Blending Problem

download Blending Problem

of 3

Transcript of Blending Problem

  • 8/17/2019 Blending Problem

    1/3

    IE 141: Operations Research 1

    Sample Problem

    BLENDING PROBLEM

    The Philippine Petron Oil Corporation produces unleaded and premium-grade gasoline that is sold to

    independent gasoline stations all over the Philippines. The company has a refinery in Bataan that manufactures

    the products by blending three petroleum components. Each type of gasoline has a different price. The costs of

     petroleum component vary with type. However, with the passage of the Biofuel Act of 2006, Petron and otheroil firms in the country are required by law to mix bioethanol to all types of gasoline that will be distributed in

    the local market. With this new development, Petron wants to determine how to blend the three components and

     bio-ethanol into the two gasoline-bioethanol fuel products in such a way as to maximize profits.

    The regular gasoline-bioethanol blend fuel can be sold for PhP35.00 per liter and the premium gasoline-

     bioethanol blend can be sold for PhP38.00 per liter. For the current product introduction production-planning period, Petron can obtain four components at the costs and in the quantities shown in Table 1.

    The specifications for the new fuel products restrict the amounts of each component that can be used in each

    gasoline-bioethanol blend product. The product specifications are shown in Table 2. Initial introduction of the

    new products to the market requires Petron to produce at least 300,000 liters of regular gasoline-bioethanol

     blend.

    Table 1. Petroleum component cost and supply

    Petroleum component Cost (PhP)/li Amount available (li)

    Component 1 (C1-Bioethanol) 13.00 200,000

    Component 2 (C2) 15.00 200,000

    Component 3 (C3) 18.00 400,000

    Component 4 (C4) 20.00 400,000

    Table 2. Specifications for gasoline types

    Product Specifications

    Regular-bioethanol blend gasoline At most 10% component 1

    At most 20% component 2

    At least 40% component 3

    At most 20% component 4Premium-bioethanol blend gasoline At most 05% component 1

    At most 20% component 2

    At least 40% component 3

    At most 30% component 4

    Solution:

    Let xij = liters of component i used in gasoline j

    wherei = 1, 2, 3, 4 and

     j = r  if regular-bioethanol blend gasoline

    = p if premium-bioethanol blend gasoline

    Decision variables (8):

     x1r  = liters of C1 in regular-bio-ethanol blend gasoline

     x2r  = liters of C2 in regular-bio-ethanol blend gasoline

     x3r  = liters of C3 in regular-bio-ethanol blend gasoline

     x4r  = liters of C4 in regular-bio-ethanol blend gasoline

     x1p = liters of C1 in premium-bio-ethanol blend gasoline

     x2p = liters of C2 in premium-bio-ethanol blend gasoline

     x3p = liters of C1 in premium-bio-ethanol blend gasoline

     x4p = liters of C1 in premium-bio-ethanol blend gasoline

    Total of each type of gasoline-bioethanol blend produced:

    Regular gasoline-bioethanol blend = x1r  + x2r  + x3r  + x4r  

    Premium gasoline-bioethanol blend = x1p + x2p + x3p + x4p 

  • 8/17/2019 Blending Problem

    2/3

    IE 141: Operations Research 1

    Sample Problem

    Total of each component used:

    C1 = x1r  + x1p  C2 = x2r  + x2p  C3 = x3r  + x3p  C4 = x4r  + x4p 

    Constraints:

    Available components:

     x1r  + x1p ≤ 200,000 

     x2r  + x2p≤ 200,000 

     x3r  + x3p  ≤ 400,000

     x4r  + x4p ≤ 400,000 

    Product specifications:

    Regular gasoline-bioethanol blend:

     x1r  / ( x1r  + x2r  + x3r  + x4r ) ≤ 0.10 → + 0.90 x1r   –  0.10 x2r   –  0.10 x3r   –  0.10 x4r  ≤ 0 

     x2r  / ( x1r  + x2r  + x3r  + x4r ) ≤ 0.20  → –  0.20 x1r  + 0.80 x2r   –  0.20 x3r   –  0.20 x4r  ≤ 0 

     x3r  / ( x1r  + x2r  + x3r  + x4r ) ≥ 0.40 → –  0.40 x1r   –  0.40 x2r  + 0.60 x3r   –  0.40 x4r  ≥ 0 

     x4r  / ( x1r  + x2r  + x3r  + x4r ) ≤ 0.20 → –  0.20 x1r   –  0.20 x2r   –  0.20 x3r  + 0.80 x4r  ≤ 0 

    Premium gasoline-bioethanol blend:

     X 1p / ( x1p + x2p + x3p + x4p) ≤ 0.05 → +0.95 x1r   –  0.05 x2r   –  0.05 x3r   –  0.05 x4r  ≤ 0 

     x2p / ( x1p + x2p + x3p + x4p) ≤ 0.20  → –  0.20 x1r  + 0.80 x2r   –  0.20 x3r   –  0.20 x4r  ≤ 0 

     x3p / ( x1p + x2p + x3p + x4p) ≥ 0.40 → –  0.40 x1r   –  0.40 x2r  + 0.60 x3r   –  0.40 x4r  ≥ 0 

     x4p / ( x1p + x2p + x3p + x4p) ≤ 0.30 → –  0.30 x1r   –  0.30 x2r   –  0.320 x3r + 0.70 x4r ≤ 0 

    Regular-bioethanol production:

     x1r  + x2r  + x3r  + x4r  ≥ 300,000 

    Objective function:

    Maximize profit.

    Profit = Total Revenue –  Total Cost

    = (price of regular-bioethanol blend x quantity of regular-bioethanol blend)

    + (price of premium-bioethanol blend x quantity of premium-bioethanol blend)

    - {[( cost of C1) x (qty of C1)] + [( cost of C2) x (qty of C2)]

    + {[( cost of C3) x (qty of C3)] + [( cost of C4) x (qty of C4)]}

    Maximize Z = [35( x1r  + x2r  + x3r  + x4r ) + 38( x1p + x2p + x3p + x4p)]

    -  [13( x1r  + x1p) + 15( x2r  + x2p) + 18( x3r  + x3p) + 20( x4r  + x4p)]

    Simplifying

    Z = 22 x1r  + 20 x2r  + 17 x3r  + 15 x4r  + 25 x1p + 23 x2p + 20 x3p + 18 x4p 

    The linear programming model with 8 decision variables and 14 constraints is:

  • 8/17/2019 Blending Problem

    3/3

    IE 141: Operations Research 1

    Sample Problem

    Maximize Z = 22 x1r  + 20 x2r  + 17 x3r  + 15 x4r  + 25 x1p + 23 x2p + 20 x3p + 18 x4p 

    s.t.

     x1r  + x1p ≤ 200,000 

     x2r  + x2p≤ 200,000 

     x3r  + x3p  ≤ 400,000

     x4r  + x4p ≤ 400,000 

    + 0.90 x1r   –  0.10 x2r   –  0.10 x3r   –  0.10 x4r  ≤ 0 

     –  0.20 x1r  + 0.80 x2r   –  0.20 x3r   –  0.20 x4r  ≤ 0 

     –  0.40 x1r   –  0.40 x2r  + 0.60 x3r   –  0.40 x4r  ≥ 0 

     –  0.20 x1r   –  0.20 x2r   –  0.20 x3r  + 0.80 x4r  ≤ 0 

    +0.95 x1r   –  0.05 x2r   –  0.05 x3r   –  0.05 x4r  ≤ 0 

     –  0.20 x1r  + 0.80 x2r   –  0.20 x3r   –  0.20 x4r  ≤ 0 

     –  0.40 x1r   –  0.40 x2r  + 0.60 x3r   –  0.40 x4r  ≥ 0 

     –  0.30 x1r   –  0.30 x2r   –  0.320 x3r + 0.70 x4r ≤ 0 

     x1r  + x2r  + x3r  + x4r  ≥ 300,000 

     x1r , x2r , x3r , x4r , x1p, x2p, x3p, x4p ≥ 0