bitstream_290050

17

Click here to load reader

Transcript of bitstream_290050

Page 1: bitstream_290050

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 5-1

Lecture 5 - Carrier generation andrecombination (cont.)

September 12, 2001

Contents:

1. G&R rates outside thermal equilibrium

2. Surface generation and recombination

Reading assignment:

del Alamo, Ch. 3, §§3.4, 3.6

Page 2: bitstream_290050

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 5-2

Key questions

• What happens to the balance between generation and gener-

ation when carrier concentrations are perturbed from thermal

equilibrium values?

• How is this balance upset for each G&R mechanism?

• What are the key dependencies of this imbalance in G&R rates?

• How can surface G&R be characterized?

Page 3: bitstream_290050

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 5-3

1. G&R rates outside equilibrium

• In thermal equilibrium:

n = no

p = po

Goi = Roi

Go = Ro

• Outside thermal equilibrium (with carrier concentrations disturbed

from thermal equilibrium values):

n �= no

p �= po

Gi �= Ri

G �= R

Ec

Ev

Ec

Ev

G = R

no n=no

p=popo

Go = Ro

thermal equilibrium outside thermal equilibrium

Page 4: bitstream_290050

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 5-4

If G �= R, carrier concentrations change in time.

Useful to define net recombination rate, U :

U = R − G

Reflects imbalance between internal G&R mechanisms:

• if R > G → U > 0, net recombination prevails

• if R < G → U < 0, net generation prevails

If there are several mechanisms acting simultaneously, define:

Ui = Ri − Gi

and

U = ΣUi

What happens to the G&R rates of the various mechanisms outside

thermal equilibrium?

Page 5: bitstream_290050

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 5-5

a) Band-to-band optical G&R

Ec

Ev

Ec

Ev

Grad = Go,rad Rrad > Ro,rad

no n>no

p>popo

Go,rad = Ro,rad

thermal equilibrium with excess carriers

• optical generation rate unchanged since number of available bonds

unchanged:

Grad = grad = rradnopo

• optical recombination rate affected if electron and hole concen-

trations have changed:

Rrad = rradnp

• define net recombination rate:

Urad = Rrad − Grad = rrad(np − nopo)

– if np > nopo, Urad > 0, net recombination prevails

– if np < nopo, Urad < 0, net generation prevails

• note: we have assumed that grad and rrad are unchanged from

equilibrium

Page 6: bitstream_290050

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 5-6

b) Auger G&R

• Involving hot electrons:

Ec

Ev

Ec

Ev

Geeh > Go,eeh Reeh > Ro,eeh

no n>no

p>popo

Go,eeh = Ro,eeh

thermal equilibrium with excess carrier

Geeh = geehn

Reeh = reehn2p

If relationship between geeh and reeh unchanged from TE:

Ueeh = Reeh − Geeh = reehn(np − nopo)

• Involving hot holes, similarly:

Uehh = rehhp(np − nopo)

• Total Auger:

UAuger = (reehn + rehhp)(np − nopo)

Page 7: bitstream_290050

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 5-7

c) Trap-assisted thermal G&R

Ecro,ec=ro,ee ro,ec>ro,ee

ro,hc=ro,he ro,hc>ro,heEv

Et

Ec

Ev

Et

thermal equilibrium with excess carriers

no n>no

p>popo

Out of equilibrium, if rate constants are not affected:

rec = cen(Nt − nt)

ree = eent = cenint

rhc = chpnt

rhe = eh(Nt − nt) = chni(Nt − nt)

Recombination: capture of one electron + one hole ⇒net recombination rate = net electron capture rate

= net hole capture rate

Utr = rec − ree = rhc − rhe

From this, derive nt, and finally get Utr:

Utr =np − nopo

τho(n + ni) + τeo(p + ni)

Page 8: bitstream_290050

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 5-8

d) All processes combined

U = Urad + UAuger + Utr

Page 9: bitstream_290050

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 5-9

✷ Special case: Low-level Injection

Define excess carrier concentrations:

n = no + n′

p = po + p′

LLI: Equilibrium minority carrier concentration overwhelmed but

majority carrier concentration negligibly disturbed

log n' p'nopo ni

low-levelinjection

high-levelinjection

thermalequilibrium

- for n-type:

po � n′ p′ � no

- for p-type:

no � n′ p′ � po

Page 10: bitstream_290050

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 5-10

In LLI:

np − nopo = nopo + nop′ + pon

′ + n′p′ − nopo (no + po)n′

All expressions of U follow the form:

Ui n′

τi

τi is carrier lifetime of process i, a constant characteristic of each

G&R process:

τrad =1

rrad(no + po)

τAuger 1

(reehno + rehhpo)(no + po)

τtr τhono + τeopo

no + po

Under LLI, net recombination rate depends linearly on excess carrier

concentration through a constant that is characteristic of material

and temperature.

Page 11: bitstream_290050

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 5-11

If all G&R processes are independent, combined process:

U n′

τ

with

1

τ= Σ

1

τi

The G&R process with the smallest lifetime dominates.

Physical meaning of carrier lifetime:

• U is rate of net recombination rate in unit volume in response

to excess carrier concentration n′ (linear in n′)

• 1Uis mean time between recombination events in unit volume

• τ = n′U is mean time between recombination event per excess

carrier,

or average time excess carrier will ”survive” before recombining

→ constant characteristic of material

Page 12: bitstream_290050

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 5-12

For n-type material, no po:

τrad =1

rradno

τAuger =1

reehn2o

τtr = τho ∝ 1

Nt

log τ

log no

τAuger

τrad

τtr

no-1

no-2

Page 13: bitstream_290050

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 5-13

Trap recombination (n-type material):

• Lifetime does not depend on no [trap occupation probability rather

insensitive to no]

Ec EF

Ev

Et

rhc is bottleneck

• Lifetime depends on trap concentration as τ ∝ N−1t

Page 14: bitstream_290050

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 5-14

✷ Measurements of carrier lifetime in Si at 300 K

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+13 1E+14 1E+15 1E+16 1E+17 1E+18 1E+19 1E+20 1E+21

donor concentration (cm-3)

carr

ier

lifet

ime

(s)

n-Si

T=300 K

1/τ=7.8x10-13 ND+1.8x10-31 ND2

1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

1E-2

1E-1

1E+13 1E+14 1E+15 1E+16 1E+17 1E+18 1E+19 1E+20 1E+21

acceptor concentration (cm-3)

carr

ier

lifet

ime

(s)

p-SiT=300 K

1/τ=3.5x10-13 NA+9.5x10-32 NA2

For low doping levels, NA,D < 1017 cm−3, τtr dominates:

• τ depends on material quality and process → wide data scatter

• Nt correlated with NA,D → τ ∝ N−1A,D

For high doping levels, NA,D > 1018 cm−3, τAuger dominates:

• ”intrinsic” recombination: → tight data distribution

• τ ∝ N−2A,D

Page 15: bitstream_290050

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 5-15

2. Surface generation and recombination

Surface: severe disruption of periodic crystal ⇒ lots of traps (G&R

centers)

lots of traps

semiconductorbulk

Under LLI:

Us Sn′(s)

S ≡ surface recombination velocity (cm/s)

note units:

Us(cm−2 · s−1) = S(cm · s−1) n′(cm−3)

S is perpendicular component of velocity with which excess carriers

”dive” into the surface to recombine.

Page 16: bitstream_290050

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 5-16

Key conclusions

• Excess np product is driving force for net generation/recombination.

• Under low-level injection:

U ∼ n′

τ

with τ ≡ carrier lifetime.

• Carrier lifetime: mean time that an average excess carrier ”sur-

vives” before recombining.

• In Si around 300K,

– τ ∼ N−1 for low N (trap-assisted recombination),

– τ ∼ N−2 for high N (Auger recombination).

• Order of magnitude of key parameters for Si at 300K:

– τ ∼ 1 ns − 1 ms, depending on doping

Page 17: bitstream_290050

6.720J/3.43J - Integrated Microelectronic Devices - Fall 2001 Lecture 5-17

Self study

• Carrier extraction, generation lifetime