Bivariate generalized Pareto distribution in...

33
Introduction Extreme value models Applications Bivariate generalized Pareto distribution in practice al Rakonczai otv¨osLor´ and University, Budapest, Hungary Minisymposium on Uncertainty Modelling 27 September 2011, CSASC 2011, Krems, Austria al Rakonczai Bivariate generalized Pareto distribution

Transcript of Bivariate generalized Pareto distribution in...

  • Introduction Extreme value models Applications

    Bivariate generalized Pareto

    distribution in practice

    Pál Rakonczai

    Eötvös Loránd University, Budapest, Hungary

    Minisymposium on Uncertainty Modelling27 September 2011, CSASC 2011, Krems, Austria

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications

    Outline

    I Short summary of extreme value theory (EVT), including:I univariate/multivariate caseI representation of dependence structures within EVTI multivariate generalized Pareto distribution of type II

    I Construction of new asymmetric models

    I Properties and comparison with well-known models

    I Applications on environmental data (wind speed / flood peak)

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    Introduction

    I There is often interest in understanding how the extremes oftwo different processes are related to each other

    I One possible solution is using asymptotic approach from EVT

    I EVT provides limits for the distribution of extremes for asingle/multivariate stationary process

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    Limit for Maximum

    Theorem (Fisher and Tippet, 1928)

    If there exist {an} and {bn} > 0 sequences such that

    P(Mn − an

    bn≤ z

    )

    → G (z) as n → ∞

    for some non-degenerate distribution G, then

    G (x) = exp

    {

    −(

    1 + ξx − µ

    σ

    )−1ξ

    }

    ,

    where 1 + ξ x−µσ > 0 and in such a case random variable belongs tothe max-domain of attraction of a GEV distribution.

    → Often applied for block maxima (monthly, yearly, ...)

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    Limit for Threshold Exceedances

    How to model large values over a given high threshold?

    Theorem (Balkema and de Haan, 1974)

    Suppose, that X1, ...,Xni.i.d.∼ F , where F belongs to the

    max-domain of attraction of GEV for some ξ, µ and σ > 0. Then

    P(Xi − u ≤ z |Xi > u) → H(z) = 1−(

    1 +ξz

    σ̃

    )−1ξ

    as u → z+,

    where σ̃ = σ + ξ(u − µ).

    → Often applied for threshold exceedances over a highquantile of the obs.

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    Remarks

    I The limit distributions are not GaussianI Strong link between GEV and GPDI See examples below:

    −2 0 2 4 6 8 10

    0.00.1

    0.20.3

    0.4

    GEV

    domain

    dens

    ity

    GumbelFrechetWeibull

    2 4 6 8 10

    0.00.2

    0.40.6

    0.81.0

    GPD

    domain

    dens

    ity

    ξ= 0ξ= 0.5ξ= − 0.3

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    Limit for Multivariate Maxima

    I Component-wise maxima of Xi = (Xi ,1, ...,Xi ,d ) is

    Mn =(

    n∨

    i=1

    Xi ,1, ...,

    n∨

    i=1

    Xi ,d

    )

    .

    I If X ∼ F and there exist an and bn > 0 sequences ofnormalizing vectors, such that

    P(Mn − an

    bn≤ z

    )

    = F n(bnz+ an) → G (z),

    where Gi margins are non-degenerate, then G is said to be amultivariate extreme value distribution (MEVD).

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    Characterization I. - Resnick (1987)

    I MEVD with unit Fréchet margins can be written as

    GFréchet(t1, . . . , td ) = exp(

    −V (t1, . . . , td ))

    I V is called exponent measure

    V (t1, . . . , td ) = ν(([0, t1]×· · ·×[0, td ])c ) =

    Sd

    d∨

    i=1

    (wi

    ti

    )

    S(dw),

    I S spectral measure is a finite measure on the d -dimensionalunit simplex satisfying the equations

    Sd

    wiS(dw) = 1 for i = 1, ..., d .

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    Some properties of the characterization I.

    I Total mass of S is always S(Sd ) = d

    I Density not only on the interior of Sd but also on each of thelower-dimensional subspaces of Sd

    I For independent margins S({ei}) = 1 for all ei vertices of thesimplex

    I For completely dependent margins S((1/d , ..., 1/d)) = d

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    Characterization II. (bivariate case) - Pickands (1981)

    The dependence function A(t) must satisfy the following threeproperties: (P)

    1. A(t) is convex2. max{(1− t), t} ≤ A(t) ≤ t3. A(0) = A(1) = 1

    V (t1, t2) =( 1

    t1+

    1

    t2

    )

    A( t1

    t1 + t2

    )

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    t

    A(t

    )

    (0,1) (1,1)

    (1/2,1/2)

    CONVEX

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    For those who like uniform margins better

    The copula of a MEVD G is the distribution function of therandom vector (G1(Y1), ...,Gd (Yd )) and is given by

    C (u) = exp(

    −V( −1

    log u1, . . . ,

    −1

    log ud

    ))

    ,u ∈ [0, 1]d .

    Such a copula necessarily satisfies the stability property

    C s(u) = C (us1, . . . , usd )

    and conversely if this property is satisfied than we get a copula of aMEVD.

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    Logistic Dependence (Gumbel copula)

    A(t) = (tα + (1− t)α)1/α

    C (u, v) = exp(−((− log u)α + (− log v)α)1/α)

    Copula distribution function

    u

    v

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    0.0 0.2 0.4 0.6 0.8 1.0

    0.00.2

    0.40.6

    0.81.0

    α = 2.5

    0.0 0.2 0.4 0.6 0.8 1.0

    01

    23

    45

    67

    Spectral density

    t

    (α−1)(

    t(1−t))

    (α−2) (t

    α +(1−

    t)α )(1

    α−2)

    α = 1.5α = 2α = 2.5α = 3α = 3.5

    0.0 0.2 0.4 0.6 0.8 1.0

    0.40.5

    0.60.7

    0.80.9

    1.0

    Dependence function

    t(tα

    +(1−t)

    α )(1α)

    α = 1.5α = 2α = 2.5α = 3α = 3.5

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    Logistic BEVD and its asymmetric extension

    A(t) = (1− Φ1)t + (1− Φ2)(1− t) + ((Φ1t)α + (Φ2(1− t))

    α)1/α

    0 ≤ Φ1,Φ2 ≤ 1

    → S({0, 1}) = 1− Φ2,S({1, 0}) = 1− Φ1

    −2 0 2 4 6

    −20

    24

    6

    x

    y

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.02

    0.04

    0.06

    0.08

    0.1

    0.12

    0.14

    0.1

    6

    symmetric, dep=2.5

    −2 0 2 4 6

    −20

    24

    6x

    y0.00

    0.05

    0.10

    0.15

    0.02 0.04

    0.06

    0.08

    0.1 0.1

    2 0.14

    asy = c(0.5,0.9)

    −2 0 2 4 6

    −20

    24

    6

    y

    0.00

    0.05

    0.10

    0.15

    0.02

    0.04

    0.06 0.08

    0.1

    0.12

    asy = c(0.5,0.5)

    −2 0 2 4 6

    −20

    24

    6

    y

    0.00

    0.02

    0.04

    0.06

    0.08

    0.10

    0.12

    0.01

    0.02

    0.03

    0.04 0.05 0.06

    0.07

    0.08

    0.0

    9

    0.1

    0.11

    asy = c(0.5,0.1)

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    MGPD of type II

    I Problem: taking maxima hides the time structure within theperiod..

    I Might be better investigating all observations over a givenhigh threshold

    Let Y = (Y1, ...,Yd ) denote a random vector, u = (u1, ..., ud ) ahigh threshold vector and so X = Y − u the vector of exceedances.The distribution of X � 0 exceedances can be well approximatedby the multivariate generalized Pareto distribution (Rootzén andTajvidi, 2006)

    H(x1, . . . , xd ) =−1

    logG(

    0, . . . , 0) log

    G(

    x1, . . . , xd)

    G(

    x1 ∧ 0, . . . , xd ∧ 0) ,

    where 0 < G (0, . . . , 0) < 1.

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    What is type I. then?

    I If we claim exceedance in all of the coordinates (BGPD I), weusually get simpler models, with nice properties (marginals areunivariate GPD etc.)

    I But we may use less data

    Logistic bgpd by ’evd’

    Fehmarn m/s

    Hann

    over

    m/s

    0 5 10 15 20 25

    05

    1015

    2025

    30

    density curves

    No Inference!

    No Inference!No Inference!

    0 5 10 15 20 25

    05

    1015

    2025

    30

    Logistic bgpd by ’mgpd’

    Fehmarn m/s

    Hann

    over

    m/s

    density curves

    No Inference!

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    Remarks

    I H1(x) = H(x ,∞) is not a one dimensional GPD, only theconditional distribution of X1|X1 > 0 is GPD.

    I The ξi , µi , σi parameters cannot be considered as the ithmarginal parameters any more

    I Motivating problem: asymmetric logistic model does not leadto an absolutely continuous MGPD..

    TheoremLet H be a MGPD represented by an absolutely continuous MEVD

    G with spectral measure S. The MGPD H is absolutely continuous

    if and only if S(int(Sd )) = d holds, i.e all mass is put on theinterior of the simplex.

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    Overview of parametric dependence models

    Model Asym. Density Complications

    Sym. Logistic − X −Asym. Logistic (Tawn, 1988) X − −Ψ-logistic∗ X X convexity constr.Sym. Neg. Logistic − X −Asym. Neg. Logistic (Joe, 1990) X − −Ψ-negative logistic∗ X X convexity constr.Bilogistic (Smith, 1990) X X not explicitNeg. Bilogistic (C. & T., 1994) X X not explicitTajvidi’s (Tajvidi, 1996) − X −C-T (C. & T., 1991) X X only s(w) is givenMixed (Tawn, 1988) − if ψ = 1 −Asym. Mixed X − −

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    Construction of absolutely continuous BGPDs

    1. take an absolutely continuous baseline dependence model;

    2. take a strictly monotonic transformationΨ(x) : [0, 1] → [0, 1], such that Ψ(0) = 0, Ψ(1) = 1;

    3. construct a new dependence model from the baseline modelAΨ(t) = A(Ψ(t));

    4. check the constraints: A′Ψ(0) = −1, A′

    Ψ(1) = 1 and A′′

    Ψ ≥ 0(convexity).

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    An example for Ψ(x)

    I Feasible transformation if

    Ψ(t) = t + f (t) ⇒ (A(Ψ(t)))′ = A′(Ψ(t))× [1 + f ′(t)]

    so choosing f such that f ′(0) = f ′(1) = 0, the A′Ψ(0) = −1and A′Ψ(1) = 1 are fulfilled.

    I

    fψ1,ψ2(t) = ψ1(t(1− t))ψ2 , for t ∈ [0, 1],

    where ψ1 ∈ R and ψ2 ≥ 1 are asymmetry parameters.

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    Graphical examples

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    1.0

    2.0

    3.0

    δ2tAαLog=2(Ψ(t))

    t

    Psi−Logisticψ1 = − 0.3ψ1 = − 0.15ψ1 = 0ψ1 = 0.15ψ1 = 0.3

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    1.0

    2.0

    3.0

    δ2tAαNegLog=1.2(Ψ(t))

    t

    Psi−NegLogψ1 = − 0.3ψ1 = − 0.15ψ1 = 0ψ1 = 0.15ψ1 = 0.3

    1.4 1.6 1.8 2.0 2.2

    −0

    .4−

    0.2

    0.0

    0.2

    0.4

    Constraints of convexityfor psi−logistic models

    α

    ψ1

    ψ2 = 1.8ψ2 = 2ψ2 = 2.2

    0.9 1.0 1.1 1.2 1.3 1.4 1.5

    −4

    −2

    02

    4

    Constraints of convexityfor psi−negative logistic models

    α

    ψ1

    ψ2 = 1.8ψ2 = 2ψ2 = 2.2

    Figure: Upper panels: second derivatives of Ψ-logistic and Ψ-negativePál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    Remarks

    I Of course f and or the baseline dependence function can bechosen differently

    I This transformation has particular impact beyond the BGPDmodels as well: applicable for BEVDs, BGPDs of type I or forcopulas of any bivariate distributions

    I Although the transformations Ψ was defined now for thebivariate case only, it can be extended for the higherdimensional cases as well as e.g. in the trivariate case it canhave a form of

    Ψ(t1, t2) = (t1+ψ1,1(t1([1−t2]−t1))ψ2,1 , t2+ψ2,1(t2([1−t1]−t2))

    ψ2,2).

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    Further models - polinomial transformations

    fa,p(t) =64a(p5 − p4 − 2p3 − 2p2 + 5p − 2)p5

    (p + 1)2(p − 1)2(−1 + 2p)(1 + 2p2 − 3p)t6

    +−32a(5p6 − 2p5 − 13p4 − 12p3 + 15p2 + 6p − 6)p4

    (p + 1)2(p − 1)2(−1 + 2p)(1 + 2p2 − 3p)t5

    +32a(4p7 + 3p6 − 14p5 − 15p4 + 23p2 − 8p − 2)p3

    (p + 1)2(p − 1)2(−1 + 2p)(1 + 2p2 − 3p)t4

    +−32a(p7 + 4p6 − 5p5 − 10p4 − 5p3 + 12p2 + 2p − 4)p3

    (1 + 2p2 − 3p)(p + 1)2(4p − 1 + 2p3 − 5p2)t3

    +32a(p6 − 3p4 − p2 + 4p − 2)p3

    (1 + 2p2 − 3p)(p + 1)2(4p − 1 + 2p3 − 5p2)t2.

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    Further models - polinomial transformations

    −4 −2 0 2 4

    −4−2

    02

    4

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    −4 −2 0 2 4

    −4−2

    02

    4

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    −4 −2 0 2 4

    −4−2

    02

    4

    0.00

    0.05

    0.10

    0.15

    0.20

    0.25

    0.30

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Univariate Extremes Multivariate Extremes New models

    BEVD case

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Wind data Flood data Software

    Wind data

    I Daily windspeed values at two locations in northern Germany(Bremerhaven and Schleswig) over the past five decades(1957-2007)

    I Originally hourly windspeed was recorded, but in order toreduce the serial correlation within the series, we calculatedthe maxima of the original observations for each day.

    I The data for the above cities are rather strongly correlated,due to the relatively short distance between them (Kendall’scorrelation is 0.57) and also can be considered asasymptotically dependent

    I 95% quantiles have been used as threshold level (13.8m/s,10.3m/s)

    I Observations are considered as being stationary,non-stationarity can also be handled e.g. by choosingtime-dependent model parameters

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Wind data Flood data Software

    Wind data

    10 15 20 25

    510

    1520

    Exceedances (m/s)

    Bremerhaven

    Schl

    eswi

    g

    0.0 0.2 0.4 0.6 0.8 1.0

    0.0

    0.2

    0.4

    0.6

    0.8

    1.0

    Copula sample

    Bremerhaven

    Schl

    eswi

    g

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Wind data Flood data Software

    Parameter estimation

    I We found that maximum likelihood methods perform well ingeneral

    I However there is strong pairwise correlation between theparameters µi , σi , i = 1, 2

    I This can be extinguished in practice by keeping e.g. onelocation parameter fixed during the optimization process

    I Estimation within this subclass gives stable convergenceresults

    Prediction regions (Hall and Tajvidi,2000) have been computed -the smallest region containing an observation with a given (usuallyhigh) probability..

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Wind data Flood data Software

    Prediction regions for the 4 best models(having the smallest χ2-statistics)

    The effect of asymmetry parameters - relevant torsion in theregions regions:

    5 10 15 20 25 30

    510

    1520

    25

    NegLog

    Bremerhaven(m/s)

    Schle

    swig(

    m/s)

    Regionsγ= 0.99γ= 0.95γ= 0.9

    5 10 15 20 25 30

    510

    1520

    25

    Psi−NegLog

    Bremerhaven(m/s)

    Schle

    swig(

    m/s)

    Regionsγ= 0.99γ= 0.95γ= 0.9

    5 10 15 20 25 30

    510

    1520

    25

    Coles−Tawn

    Bremerhaven(m/s)

    Schle

    swig(

    m/s)

    Regionsγ= 0.99γ= 0.95γ= 0.9

    5 10 15 20 25 30

    510

    1520

    25

    Tajvidi’s

    Bremerhaven(m/s)

    Schle

    swig(

    m/s)

    Regionsγ= 0.99γ= 0.95γ= 0.9

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Wind data Flood data Software

    Goodness-of-fit: Bremerhaven és Schleswigγ 0.99 0.95-0.99 0.9-0.95 0.75-0.9 0.5-0.75 0.5 χ2

    Exp. 12.6 50.3 62.8 188.6 314.2 628.5 -

    Log 7 30 66 216 350 588 21.5Ψ-L 9 33 60 215 349 591 16.9NL 11 31 66 215 334 600 14.0Ψ-NL 11 34 63 210 337 602 10.7Mix 12 46 71 247 331 550 30.3C-T 12 34 65 209 330 607 9.1Tajv. 11 35 62 212 340 597 11.5BL 6 29 62 220 354 586 25.6NBL 13 32 61 220 337 594 15.5

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Wind data Flood data Software

    Results

    I C-T (χ2CT = 9.1) and Ψ-Neglog models (χ2Ψ-NegLog = 10.7)

    perform the best

    I In general the new asymmetric (Ψ) models are better thantheir symmetric baseline versions, χ2Log = 21.5 reduces to

    χ2Ψ-Log = 16.9 and χ2NegLog = 14 reduces to χ

    2Ψ-NegLog = 10.7

    I The difference between the log-likelihood values of the Neglogand Ψ-NegLog models is around 10, which shows a significantimprovement in the likelihood ratio as well

    I The Tajvidi’s generalized symmetric logistic model(χ2Tajvidi’s = 11.5) is the best among the symmetric ones.

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Wind data Flood data Software

    Danube water level data - 100 years of daily flood peaks

    Fitted BGPD models for flood data from Budapest and Tass(threshold was chosen at about the 95% quantiles. Black regioncovers 95%, green: 90%, blue: 75%).

    Logistic

    −400 −200 0 200 400

    −400

    −200

    020

    040

    0

    Psi−Logistic

    −400 −200 0 200 400

    −400

    −200

    020

    040

    0

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Wind data Flood data Software

    R package available

    I Graphs and computations have been made by the add-onpackage mgpd of R

    I Wind data are also availabe

    I Updated version is coming up very soon (mgpd v2.0)

    Acknowledgements: The European Union and the EuropeanSocial Fund have provided financial support to the project underthe grant agreement no. TÁMOP 4.2.1./B-09/KMR-2010-0003.

    Pál Rakonczai Bivariate generalized Pareto distribution

  • Introduction Extreme value models Applications Wind data Flood data Software

    Thank you for your attention!

    Pál Rakonczai Bivariate generalized Pareto distribution

    IntroductionExtreme value modelsUnivariate ExtremesMultivariate ExtremesNew models

    ApplicationsWind dataFlood data Software