Block-Diagonal Decomposition of Matrices based on -Algebra ......simultaneous block-diagonal...

28
Block-Diagonal Decomposition of Matrices based on -Algebra for Structural Optimization with Symmetry Property Yoshihiro Kanno Kazuo Murota Masakazu Kojima Sadayoshi Kojima University of Tokyo (Japan) Tokyo Institute of Technology (Japan) June 16, 2008

Transcript of Block-Diagonal Decomposition of Matrices based on -Algebra ......simultaneous block-diagonal...

  • Block-Diagonal Decomposition ofMatrices based on ∗-Algebrafor Structural Optimizationwith Symmetry Property

    Yoshihiro Kanno† Kazuo Murota†

    Masakazu Kojima‡ Sadayoshi Kojima‡

    †University of Tokyo (Japan)‡Tokyo Institute of Technology (Japan)

    June 16, 2008

  • simultaneous block-diagonaldecomposition

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 2 / 14

    ■ given: A1, A2, . . . , Am — symmetric n× n■ find: P ∈ Rn×n — orthogonal

    A =1

    simultaneous block diagonalization

    O

    O

    O

    O

    O

    O

    symm. symm. symm.A =2 A =3

    P A P=3TP A P=2

    TP A P=1T

  • simultaneous block-diagonaldecomposition: application

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 3 / 14

    ■ K(x) : stiffness matrix x : design variables■ given: K1,K2, . . . ,Km■ find: P ∈ Rn×n — orthogonal

    K(x)=x1 +x2 +x3K1 K2 K3

  • simultaneous block-diagonaldecomposition: application

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 3 / 14

    ■ K(x) : stiffness matrix x : design variables■ given: K1,K2, . . . ,Km■ find: P ∈ Rn×n — orthogonal

    P K(x)P =xT 1 +x2 +x3

    K(x)=x1 +x2 +x3

    simultaneous block diagonalization

    O

    O

    O

    O

    O

    O

    K1 K2 K3

    P K P2T P K P3

    TP K P1T

  • application: SDP

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 4 / 14

    min∑m

    p=1 bpyps.t. C −

    ∑mp=1 Apyp � O

    variables : y1, . . . , ym

    coefficients : b1, . . . , bm,

    A1, . . . , Am, C ∈ Sn n× n symmetric matrices

    ■ X � O ⇐⇒ X is positive semidefinite← nonlinear but convex

  • application: SDP

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 4 / 14

    min∑m

    p=1 bpyps.t. C −

    ∑mp=1 Apyp � O

    ■ truss optimization (with eigenvalue constraints)

    min vol(x)s.t. Ω1(x) ≥ Ω̄

    can be solved by SDP [Ohsaki et al. 99] as

    min cTxs.t.

    ∑mp=1(Kp − Ω̄Mp)yp � O

    ■ optimization with buckling load factor constraints■ robust structural optimization

  • application: SDP

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 4 / 14

    min∑m

    p=1 bpyps.t. C −

    ∑mp=1 Apyp � O

    O

    O

    O

    O

    O

    O

    P A P=2TP A P=1

    T P CP=T......

    C(1) −m∑

    p=1

    A(1)p yp � O

    ...

    C(�) −m∑

    p=1

    A(�)p yp � O

  • application: SDP

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 4 / 14

    min∑m

    p=1 bpyps.t. C −

    ∑mp=1 Apyp � O

    O

    O

    O

    O

    O

    O

    P A P=2TP A P=1

    T P CP=T......

    ■ group theory[Gatermann & Parrilo 04], [Bai & de Klerk 07] [de Klerk & Sotirov 07]

    ■ matrix ∗-algebra [de Klerk, Pasechnik & Scrijver 07]■ aim: numerical algorithm

    which can be executed without any knowledgeof symmetry property in advance

  • matrix ∗-algebra

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 5 / 14

    T ⊆ Rn×n (set of n× n matrices)

    is a matrix ∗-algebra

    ■ In ∈ T■ If A,B ∈ T , α ∈ R, then

    ◆ A + B ∈ T◆ AB ∈ T◆ αA ∈ T◆ AT ∈ T

  • structure theorem

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 6 / 14

    1. ∃Q : orthogonal s.t.

    QTT Q =

    ⎡⎢⎢⎢⎣

    S1 O · · · OO S2 O O... O

    . . . OO O · · · Sl

    ⎤⎥⎥⎥⎦ , Sj ∈ Tj : simple

    2. If Tj is simple, then ∃P̂ : orthogonal s.t.

    P̂TTjP̂ =

    ⎡⎢⎢⎢⎣

    Bj O O OO Bj O O

    O O. . . O

    O O O Bj

    ⎤⎥⎥⎥⎦ , Bj ∈ T̂j : irreducible

  • structure theorem:transformations to

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 7 / 14

    ■ simple components∃Q : orthogonal, for any A ∈ T ,

    S1

    S2

    O

    O

    Q AQ=Tno commoneigenvalues

    ■ & irreducible components∃P̂ : orthogonal, for any A ∈ T ,

  • structure theorem:transformations to

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 7 / 14

    ■ simple components∃Q : orthogonal, for any A ∈ T ,

    S1

    S2

    O

    O

    Q AQ=Tno commoneigenvalues

    }}muptiplicity = 3

    muptiplicity = 2

    ■ & irreducible components∃P̂ : orthogonal, for any A ∈ T ,

    P AP=TB2

    B1B1

    B1

    B2no multiplicity

    no multiplicity

  • algorithm (1)input: A1, A2, . . . , Am

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 8 / 14

    1. Generate random r1, . . . , rm. Put X ≡∑m

    i=1 riAi.

    2. Eigenvalue decomposition of X:

    QTXQ =

    ⎡⎢⎢⎢⎣

    α1Im1 O O OO α2Im2 O O

    O O. . . O

    O O O αkImk

    ⎤⎥⎥⎥⎦ ,

    Q =[Q1, Q2, . . . , Qk

    ].

    3. Compute QTA1Q, . . . , QTAmQ .

  • algorithm (1)input: A1, A2, . . . , Am

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 8 / 14

    1. Generate random r1, . . . , rm. Put X ≡∑m

    i=1 riAi.

    2. Eigenvalue decomposition of X:

    3. Compute QTA1Q, . . . , QTAmQ .

    4. Rearrange eigenvectors Q as

    Q̂ =[Q[K1], Q[K2], . . . , Q[Kl]

    ]

    so that

    O

    O

    O

    O

    ......Q A Q=2TQ A Q=1

    T^ ^ ^ ^

    which is the decomposition to simple components.

  • algorithm (2)

    input: Â1, Â2, . . . , Âm — simple

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 9 / 14

    1. We know that the simple component is decomposed as

    P AP=TB

    BB

    ^ }muptiplicity = 32. e.g. B ∈ R2×2, PTÂP can be rearranged as

    P̃TÂP̃ =

    ⎡⎣ b11I b12I b13Ib21I b22I b23I

    b31I b32I b33I

    ⎤⎦ , I =

    [1 00 1

    ]. (♣)

    We first find the transformation (♣).

  • algorithm (2)

    input: Â1, Â2, . . . , Âm — simple

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 9 / 14

    1. In order to obtain

    P̃TÂP̃ =

    ⎡⎣ b11I b12I b13Ib21I b22I b23I

    b31I b32I b33I

    ⎤⎦ , I =

    [1 00 1

    ], (♣)

    we use the form of

    bijPiPTj = Âij.

    2. Put P1 = I. Then,

    b31P3PT1 = Â31 =⇒ P3 = Â31/b31

    b23P2PT3 = Â23 =⇒ P2 = Â23P3/b23

  • algorithm (1) & (2)

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 10 / 14

    ■ (1) simple components

    O

    O

    O

    O

    ......Q A Q=2TQ A Q=1

    T^ ^ ^ ^

    ■ (2) irreducible components

    O

    O

    O

    O

    P A P=2TP A P=1

    T ......

  • algorithm (1) & (2)

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 10 / 14

    ■ (1) simple components

    O

    O

    O

    O

    ......Q A Q=2TQ A Q=1

    T^ ^ ^ ^

    ■ (2) irreducible components

    O

    O

    O

    O

    P A P=2TP A P=1

    T ......

    ■ advantages: algorithm uses

    ◆ only linear algebraic computations (e.g. eigenvaluedecomposition)

    ◆ no knowledge of algebraic structure (symmetry property)execution is free from group representation theoryor matrix ∗-algebra

  • ex.) spherical dome

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 11 / 14

    ■ spherical lattice domeD6-symmetry

  • ex.) spherical dome

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 11 / 14

    ■ spherical lattice domeD6-symmetry

    ■ variable linking3 kinds of membersK(x) =

    x1K1 + x2K2 + x3K3■ 21 DOF

    }2121

    symm.}Ki =

  • ex.) spherical dome

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 11 / 14

    ■ spherical lattice domeD6-symmetry

    ■ variable linking3 kinds of membersK(x) =

    x1K1 + x2K2 + x3K3■ 21 DOF

    }2121

    symm.}Ki =P KiP =T

    O

    O

    }

    4

    }

    3

    }

    3

    }

    2

    }

    1

    }

    1

  • ex.) cubic truss(tetrahedral symm.)

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 12 / 14

    ■ Td-symmetry (tetrahedral)

  • ex.) cubic truss(tetrahedral symm.)

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 12 / 14

    ■ Td-symmetry (tetrahedral)■ variable linking

    4 kinds of membersK(x) = x1K1+· · ·+x4K4

    ■ 24 DOF

    }2424

    symm.Ki = }

  • ex.) cubic truss(tetrahedral symm.)

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 12 / 14

    ■ Td-symmetry (tetrahedral)■ variable linking

    4 kinds of membersK(x) = x1K1+· · ·+x4K4

    ■ 24 DOF

    }2424

    symm.Ki = }

    P KiP =T

    O

    O

    }

    4

    }

    2

    }

    2

    }

    2

  • ex.) cubic truss (sparsity)

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 13 / 14

    ■ remove 4 members■ variable linking

    3 kinds of membersK(x) = x1K1 + · · ·+ x3K3

    ■ 24 DOF

    cf. original:

  • ex.) cubic truss (sparsity)

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 13 / 14

    ■ remove 4 members■ variable linking

    3 kinds of membersK(x) = x1K1 + · · ·+ x3K3

    ■ 24 DOF

    cf. original:

    O

    O

    }4

    }

    2

    }

    2

    }

    2

    block-diagonal decomposition= geometric symmetry+ sparsity of matrices

  • ex.) cubic truss (sparsity)

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 13 / 14

    ■ remove 4 members■ variable linking

    3 kinds of membersK(x) = x1K1 + · · ·+ x3K3

    ■ 24 DOF

    cf. original:

    O

    O

    }4

    }

    2

    }

    2

    }

    2

    P KiP =T

    O

    O

    }

    2

    }

    2

    }

    2

    }

    2

    }

    2

    sparsity gives finer decomposition

  • conclusions

    Block-Diagonalization of Matrices based on ∗-Algebra CJK-OSM’08 – 14 / 14

    ■ simultaneous block-diagonalization

    ◆ input: A1, A2, . . . , Am : symmetric matrices◆ output: block-diagonal decomposition (common block-structure)

    ◆ validity: matrix ∗-algebra◆ application: member stiffness matrices of structure with

    symmetric configuration

    ■ algorithm

    ◆ uses only linear algebraic computation◆ does not use any knowledge of symmetry property◆ is free from

    group representation theory / matrix ∗-algebra

    block-diagonalizationblock-diagonalizationSDP*-algebrastructure theoremtransformationalgorithm (1)algorithm (2)algorithm (1) & (2)spherical domecubic trusscubic trussconclusions

    /ColorImageDict > /JPEG2000ColorACSImageDict > /JPEG2000ColorImageDict > /AntiAliasGrayImages false /DownsampleGrayImages true /GrayImageDownsampleType /Bicubic /GrayImageResolution 100 /GrayImageDepth -1 /GrayImageDownsampleThreshold 1.50000 /EncodeGrayImages true /GrayImageFilter /DCTEncode /AutoFilterGrayImages true /GrayImageAutoFilterStrategy /JPEG /GrayACSImageDict > /GrayImageDict > /JPEG2000GrayACSImageDict > /JPEG2000GrayImageDict > /AntiAliasMonoImages false /DownsampleMonoImages true /MonoImageDownsampleType /Bicubic /MonoImageResolution 150 /MonoImageDepth -1 /MonoImageDownsampleThreshold 1.00000 /EncodeMonoImages true /MonoImageFilter /CCITTFaxEncode /MonoImageDict > /AllowPSXObjects true /PDFX1aCheck false /PDFX3Check false /PDFXCompliantPDFOnly false /PDFXNoTrimBoxError true /PDFXTrimBoxToMediaBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXSetBleedBoxToMediaBox true /PDFXBleedBoxToTrimBoxOffset [ 0.00000 0.00000 0.00000 0.00000 ] /PDFXOutputIntentProfile (None) /PDFXOutputCondition () /PDFXRegistryName (http://www.color.org) /PDFXTrapped /Unknown

    /Description >>> setdistillerparams> setpagedevice