., 2017

3D, nickel

foam

209 52

Na0.08Ni0.9Fe0.1O2

2

1M KOH Glassy carbon 260 40 Energy Environ. Sci., 2017

FeNi-LDH /Ti3C2-

MXene3

1M KOKH Glassy carbon 298 43 Nano Energy, 2018

CoOx4 1M KOH Glassy carbon 306 65 Nano Energy, 2018

CoOx/BNG5 0.1M KOH Glassy carbon 295 57 Angew. Chem. Int. Ed., 2017

pc-Ni-Bi@NB6 1M KOH Glassy carbon 302 52 Angew. Chem. Int. Ed., 2017

NixCo1−xO7 0.5M KOH Planar, gold 350 Adv. Funct. Mater. 2017

Fe3N/Fe4N8 1M KOH 3D, nickel

foam

238 44.5 ACS Catalysis 2017

NiO/CoN9 1M KOH Carbon fiber

paper

300 35 ACS Nano, 2017

Fe1Co1-ONS10 0.1M KOH Glassy carbon 308 36.8 Adv. Mater. 2017

NiFe-MOF11 0.1M KOH 3D, Ni foam 240 34 Nat. Commun., 2017

Ni(OH)2-Au12 1M KOH Glassy carbon 270 35 J. Am. Chem. Soc., 2016

NiFe-NS13 1M KOH glassy carbon 302 40 Nat. Commun., 2014

NiFe/NiFe:Pi14 1M KOH 3D, carbon

fiber paper

290 38 ACS Catalysis 2017

CoFe LDH-Ar15 1M KOH Glassy carbon 266 37.85 Angew. Chem. Int. Ed., 2017

Page 11: Boosting Oxygen Evolution Reaction in Non- Precious ...Electronic Supplementary Information Boosting Oxygen Evolution Reaction in Non-Precious Catalyst by Structural and Electronic

(Co0.25Fe0.48)2P 16

1M KOH Co-Fe-P

ribbon

270 30 Energy & Environ. Sci. 2016

MoS2-Ni3S2 17 1M KOH 3D, Ni foam 249 57 ACS Catalysis 2017

FeNi8Co2 LDH18 1M KOH 3D, Ni foam 230 42 Chem. Commun. 2015

Carbon-coated

Ni-Co nanowier19

1M KOH Carbon fiber

fabric

302 43.6 Adv. Energy Mater. 2016

Mono NiTi

MMO20

1M KOH Glassy carbon

electrode

320 52 J. Am. Chem. Soc. 2016

Ni(OH)2/O-

MWCNT21

1M KOH Glassy carbon

electrode

270 32 Adv. Energy Mater. 2016

Ni3FeN

nanoparticle22

1M KOH Glassy carbon

electrode

280 Adv. Energy Mater. 2016

Fe3O4@Co9S8/rG

O23

1M KOH Glassy carbon 320 54.5 Adv. Funct. Mater. 2016

NiCo LDH 24 0.1 M KOH 3D, Ni foam 420 113 J. Power Sources 2015

NiCo LDH25 1M KOH Carbon paper 367 40 Nano Lett. 2015

Fe-N-C/NiFe-

LDH26

0.1M KOH Rotating disk

electrode

285 Energy & Environ. Sci. 2016

NiCo2S4

NW/NF27

1M KOH 3D, Ni foam 260 40.1 Adv. Funct. Mater. 2016

NiSx28 1M KOH Glassy carbon

electrode

353 41 Chem. Mater. 2016

Page 12: Boosting Oxygen Evolution Reaction in Non- Precious ...Electronic Supplementary Information Boosting Oxygen Evolution Reaction in Non-Precious Catalyst by Structural and Electronic

Table S2. Electrical elements of Ni3S2 and Ni3S2@Ni-Fe LDH fitted by the equivalent

circuit as shown in the inset of Fig. 5a.

Rs / Ω CPE1 / mF Rct / Ω CPE2/ mF ROER /Ω

Ni3S2 0.715 270 0.165 818 3.516

Ni3S2@Ni-Fe LDH 0.612 286 0.269 486 1.214

Ni@Ni-Fe LDH 0.787 11 25.2 66 14.2

References

1. X. Xiao, C.-T. He, S. Zhao, J. Li, W. Lin, Z. Yuan, Q. Zhang, S. Wang, L. Dai and D. Yu, Energy

& Environ. Sci., 2017, 10, 893.

2. B. Weng, F. Xu, C. Wang, W. Meng, C. R. Grice and Y. Yan, Energy & Environ. Sci., 2017, 10,

121.

3. M. Yu, S. Zhou, Z. Wang, J. Zhao and J. Qiu, Nano Energy, 2018, 44, 181.

4. W. Xu, F. Lyu, Y. Bai, A. Gao, J. Feng, Z. Cai and Y. Yin, Nano Energy, 2018, 43, 110.

5. Y. Tong, P. Chen, T. Zhou, K. Xu, W. Chu, C. Wu and Y. Xie, Angew. Chem. Int. Ed., 2017, 56,

7121.

6. W.-J. Jiang, S. Niu, T. Tang, Q.-H. Zhang, X.-Z. Liu, Y. Zhang, Y.-Y. Chen, J.-H. Li, L. Gu, L.-

J. Wan and J.-S. Hu, Angew. Chem. Int. Ed., 2017, 56, 6572.

7. K. Fominykh, G. C. Tok, P. Zeller, H. Hajiyani, T. Miller, M. Döblinger, R. Pentcheva, T. Bein

and D. Fattakhova-Rohlfing, Adv. Funct. Mater., 2017, 27, 1605121.

8. F. Yu, H. Zhou, Z. Zhu, J. Sun, R. He, J. Bao, S. Chen and Z. Ren, ACS Catalysis, 2017, 7, 2052.

9. J. Yin, Y. Li, F. Lv, Q. Fan, Y.-Q. Zhao, Q. Zhang, W. Wang, F. Cheng, P. Xi and S. Guo, ACS

Nano, 2017, 11, 2275.

10. L. Zhuang, L. Ge, Y. Yang, M. Li, Y. Jia, X. Yao and Z. Zhu, Adv. Mater., 2017, 29, 1606793.

11. J. Duan, S. Chen and C. Zhao, Nat. Commun., 2017, 8, 15341.

12. G. Liu, P. Li, G. Zhao, X. Wang, J. Kong, H. Liu, H. Zhang, K. Chang, X. Meng, T. Kako and

J. Ye, J. Am. Chem. Soc., 2016, 138, 9128.

13. F. Song and X. Hu, Nat. Commun., 2014, 5, 4477.

Page 13: Boosting Oxygen Evolution Reaction in Non- Precious ...Electronic Supplementary Information Boosting Oxygen Evolution Reaction in Non-Precious Catalyst by Structural and Electronic

14. Y. Li and C. Zhao, ACS Catalysis, 2017, 7, 2535.

15. Y. Wang, Y. Zhang, Z. Liu, C. Xie, S. Feng, D. Liu, M. Shao and S. Wang, Angew. Chem. Int.

Ed., 2017, 56, 5867.

16. Y. Tan, H. Wang, P. Liu, Y. Shen, C. Cheng, A. Hirata, T. Fujita, Z. Tang and M. Chen, Energy

& Environ. Sci., 2016, 9, 2257.

17. Y. Yang, K. Zhang, H. Lin, X. Li, H. C. Chan, L. Yang and Q. Gao, ACS Catalysis, 2017, 7,

2357.

18. X. Long, S. Xiao, Z. Wang, X. Zheng and S. Yang, Chem. Commun., 2015, 51, 1120.

19. S.-H. Bae, J.-E. Kim, H. Randriamahazaka, S.-Y. Moon, J.-Y. Park and I.-K. Oh, Adv. Energy

Mater., 2016, DOI: 10.1002/aenm.201601492, 1601492.

20. Y. Zhao, X. Jia, G. Chen, L. Shang, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung, D. O’Hare and

T. Zhang, J. Am. Chem. Soc., 2016, 138, 6517.

21. L. Wang, H. Chen, Q. Daniel, L. Duan, B. Philippe, Y. Yang, H. Rensmo and L. Sun, Adv.

Energy Mater., 2016, 6, 1600516.

22. X. Jia, Y. Zhao, G. Chen, L. Shang, R. Shi, X. Kang, G. I. N. Waterhouse, L.-Z. Wu, C.-H. Tung

and T. Zhang, Adv. Energy Mater., 2016, 6, 1502585.

23. J. Yang, G. Zhu, Y. Liu, J. Xia, Z. Ji, X. Shen and S. Wu, Adv. Funct. Mater., 2016, 26, 4712.

24. J. Jiang, A. Zhang, L. Li and L. Ai, J. Power Sources, 2015, 278, 445.

25. H. Liang, F. Meng, M. Cabán-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang and S. Jin, Nano

Lett., 2015, 15, 1421.

26. S. Dresp, F. Luo, R. Schmack, S. Kuhl, M. Gliech and P. Strasser, Energy & Environ. Sci., 2016,

9, 2020.

27. A. Sivanantham, P. Ganesan and S. Shanmugam, Adv. Funct. Mater., 2016, 26, 4661.

28. H. Li, Y. Shao, Y. Su, Y. Gao and X. Wang, Chem. Mater., 2016, 28, 1155.