Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole...

23
Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C. Herdeiro, A. Nerozzi, U. Sperhake, M. Zilh˜ ao CENTRA / IST, Lisbon, Portugal Phys. Rev. D 81, 084052 (2010), Phys. Rev. D 82, 104014 (2010), Phys. Rev. D 83, 044017 (2011), work in progress Numerical Relativity and High Energy Physics, Madeira, August 31 , 2011 H. Witek (CENTRA / IST) 1 / 23

Transcript of Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole...

Page 1: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

Black hole collisionsin higher dimensional spacetimes

Helvi Witek,V. Cardoso, L. Gualtieri, C. Herdeiro,A. Nerozzi, U. Sperhake, M. Zilhao

CENTRA / IST,Lisbon, Portugal

Phys. Rev. D 81, 084052 (2010), Phys. Rev. D 82, 104014 (2010),Phys. Rev. D 83, 044017 (2011), work in progress

Numerical Relativity and High Energy Physics, Madeira, August 31 , 2011

H. Witek (CENTRA / IST) 1 / 23

Page 2: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

Outline

1 Motivation

2 Numerical Relativity in D Dimensions

3 Numerical Results

4 Conclusions and Outlook

H. Witek (CENTRA / IST) 2 / 23

Page 3: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

High Energy Collision of Particles

above the Planck scale:gravity is dominant interaction⇒ classical description

Consider particle collsions with E = 2γm0c2 > MPl

Hoop - Conjecture (Thorne ’72)⇒ black hole formation, if circumference of particle < 2πrS

Collisions of shock waves (Penrose ’74, Eardley & Giddings ’02)⇒ black hole formation if b ≤ rS

numerical evidence in ultra relativistic collision of boson stars(Choptuik & Pretorius ’10)

⇒ black hole formation if boost γc ≥ 2.9

⇒ black hole formation in high energy collisions of particles

H. Witek (CENTRA / IST) 3 / 23

Page 4: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

TeV gravity

in D = 4:mEW ∼ 103GeV , MPl ∼ 1019GeV⇒ “hierarchy problem”

higher dimensional theories of gravity

large extra dimensions(Arkani-Hamed, Dimopoulos & Dvali ’98,Dvali, Gabadadze & Porrati ’00)warped extra dimensions(Randall & Sundrum ’99)

in D > 4: lowering of Planck scale⇒ MPl ∼ TeV

H. Witek (CENTRA / IST) 4 / 23

Page 5: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

TeV gravity

TeV gravity scenarios

⇒ signatures of black hole production in high energy collision of particles

at the Large Hadron Collider

http://lhc.web.cern.ch/lhc/

in Cosmic Rays interactions

http://www.phy.olemiss.edu/GR/

H. Witek (CENTRA / IST) 5 / 23

Page 6: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

Life cycle of Mini Black Holes

1 Formation

lower bound on BH mass from area theorem (Yoshino & Nambu ’02)

2 Balding phase: end state is Myers-Perry black hole

3 Spindown phase: loss of angular momentum and mass

4 Schwarzschild phase: decay via Hawking radiation

5 Planck phase: M ∼ MPl

Goal: more precise understanding of black hole formation⇒ compute mass and spin of final black hole⇒ input to event generators (TRUENOIR, Catfish, BlackMax, Charybdis2)Toy model: black hole collisions in higher dimensions

H. Witek (CENTRA / IST) 6 / 23

Page 7: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

Numerical Relativity

in D > 4 Dimensions

Yoshino & Shibata, Phys. Rev. D80, 2009,Shibata & Yoshino, Phys. Rev. D81, 2010

Okawa, Nakao & Shibata, Phys. Rev. 83, 2011

Lehner & Pretorius, Phys. Rev. Lett. 105, 2010

Sorkin & Choptuik, GRG 42, 2010; Sorkin, Phys. Rev. D81, 2010

Zilhao et al., Phys. Rev. D 81, 2010,Witek et al, Phys. Rev. D82, 2010.

H. Witek (CENTRA / IST) 7 / 23

Page 8: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

Numerical Relativity in D Dimensions

consider highly symmetric problems

dimensional reduction by isometry on a (D-4)-sphere

general metric element

ds2 = gµνdxµdxν + λ(xµ)dΩD−4

H. Witek (CENTRA / IST) 8 / 23

Page 9: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

Numerical Relativity in D Dimensions

D dimensional vacuum Einstein equations GAB = RAB − 12gAB R = 0 imply

(4)Tµν =D − 4

16πλ

[∇µ∂νλ−

1

2λ∂µλ∂νλ− (D − 5)gµν +

D − 5

4λgµν∂αλ∂

αλ

],

∇µ∇µλ = 2(D − 5)− D − 6

2λ∂µλ∂µλ

⇒ 4D Einstein equations coupled to scalar field

⇒ different higher dimensions manifest in scalar field

H. Witek (CENTRA / IST) 9 / 23

Page 10: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

Formulation of EEs as Cauchy Problem in D > 4

3+1 split of spacetime (4)M = R +(3) Σ (Arnowitt, Deser, Misner ’62)ds2 = gµνdx

µdxν =(−α2 + βkβ

k)dt2 + 2βidx

idt + γijdxidx j

3+1 split of 4D Einstein equations with source terms=⇒ Formulation as initial value problem with constraints (York 1979)

Evolution Equations

∂tγij = −2αKij + Lβγij∂tKij = −DiDjα + α

((3)Rij − 2KilK

lj + KKij

)+ LβKij

−αD − 4

(DiDjλ− 2KijKλ −

1

2λ∂iλ∂jλ

)∂tλ = −2αKλ + Lβλ

∂tKλ = −1

2∂ lα∂lλ+ α

((D − 5) + KKλ +

D − 6

λK 2λ

−D − 6

4λ∂ lλ∂lλ−

1

2D lDlλ

)+ LβKλ

H. Witek (CENTRA / IST) 10 / 23

Page 11: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

Wave Extraction in D > 4

Generalization of Regge-Wheeler-Zerilli formalism by Kodama & Ishibashi ’03

Master function

Φ,t = (D − 2)r (D−4)/2 2rF,t − F rt

k2 − D + 2 + (D−2)(D−1)2

rD−3S

rD−3

, k = l(l + D − 3)

Energy flux & radiated energy

dEl

dt=

(D − 3)k2(k2 − D + 2)

32π(D − 2)(Φl

,t)2 , E =

∞∑l=2

∫ ∞−∞

dtdEl

dt

Momentum flux & recoil velocity

dP i

dt=

∫S∞

dΩd2E

dtdΩni , vrecoil =

∣∣∣∣∫ ∞−∞

dtdP

dt

∣∣∣∣H. Witek (CENTRA / IST) 11 / 23

Page 12: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

Numerical Setup

use Sperhake’s extended Lean code (Sperhake ’07, Zilhao et al ’10)

3+1 Einstein equations with scalar fieldBaumgarte-Shapiro-Shibata-Nakamura formulation with moving punctureapproachdynamical variables: χ, γij , K , Aij , Γi , ζ, Kζ

modified puncture gauge

∂tα = βk∂kα− 2α(ηKK + ηKζKζ)

∂tβi = βk∂kβ

i − ηββi + ηΓΓi − ηλ

D − 4

2ζγ ij∂jζ

Brill-Lindquist type initial data

ψ = 1 + rD−3S,1 /4rD−3

1 + rD−3S,2 /4rD−3

2

measure lengths in terms of rS with

rD−3S =

16π

(D − 2)ASD−2 M

H. Witek (CENTRA / IST) 12 / 23

Page 13: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

Unequal mass head-on

in D = 5 dimensions

Phys. Rev. D 83, 2011

H. Witek (CENTRA / IST) 13 / 23

Page 14: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

Unequal mass head-on in D = 5

Modes of Φ,t

0

0.04

Φ,t

l=2 /

r S

1/2

q = 1q = 1:2q = 1:4

0

0.005

Φ,t

l=3 /

rS

1/2

-10 0 10 20 30∆t / r

S

0

0.0009

Φ,t

l=4 /

rS

1/2

consider mass ratios

q = rD−3S,1 /rD−3

S,2 = 1,1

2,

1

3,

1

4

q E/M(%) El=2(%) El=3(%) El=4(%)1/1 0.089 99.9 0.0 0.11/2 0.073 97.7 2.2 0.11/3 0.054 94.8 4.8 0.41/4 0.040 92.4 7.0 0.6

H. Witek (CENTRA / IST) 14 / 23

Page 15: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

Unequal mass head-on in D = 5 - radiated energy

E/M ∼ η2

(M.Lemos ’10, MSc thesis,http://blackholes.ist.utl.pt/ )

fitting function

E

Mη2= 0.0164− 0.0336η2 ,

within < 1% agreement withpoint particle calculation(Berti et al, 2010)

H. Witek (CENTRA / IST) 15 / 23

Page 16: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

Equal mass head-on

in D = 4, 5, 6 dimensions

Phys. Rev. D 82, 104014 (2010)work in progress

H. Witek (CENTRA / IST) 16 / 23

Page 17: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

Equal mass head-on in D = 6 (preliminary results)

The good news is: We can do it !!!

Key (technical) issues:

modification of gaugeconditionsmodification of formulation

increase in E/M with D⇒ qualitative agreement withPP calculations(Berti et al, 2010)

D rS ω(l = 2) E/M(%)4 0.7473− i 0.1779 0.0555 0.9477− i 0.2561 0.0896 1.140− i 0.304 0.097 1

1preliminaryH. Witek (CENTRA / IST) 17 / 23

Page 18: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

Head-on collisions

of boosted black holes

Zilhao et al (work in progress)

H. Witek (CENTRA / IST) 18 / 23

Page 19: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

Initial data for boosted BHs in D > 4 (Zilhao et al)

construct initial data by solving the constraints

D-dimensional metric element

ds2 = −α2dt2 + γab(dxa + βadt

)(dxb + βbdt

)assumption: γab = ψ

4D−3 δab , K = 0 , Kab = ψ−2Aab

constraint equations

∂aAab = 0 , 4ψ +

D − 3

4(D − 2)ψ−

3D−5D−3 AabAab = 0 , with 4 ≡ ∂a∂a

analytic ansatz for Aab → generalization of Bowen-York type initial data

elliptic equation for ψ → puncture method (Brandt & Brugmann ’97)

ψ =1 +N∑i=1

µ(i)

4rD−3(i)

+ u

⇒ Hamiltonian constraint becomes

4u +D − 3

4(D − 2)AabAabψ

− 3D−5D−3 = 0

H. Witek (CENTRA / IST) 19 / 23

Page 20: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

Initial data for boosted BHs in D > 4 - Results

extension of the TwoPunctures pseudo-spectral solver(M. Ansorg et al, ’04)

initial data for punctures at z/rS = ±30.185 with P/rD−3S = 0.8

Hamiltonian constraint

101 102

z/rS

10-21

10-19

10-17

10-15

10-13

10-11

10-9

10-7

10-5

10-3

10-1

|H|

P/rD3S =0.8, b/rS =30.185, n=300

D=4

D=5

D=6

D=7

Convergence analysis

0 50 100 150 200 250 300n

10-10

10-8

10-6

10-4

10-2

100

102

104

n,300(u)

D=4D=5D=6D=7

H. Witek (CENTRA / IST) 20 / 23

Page 21: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

Head-on of boosted BHs in D = 5(preliminary results)

evolution of puncture with z/rS = ±30.185 with P/rD−3S = 0.4

l = 2 mode of Φ,t

0 100 200 300 t / r_S

-0.04

-0.02

0

0.02

0.04

Φ,t

l=2 /

r S

1/2

H. Witek (CENTRA / IST) 21 / 23

Page 22: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

Conclusions and Outlook

consider highly symmetric (black hole) spacetimes

dimensional reduction by isometry⇒ formulation of D dimensional vacuum Einstein’s equations as ascalar-tensor field theory in D = 4

evolution of unequal mass head-on collisions in D = 5 with q = 1, 12 ,

13 ,

14

⇒ extrapolation to PP limit shows good agreement with PP calculations

evolution of equal mass head-ons in D = 4, 5, 6

evolution of boosted BHs in D = 5

ToDo:

numerical simulations of black hole collisions in D ≥ 7high energy collisions of BHs in D ≥ 5...

H. Witek (CENTRA / IST) 22 / 23

Page 23: Black hole collisions in higher dimensional spacetimesblackholes/nrhep/Witek.pdf · Black hole collisions in higher dimensional spacetimes Helvi Witek, V. Cardoso, L. Gualtieri, C.

Thank you!

http://blackholes.ist.utl.pt

H. Witek (CENTRA / IST) 23 / 23