Biosynthesis and Catabolism of Caffeine in Low-Caffeine-Containing Speci

7
8/20/2019 Biosynthesis and Catabolism of Caffeine in Low-Caffeine-Containing Speci http://slidepdf.com/reader/full/biosynthesis-and-catabolism-of-caffeine-in-low-caffeine-containing-speci 1/7 Biosynthesis and Catabolism of Caffeine in Low-Caffeine-Containing Species of  Coffea Hiroshi Ashihara and Alan Crozier* Department of Biology, Faculty of Science, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610, J apan, and Bower Building, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G 12 8QQ, United Kingdom Leaves of  Coffea salvatrix ,  Coffea eugenioides , and  C. bengalensis  contain  ∼3-7-fold lower levels of caffeine than those of  Coffea arabica.  There was more extensive biosynthesis of caffeine from [8- 14 C]- adenine in young leaves of  C. arabica  than in  C. salvatrix, C. eugenioides , and  C. bengalensis. Degradation of [8- 14 C]caffeine, which is negligible in leaves of  C. arabica,  was also very slow in  C. salvatrix  and  C. bengalensis.  In contrast, [8- 14 C]caffeine was catabolized rapidly by young and mature leaves of  C. eugenioides  primarily by a caffeine  f theophylline  f 3-methylxanthine  f xanthine  f uric acid  allantoin  allantoic acid  urea  CO 2  + NH 3  pathway. These results indicate that the low caffeine accumulation in  C. salvatrix ,  C. eugenioides , and  C. bengalensis  is a consequence of a slow rate of caffeine biosynthesis, whereas rapid degradation of caffeine also contributes to the low endogenous caffeine pool in  C. eugenioides. The genes that regulate caffeine accumulation appear to be those encoding  N- methyltransferase and caffeine (7- ) demethylase activities. The diversity of caffeine catabolism observed in  C. arabica ,  C. salvatrix ,  C. eugeni oides , and  C. bengalensis , other species of  Coffea , and  Camellia sinensis  is discussed. Keywords:  Caffeine; biosynthesis; catabolism; Coffea arabica; Coffea salvatrix; Coffea eugenioides; Coffea bengalensis INTRODUCTION Coffee, produced primarily in Central and South America and Africa, is one of the world’s most valuable agricultural products because of its widespread use as a beverage. Fruits of  Coffea arabica  and  Coffea cane- phora  are the raw materials for the production of Arabica and Robusta coffee. These coffee beans contain relatively high concentrations of caffeine, which is perceived by some members of the general public as having adverse effects on health (Mazzafera et al., 1991). As a consequence, there is an increasing demand for decaffeinated coffee, which is produced by solvent extraction or, more recently, supercritical fluid extrac- tion with CO 2 . An alternative source of decaffeinated coffee would be the use of  Coffea  species that contain much lower levels of caffeine than  C. arabica  or  C. canephora.  A number of such species exist, but they either produce few fruits or the beans yield a poor quality beverage and are, therefore, intrinsically unsuit- able for commercial development. Nor is a breeding program to transfer the low-caffeine trait to  C. arabica a straightforward proposition because  C. arabica  and C. canephora  are polyploid, whereas other  Coffea  species are diploid. Under these circumstances, genetic engi- neering to produce transgenic caffeine-deficient  C. ara- bica  plants may be a more practical long-term propo- sition than a breeding program (Mazzafera et al., 1991; Crozier, 1997). The key genes in this regard are those encoding the  N -methyltransferases associated with caf- feine biosynthesis (see Figure 1) and the  N -demethy- lases that catabolize caffeine. Caffeine-deficient trans- genic coffee could be produced by expression of the gene encoding the appropriate demethylase or alternatively through the antisense expression of an  N -methyltrans- ferase gene. For this approach to be taken, detailed information is first required on the enzymes and genes controlling key steps in the biosynthesis and/or catabo- lism of caffeine. There is much evidence that caffeine and other purine alkaloids are synthesized in  C. arabica  from purine nucleotides, primarily via the pathway illustrated in Figure 1. Xanthosine is metabolized to 7-methylxan- thosine, which is the initial step in the caffeine biosyn- thesis pathway in which theobromine (3,7-dimethyl- xanthine) is the immediate precursor of caffeine (Suzuki et al., 1992; Ashihara and Crozier, 1999). There is a report of an alternative entry in the pathway that involves direct conversion of XMP to 7-methyl-XMP (Schulthess et al., 1996). Caffeine biosynthesis occurs in both fruits and leaves of coffee. However, as they are obtained more easily, especially in non-coffee-producing countries, most research has been carried out with leaves. Caffeine biosynthesis is especially active in young leaves of  C. arabica  and declines as the leaves age (Fujimori and Ashihara, 1994; Ashihara et al., 1996a). Caffeine accumulates in  C. arabica  due to extremely slow catabolism to theophylline (1,7-dimeth- ylxanthine) (Ashihara et al., 1996b). To investigate the mechanisms that regulate the accumulation of purine alkaloids, the biosynthesis and catabolism of caffeine have been compared in leaves of  C. arabica  and three * Author to whom correspondence should be addressed [telephone (-44) 141-330-4613; fax (-44) 141-330-5394; e-mail [email protected]]. Ochanomizu University. § Glasgow University. 3425 J. Agric. Food Chem.  1999,  47,  34253431 10.1021/jf981209n CCC: $18.00 © 1999 American Chemical Society Published on Web 07/15/1999

Transcript of Biosynthesis and Catabolism of Caffeine in Low-Caffeine-Containing Speci

Page 1: Biosynthesis and Catabolism of Caffeine in Low-Caffeine-Containing Speci

8/20/2019 Biosynthesis and Catabolism of Caffeine in Low-Caffeine-Containing Speci

http://slidepdf.com/reader/full/biosynthesis-and-catabolism-of-caffeine-in-low-caffeine-containing-speci 1/7

Biosynthesis and Catabolism of Caffeine in Low-Caffeine-ContainingSpecies of  Cof f ea  

Hiroshi Ashiha ra † and Alan Crozier* ,§

Department of Biology, Faculty of Science, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo 112-8610,J apan, and Bower Building, Division of Biochemistry and Molecular Biology, Institute of Biomedical and

Life Sciences, U niversity of Gla sgow, G lasgow G 12 8QQ, Un ited Kingdom

Lea ves of   Coffea salvatrix ,   Coffea eugenioides , a n d  C. bengalensis  conta in   ∼3-7-fold lower levels ofcaffeine than those of  Coffea arabica. There w a s more extensive biosynt hesis of caffeine from [8-14C ]-adenine in young leaves of   C. a r a b i ca    t h a n i n   C. salvatrix, C. eugenioides , a n d   C. bengalensis.

Degradation of [8-14C]ca ffeine, which is n egligible in lea ves of C. a r a b i ca,  wa s also very slow in   C.

sa l va tr i x   a nd  C. bengal ensis. In contra st, [8-14C]caffeine was cat abolized ra pidly by young and m at ureleaves of  C. eugeni oides  primarily by a caffeine  f  theophylline  f  3-methylxanthine  f  x an t h in e  f 

uric acid   f  allantoin   f  alla ntoic acid   f  urea   f  C O2  +  N H 3  pathw ay. These results indicat e tha tthe low caffeine accumulation in   C. sa l va tr i x  ,  C. eugenioides , a n d   C. bengalensis   is a consequenceof a slow rate of caffeine biosynthesis, whereas rapid degradation of caffeine also contributes to thelow endogenous caffeine pool in  C . eugenioi des. The genes tha t r egulate caffeine accumulat ion a ppearto be t hose encoding   N - methyltra nsferase a nd caffeine (7-N ) demethylase activities. The diversityof ca ffeine ca ta bolism observed in   C. arabica ,  C. sa l va tr i x  ,  C . eugeni oides , an d  C. bengalensis , other

species of   Coffea , a n d  Ca m el l i a si n e n si s   is discussed.

Keywords:   Caff ein e; biosynthesis; cataboli sm; Coffea ar abica; Coffea salva tr ix; Coffea eugeni oides; 

Coffea bengal ensis 

INTRODUCTION

Co ffee , p rodu ce d p r imari ly in Ce n t ra l a n d So u t hAmerica a nd Africa , is one of the w orld’s most va lua bleagricultural products because of i ts widespread use asa beverage. Fruits of   Coffea arabica   a n d   Coffea cane- 

p h o r a    a r e t h e r a w m a t e r ia l s f or t h e p rod u ct i on ofAra bica a nd Robusta coffee. These coffee beans conta inre la t iv e ly h ig h con ce n t ra t ion s of ca f fe in e , wh ich isperceived by some members of the general public ash av in g a dv ers e e f fe ct s on h e al t h (M azzafe ra e t a l . ,1991). As a consequence, there is an increasing demandfor decaffeinated coffee, which is produced by solventextraction or, more recently, supercritical fluid extrac-t io n wi t h CO 2. An alterna t ive source of decaffeinat edcoffee would be the use of   Coffea   species tha t conta inmuch lower levels of caffeine than   C . a r a b i c a    or   C.

canephora.   A number of such species exist , but theye it h e r p rodu ce few f ru it s or t h e bea n s y ield a p oorqua lity bevera ge and ar e, therefore, intrinsically unsuit-able for commercial development . Nor is a breedingprogram to tra nsfer the low-caffeine trait to  C. a r a b i ca  

a straightforward proposit ion because   C. a r a b i ca    a n d

C. canephora  are polyploid, whereas other  Coffea  speciesare diploid. Under these circumsta nces, genetic engi-neering to produce transgenic caffeine-deficient   C. a r a -  

bica   plants may be a more pract ical long-term propo-sition than a breeding program (Mazzafera et al., 1991;Crozier, 1997). The key genes in this regard are those

encoding the  N -methyltransferases associated with caf-feine biosynthesis (see Figure 1) and the   N -demethy-lases that catabolize caffeine. Caffeine-deficient trans-genic coffee could be pr oduced by expression of th e geneencoding the a ppropriat e demethylase or a lternat ivelythrough the antisense expression of an   N -methyltrans-fe ras e g e n e . F o r t h is ap p ro ac h t o be t ak e n , de t a i le dinformation is first required on the enzymes and genes

contr olling key st eps in t he biosynthesis a nd/or cat abo-lism of ca ffeine.

There is much evidence tha t caffeine a nd other purin ealk alo ids are s y n t h e s ize d in   C . a r a b i c a    from purinen u cleot ides , p r imari ly v ia t h e p at h wa y i llu st ra t e d inFigure 1. Xanthosine is metabolized to 7-methylxan-thosine, which is the initial step in the caffeine biosyn-thesis pathway in which theobromine (3,7-dimethyl-xanthine) is the immediate precursor of caffeine (Suzukiet al . , 1992; Ashihara and Crozier, 1999). There is ar e p o r t o f a n a l t e r n a t i v e e n t r y i n t h e p a t h w a y t h a tinvolves d irect conversion of XMP to 7-methy l-XMP(Schulthess et al., 1996). Caffeine biosynthesis occursin both fruits a nd leaves of coffee. How ever, as they a reobta ined m ore easily , especially in non-coffee-producingcou n t r ies , mos t re se arch h as bee n ca rr ie d ou t wi t hleav e s . Ca f fe in e bios y n t h es is is e sp ecia l ly a c t ive inyoung leaves of   C. a r a b i ca    and declines as the leavesag e (F u jimori an d As h ihara , 1994; As h iha ra e t a l . ,1996a). Ca ffeine a ccumulat es in   C . a r a b i ca    d u e t oextremely slow cata bolism to t heophylline (1,7-dimeth-ylxan thin e) (Ashiha ra et a l., 1996b). To investigat e themechanisms that regulate the accumulat ion of purinealkaloids, the biosynthesis and catabolism of caffeinehave been compared in leaves of   C. a r a b i ca    a n d t h re e

* Aut hor t o w hom cor r espond ence should be ad d r essed[teleph one (-44) 141-330-4613; f a x (-44) 141-330-5394; e-ma [email protected]].

† Ochanomizu University.§ Gla sgow Univer sit y .

3425J. Agric. Food Chem.  1999,  47,  3425−3431

10.1021/jf981209n CCC: $18.00 © 1999 American Chemical SocietyPublished on Web 07/15/1999

Page 2: Biosynthesis and Catabolism of Caffeine in Low-Caffeine-Containing Speci

8/20/2019 Biosynthesis and Catabolism of Caffeine in Low-Caffeine-Containing Speci

http://slidepdf.com/reader/full/biosynthesis-and-catabolism-of-caffeine-in-low-caffeine-containing-speci 2/7

Figure 1.  C affeine biosynth esis and purine cat abolic path wa ys operat ing in leaves of C .  arabica. Dotted arrows indicat e alternativepathway proposed by Schulthess et al. (1996). Enzymes: AMP deaminase (AMPD); IMP dehydrogenase; (IMPDH) 5′-nucleotidase(5′-NTD); (5) SAM:xanthosine  N -7  methy ltra nsfera se (7-NMT); 7-methy lxan thosine n ucleosida se (MXN); SAM:7-meth ylxa nt hineN -3   methyl transferase (3-NMT); SAM:theobromine   N -1  m ethyltra nsferase (1-NMT); xa nthosine n ucleosidase (NSD); xan thinedehydrogena se (XDH). In tea leaves, the 3-NMTa nd 1-NMT reactions are cat alyzed by a single enzyme called caffeine syntha se,which has been purified to homogeneity (Kato et al., 1999).

3426   J. Agric. Food Chem., Vol. 47, No. 8, 1999 Ashihara and Crozier

Page 3: Biosynthesis and Catabolism of Caffeine in Low-Caffeine-Containing Speci

8/20/2019 Biosynthesis and Catabolism of Caffeine in Low-Caffeine-Containing Speci

http://slidepdf.com/reader/full/biosynthesis-and-catabolism-of-caffeine-in-low-caffeine-containing-speci 3/7

low-caffeine-containing species of coffee,  C .  sa l va tr i x  ,  C .eugenioides , a n d   C .  bengalensis .

MATERIALS AND METHODS

Plant Material.   S eed s of   C . a r a b i ca  ,   C . s a l v a t r i x  ,   C.

eugenioides , and   C. bengalensis  were obta ined from th e Insti-tut o Agronom ico, C a mpina s, S a o P au lo, B ra zil. The leav esused in this st udy w ere from 2-year old plan ts growing undera nat ur al phot oper iod in a gr eenhouse at t he Univer sit y of

G l a s g ow . Y ou n g l ea v e s w e r e t h e m os t r ece n t ly e me rg edpr im ar y leaf ; m at ur e leaves com pr ised t he fully expand ed ,second an d th ird leaves below the a pex. Typical leaf size a ndfresh weight of each  Coffea  leaves were as follows:   C. sal vat r i x 

(young) 30 mm long, 12 mm wide, fresh weight (fw) ) 80 mg;(m at ur e) 170 m m long, 75 m m w id e, fw    )   1800 mg;   C.

eugenioides   (young) 32 mm long, 12 mm w ide, fw   )  50 mg;(mature) 90 mm long, 42 mm wide, fw   )  450 mg;   C. benga- 

lensis  (young) 50 mm long, 17 mm w ide, fw   ) 70 mg; (mature)180 mm long, 85 mm w ide, fw   ) 1300 mg;  C. arabi ca  (young)20 mm long, 7 mm wide, fw   ) 20 mg; (mat ure) 160 mm long,70 mm wide, fw   )  1200 mg.

Radiochemicals. [8-14C]Caffeine (specific activity   )  2.07MB q    µmo l-1) a n d [ 8 -14C]adenine (1.96 MBq   µmo l-1) w e r epurchas ed from Mora vek Biochemica ls Inc., Br ea, CA. [8-14C ]-Theophylline (2.04 MBq   µmo l-1) was obtained from American

Radiolabeled Chemicals, I nc. , St . Louis, MO.Metabolism of Radiolabeled Purine Derivatives. Seg-ments of  Coffea  leaves (∼5 mm strips of young leaves; ∼5 m m× 5 mm for mat ure leaves) were incubat ed in 2 mL of medium,comprising 30 mM potassium phosphate buffer, pH 5.6, 10 mMsucr ose , and a r ad iolabeled subst r at e (37 kBq), in a 30 m LEr lenm eyer f lask, in a shaking w a t er bat h for 18 h at 27 °C .The Er lenm eyer f lask ha d a cent er w ell cont aining a sm allglass t ube into which wa s inserted a piece of filter paper wettedwit h 0.1 mL of a 20%pota ssium hyd roxide solution. In pulse-chase exper im ent s leaves w er e incubat ed w it h   14C-labeledsubstrate (74 kBq) for 4 h, at which point the radiolabel wasremoved and the incubation continued for a further 20 h.

At the end of the incubat ion period the gla ss tube a nd filterpaper from the center w ell were tran sferred to a 50 mL flaskco nt a i n i n g 1 0 m L of d is t i ll ed w a t e r a n d , a f t e r t h or ou g h

shaking, r ad ioact ivit y in a 1 m L a liquot w a s d et er m ined byliquid scintillat ion counting using ACS II scintillant (Amer-sham I nt er nat ional plc) t o d et er m ine t he am ount of   14C O2

released during t he meta bolism period. The leaf segments wereseparat ed from the incubat ion medium by filtering through at ea st r a iner , w a shed w it h 50 m L d ist i l led w a t er t hen m ixedwith 5 mL of extraction medium, comprising 80%methanolin 20 mM sodium diethyldithiocarbamate, and ground usinga pestle and morta r in ice. The homogena te w as centrifugedat 12000g   for 5 min. The pellet wa s resuspended in 5 mL ofextraction medium and recentrifuged. The tw o superna ta nts,containing the methanol-soluble metabolites, were pooled andreduced to dryness in vacuo. The dry material was redissolvedin 0.5 m L of 50% m et hanol, a nd al iquot s w er e a nalyzed byTLC and HPLC.

Thin-Layer Chromatography of Radiolabeled Metabo-

lites. The meth an ol-soluble metabolites w ere an alyzed by TLCusing sheet s of m icr ocr yst al l ine cellulose a s d escr ibed inpr evious paper s (Ashihar a e t a l . , 1997; I t o and Ashihar a,1999). The solvent s yst em used w a s  n -but a nol/a cetic acid/w a ter(4:1:2, v/v). The locat ion an d qua ntification of   14C-labeledcompounds on t he TLC sh eets w ere determined using a Bio-Ima ging Ana lyzer, Type FLA-2000 (Fuji P hoto Film C o., Ltd.,Tokyo, J apan).

High-Performance Li quid Chromatography of Endog-enous Purine Alkaloids and Radiolabeled Metabolites.HP LC w as carried out as described by Ashihara et a l. (1996b,1997). In th e present stu dy, a S hima dzu LC-10A HP LC syst emwa s used with a 250 × 4.6 mm i.d. ferruleless column (Ca pita lHP LC Lt d., Broxburn, U.K.) packed in house with a 5- µm ODSHypersil support (Sha ndon plc, Runcorn, Cheshire, U .K.). Them obile phase f low r at e w as 1 m L m in-1, and sam ples w er e

ana lyzed using a 25 m in gr a d ient of 0-40%methanol in 50m M sod ium acet at e , pH 5.0, w hich separ at es 11 d if fer entpurine derivat ives and is a lso able to resolve   14C-labeled uricacid, alla ntoin, an d alla ntoic acid (Ashihar a et a l., 1996a ). Theabsorbance at 270 nm a nd subsequent ra dioactivity detectionwere monitored using a Shima dzu SP D-10A UV-vis monitorand a R ayt est r ad ioanalyzer , M od el R am ona 2000 (R ayt estI sot openm essger at e Gm bh, S t r a ubenhar d t , Ger m any).

RESULTS

Endogenous Purine Alkaloids in Coffea   L eaves.The levels of caffeine in  C. sal va tr i x  ,  C. eugenioides , a n d

C. bengalensis   in y o un g a n d ma t u re le av es w e re 13-

36% of t hose found in   C. a r a b i ca .   In all four species,young leaves contained higher concentrations of caffeinetha n ma tur e leaves (Ta ble 1). Theobromine, w hich wa snot detected in extracts from   C . sa l v a t r i x  ,   C. eugenio- 

ides , a n d   C. bengalensis , w a s p r e s e n t i n y o u n g a n dmature leaves of  C. arabica  a t concentra tions of 1.8 an d0 . 1 m g g-1 (fw), r espectively. No other endogenousp ur i ne a l k a loi ds w e r e d e t ect e d i n a n y of t h e l ea fextracts.

Metabolism of [8-14C]Adenine.  As plants readilyconvert adenine to AMP, isotopically labeled adeninecan be used to invest igate the AMP-derived caffeinebiosynthetic pathway (Suzuki et al., 1992) (see Figure1). Table 2 shows results of the overall metabolism of

[8-14C]adenine. There w a s litt le difference in the incor-porat ion of label into nucleot ides in the four   Coffea 

species, a lthough t he level of ra dioact ivity associatedwit h t h e o bro min e an d c a f fe in e was mu c h h ig h e r inyoung leaves of   C. a r a b i ca    t h a n i t w a s i n   C. sa l va tr i x  ,C. eugenioid es , an d  C. bengal ensis. I n   C. arabica  46.7%of the radioact ivity ta ken up by the leaf segments wa sincorpora ted into t he tw o purine alkaloids; the f iguresfor  C. sa l va tr i x  ,  C. eugenioides , an d  C. bengal ensis  were15.0, 0.4, and 0.4%, respectively. E xten sive la beling ofthe purine cat abolites, alla ntoin, allant oic acid, and C O2,wa s observed only in t he low-caffeine-conta ining  Coff ea 

p lan t s . I n   C. eugenioides , More   >30% of t otal ra dio-ac t iv i t y was re le as e d as   14C O2, wh e re a s t h e u re ide s ,a l l a n t oi n , a n d a l l a n t oi c a ci d w e r e t h e m os t h ea v i lylabeled compounds in   C. bengalensis.  Thus, in   C . a r a -  

bica , [8-14C]adenine is m etabolized preferentially to7-methylxanthine and converted to caffeine via theo-bromine, wh ereas in th e low-caffeine-conta ining  Coffea 

species, it a ppear s t o be converted prima rily to xa nthinean d e n t ers t h e p u rin e c a t abo lis m p at h w ay .

Catabolism of [8-14C]Caffeine.Da ta on the cat abo-lism of [8-14C]caffeine by young an d ma ture leaves fromC . s a l v a t r i x  ,   C. eugeni oides , a n d   C. bengalensis   a represented in Table 3. Little or no catabolism occurredin leaves of   C . s a l v a t r i x    a n d   C. bengalensis.   S imila rresults were obta ined in a n earlier study with  C. ar abica 

leaves (Ashiha ra et a l., 1996b). In contr a st, very exten-sive catabolism of [8-14C]caffeine wa s observed in leaf

Table 1. Caffeine Content in Young and Mature CoffeeLeavesa 

species young lea ves ma ture lea ves

C .   arabica  cv. K ent 7.1 ( 2.6 (100) 2.1 ( 0.34 (100)C .  s al v a t r i x     0.92 ( 0 .0 8 (13 ) 0 .3 0( 0.01 (14)C .   eugenioides    1.3 ( 0 .1 1 (19 ) 0 .3 7( 0.03 (18)C .  bengalensis    1.2 ( 0 .0 1 (17 ) 0 .7 6( 0.01 (36)

a  Data are expressed as mg g-1 of fresh w eight . Values are t heme a n  ( S D (n  ) 3). The figures in paren theses represent caffeinelevels expressed as a percentage of the amount detected in   C .arabica .

Caffeine Metabolism in Low-Caffeine-Containing  Coffea  Species   J. Agric. Food Chem.,  Vol. 47, No. 8, 1999   3427

Page 4: Biosynthesis and Catabolism of Caffeine in Low-Caffeine-Containing Speci

8/20/2019 Biosynthesis and Catabolism of Caffeine in Low-Caffeine-Containing Speci

http://slidepdf.com/reader/full/biosynthesis-and-catabolism-of-caffeine-in-low-caffeine-containing-speci 4/7

segments from  C . eugeni oid es. More than 75%of [8-14C]-caffeine taken up by the segments was catabolized inb o t h y o u n g a n d m a t u r e   C. eugeni oides   le a v e s , wi t hradioactivity recovered as theophylline, 3-methylxan-thine, 1-methylxanthine, xanthine, ureides, urea, andC O2 This indicat es tha t [8-14C]caffeine u ndergoes dem-ethylat ion, probably via the routes indicat ed in Figure2, re s u l t in g in t h e p ro du c t io n o f x an t h in e , wh ic h isdegraded to CO2  a n d N H 3  v ia the conventional purinecat a bol ic p at h wa y .

The ra te of upta ke of [8-14C]caffeine by leaf segment sof   C. eugenioides   wa s mu c h h ig h e r t h an t h o s e by t h esegments of  C . s a l v a t r i x    a n d   C. bengalensis   (Table 3).A s imilar t re n d w a s a ls o o bs erv ed wh e n [8-14C]theo-phylline w as used a s a precursor (see Table 5). Thereasons for this ar e unclear, a lthough it is possible thatpassive tran sport along a concentra t ion gradient , from

t h e in c u bat io n me diu m in t o t h e c e l ls o f t h e le a f , i se nh a n ce d i n k ee pi ng w i t h t h e e xt e nt t o w h i ch t h eabsorbed purine alkaloid is catabolized.

To obta in further informat ion on the pat hwa y utilizedfor the cat a bolism of caffeine in  C. eugeni oides , pulse-chase experiments wit h [8-14C]ca ffeine w ere carried outusing mature leaves (Table 4). Caffeine, theophylline,and 3-methylxanthine were the most heavily labeledcompounds after the 4 h pulse. The radioact ivity as-sociated with caffeine declined after the leaves weretra nsferred to th e nonradioact ive medium. In contra st ,14C-labeled theophylline, 3-methylxanthine, 1-methyl-x an t h in e, x an t h in e, u re ides , u re a , an d CO 2   increasedaft er the 4 h chase, with  >40%of the radioactivity takenup during the pulse being incorporated into 3-methyl-x an t h in e. Af t e r a fu r t h er 20 h ch as e , ra dioa c t ivi t yassociated with theophylline, ureides, and urea declined,wh e re as t h e le v e l o f   14C as s o cia t e d wi t h 3-me t h y l-x an t h in e, 1-me t h y lx an t h in e, an d x a n t h in e ch a n g e dl it t le a n d   14C O2  evolution increa sed fr om 8.3 to 24.2%of the recovered radioactivity.

Catabolism of [8-14C]Theophylline.   C . a r a b i ca  

leaves catabolize theophylline much more rapidly thancaffeine (Ashihara et al . , 1996b). I t wa s, t herefore, ofin t ere st t o in v e st ig a t e t h e fa t e of t h e op h y ll in e wh e nincubated with young an d ma ture leaves of  C. sa l va tr i x  ,C. eugenioid es , a n d   C. bengalensis.   The da ta obta inedare p res en t e d in Table 5 . [8-14C]Theophylline w a sconverted t o a ra nge of ca ta bolites, most extensively byC. eugeni oides  wit h t he evolution of  1 4C O2  from ma turel ea v es b ei n g 3 t i m es g r ea t e r t h a n t h a t f r om y ou n gleaves, from which more tha n ha lf of ra dioact ivity w asrecovered as 3-methylxanthine. More label was associ-a t e d wi t h 3-me t h y lx an t h in e t h an 1-me t h y lx an t h in e ,indicat ing that the main route for catabolism of theo-

Table 2. Metabolism of [8-14C]Adenine by Young Coffee Leavesa 

metabolite   C. sal vat r i x C. eu gen i oi d es C. ben gal en si s C. ar abi ca  

met ha nol-soluble 55.4 ( 1.3 37.4 ( 0.0 64.3 ( 1.3 63.2 ( 1.0nucleot ides 8.2 ( 1.6 20.4 ( 1.5 6.9 ( 0.4 4.4 ( 0.5 b 

a denine 2.7 ( 0.1 1.6 ( 0.1 1.7 ( 0.1t heobr omine 12.3 ( 0.3 0.3 ( 0.1 0.3 ( 0.1 26.2 ( 3.2ca ffeine 2.7 ( 0.2 0.1 ( 0.0 0.1 ( 0.0 20.5 ( 3.5xa nt hine 7.1 ( 1.2 3.3 ( 0.1 3.0 ( 0.3 8.4 ( 1.7a lla nt oin 10.2 ( 1.2 18.5 ( 0.5 33.8 ( 1.4a lla nt oic a cid 10.2 ( 0.2 5.1 ( 0.4 6.6 ( 0.5

unknow n 2.1(

0.1 1.7(

0.4 4.6(

0.3C O2   17.6 ( 1.1 31.9 ( 2.3 5.4 ( 1.0 3.2 ( 0.2m et ha nol-insoluble 27.0 ( 0.2 30.8 ( 2.4 30.3 ( 2.3 35.0 ( 0.7t ot a l upt a ke (kB q) 83.4 ( 6.0 189.9 ( 16.6 155.0 ( 13.4 123.0 ( 3.0

a  Segments of young leaves were incubated w ith 9.4  µM [8-14C]adenin e for 18 h. Values for  C .   arabica  were taken from Ashihara et a l.(1996a). Incorporation of ra dioactivity int o meta bolites is expressed as percentage of t otal upt ake ( S D (n  ) 3). Total u ptake of r adioactivityis expressed a s kBq g-1 of leaf (fresh weight ).   b  This value includes incorporation into nucleotides, allantoin, allantoic acid, adenine, andunidentified methanol-soluble compounds.

Table 3. Metabolism of [8-14C]Caffeine by Young and Mature Coffee Leavesa 

distribution of recovered radioactivity (%of total  ( S D )

species lea ves C f Tp 3-mX 1-mX X ureides urea C O2

total upta ke ofradioact ivity(kBq  ( S D )

C. s al v a t r i x     y ou ng 100 ( 0.0 ndb  nd nd nd nd nd nd 25.3 ( 2.9m a t u r e 99 .7 ( 0.1 nd nd nd nd nd nd 0.3 ( 0.1 45.2 ( 0.1

C. eugenioid es    y ou ng 23.6 ( 2.5 37. 6 ( 1.3 21. 6 ( 0.1 9.1 ( 0 .5 1 .8 ( 0. 2 0. 6 ( 0 .5 2 .0 ( 0.1 0.8 ( 0.0 91.5 ( 3.2m a t u r e 18 .5 ( 0.7 14. 3 ( 0.9 29. 7 ( 1.4 11. 6 ( 0 .3 4 .1 ( 0. 0 1. 5 ( 0 .1 4 .5 ( 0.1 13. 5 ( 1.8 80.9 ( 7.2

C. bengalensis    y ou ng 100 ( 0.0 nd nd nd nd nd nd nd 49.1 ( 6.4m a t u r e 96 .5 ( 1.0 3.3 ( 1.0 nd nd nd nd nd 0.2 ( 0.1 42.8 ( 3.2

a  Segments of young leaves were incubated w ith 8.9 µM [8-14C]caffeine for 18 h. Incorporation of radioactivity into metabolites is expressedas percenta ge of total upta ke  ( S D (n  ) 3). Total uptake of radioactivity is expressed as kBq g-1 of leaf (fw). Ca ffeine (Cf), theophylline(Tp), 3-methylxanthine (3-mX), 1-methylxanthine (1-mX), xanthine (X).   b  nd, not detected.

Table 4. Metabolism of [8-14C]Caffeine in a Pulse-ChaseExperiment with Mature Leaves of  C . eugen io ides  a 

m et a bol it e 4 h (pu ls e) 8 h (ch a se) 24 h (ch a se)

r e si du a l ca f f ei n e 52 .0 ( 0.1 4.9 ( 0.1 3.4 ( 0.1t heophylline 21.4 ( 0.9 24.2 ( 0.6 8.1 ( 0.53 -m et h y lx a n t h in e 16 .0 ( 0.1 44.0 ( 0.2 46.9 ( 1.91-m et h y lx a nt h in e 6. 1( 0.6 6.6 ( 0.4 7.4 ( 0.0

xa nt hine ndb  3.9 ( 0.4 5.8 ( 0.2a lla nt oin 0.9 ( 0.1 18 ( 0.0 1.4 ( 1.1a lla nt oic a cid 1.1 ( 0.0 2.5 ( 0.0 ndurea 1.2 ( 0.1 3.5 ( 0.1 2.9 ( 0.1C O2   1.3 ( 0.2 8.3 ( 0.9 24.2 ( 2.0

a  Leaf segments (100 mg of fresh w eight) were incubated w ith18   µM [8-14C]caffeine for 4 h (pulse), and then the incubationme d iu m wa s re pla c ed b y f re s h me d iu m w it hou t t ra c e r . Theradioact ivity wa s “chased” for a further 4 and 20 h. Incorporat ionof radioact ivity into each compound is expressed as a percentageof the total radioact ivity recovered. Mean values   (   S D (n   )   3)shown. Total ra dioact ivity t aken up by the t issues wa s 31.2 ( 4.0k B q g-1 of leaf.   b  nd, not detected.

3428   J. Agric. Food Chem., Vol. 47, No. 8, 1999 Ashihara and Crozier

Page 5: Biosynthesis and Catabolism of Caffeine in Low-Caffeine-Containing Speci

8/20/2019 Biosynthesis and Catabolism of Caffeine in Low-Caffeine-Containing Speci

http://slidepdf.com/reader/full/biosynthesis-and-catabolism-of-caffeine-in-low-caffeine-containing-speci 5/7

p h y ll in e t o x an t h in e is v ia 3-me t h y lx an t h in e in   C.eugenioides.   Meta bolism of [8-14C]theophylline w ass lowe r in   C. bengalensis   wi t h p rop ort ion al ly moreradioact ivity being recovered as unmetabolized theo-phylline and less a s   14C O2 a nd intermediates of purinecatabolism. There was relat ively l i t t le catabolism of[8-14C]theophylline by leaves of  C. sa l va tr i x  , wi t h  >90%of the total radioact ivity taken up in leaves being theunmetabolized substra te a nd only minima l incorpora-tion of label into purine catabolites.

D I S C U S S I O N

The biosynthesis of caffeine in coffee has been inves-t ig a t e d p r imari ly in   C. a r a b i ca    (Looser et al., 1974;

Ba uma nn et al . , 1978; Roberts a nd Waller, 1979; B au-ma nn and Ga briel, 1984; S uzuki and Waller, 1984a,b;Negishi et al . , 1985a; Fujimori and Ashihara, 1994;Ashiha ra et a l., 1996a,b; Mosli Wa ldha user et al., 1997;Crozier et al., 1998; Ashihara and Crozier, 1999), andt h e ro u t e i l lu s t ra t e d in F ig u re 1 a ls o o pe ra t e s in t e a(Camellia sinensis ) (Suzuki and Takahashi, 1976; Negishiet al., 1985b; Ashihara and Kubota, 1986; Fujimori etal . , 1991; Negishi et al . , 1992; Ashihara et al . , 1995,1997; It o an d Ashiha ra , 1999) Although studied in lessd et a i l , t h e m a i n b ios y nt h et i c p a t h w a y f r om p ur i nenucleotides to t heobromine a nd/or caffeine a ppear s t obe similar, i f not identical, in other species of   Coffea 

(Mazzafera et al . , 1994) and   C a m e l l i a i r r a w a d i e n s i s  

Figure 2.   Caf fe ine and pur ine cat a bolic pat hw a ys in   Coffea   p lant s .  Bold ar r ow s ind icat e t he m a in pat hw ay via w hich caf feineis degraded in   C. eugenioides.   The conversion of caffeine to theophylline is effectively blocked in   C. arabi ca   a s w e l l a s i n   C.

s a l v a t r i x    a nd   C. bengalensis   in which the catabolism of theophylline is also slow. In   C. arabi ca,   theophylline is catabolized toxant hine, tra ces of which are converted to 7-methylxant hine, but most enters the purine cat abolism pathw ay an d is degraded toC O2  a n d N H 3. I n   C. dewevrei ,  C. l i beri ca , a n d   C. abeokutae , but not t he other species referred to a bove, caffeine is converted totheacrine, methylliberine, and liberine (Ba uman n et a l. , 1976; P etermann an d B auma nn, 1983). In t ea leaves, the conversion ofcaffeine to theophylline is blocked, whereas t heophylline is also demethylat ed to xan thine a s shown in   Coffea  p lant s , but t her eis a lso resynthesis of caffeine via a theophylline   f  3-methylxant hine   f   theobromine   f  caf feine salvage pat hw ay (Ashihar a e tal., 1997). En zymes:   N -1  demeth yla se (1-NDM), N -3  demethy las e (3-NDM), an d  N -7  demethy las e (7-NDM). To dat e, there a re noreports on the prepara tion of cell-free extra cts conta ining t he  N - demethylase a ctivities involved in the cata bolism of purine alkaloidsin coffee and t ea.

Caffeine Metabolism in Low-Caffeine-Containing  Coffea  Species   J. Agric. Food Chem.,  Vol. 47, No. 8, 1999   3429

Page 6: Biosynthesis and Catabolism of Caffeine in Low-Caffeine-Containing Speci

8/20/2019 Biosynthesis and Catabolism of Caffeine in Low-Caffeine-Containing Speci

http://slidepdf.com/reader/full/biosynthesis-and-catabolism-of-caffeine-in-low-caffeine-containing-speci 6/7

(As h ih ara an d Ku bot a , 1987) as we l l a s mat e (I l e x 

p a r a g u a r i e n si s ) (Ashiha ra , 1993), cocoa tea (Ca me l l i a  

p t i l o p h y l l a  ) (As h ih a r a e t a l . , 1998), a n d g u a r a n a(P a u l l i n i a c u p an a  ) (H. Ashihara an d T. W. B aum an n,unpublished da ta ).

In th e present study, th e biosynthesis and cat abolismof ca f fe in e we re in v es t ig a t e d in   C. eugeni oides ,   C.

sa l va tr i x  , a n d   C. bengal ensis,   three low-caffeine-con-t a in in g s pe cies of cof fee . Th e dat a f rom fee ds w i t h

[8-

14

C ]a d e n in e d em on s t r a t e t h a t , a s i n  C . a r a b i ca  

(Suzuki et al., 1992; Ashihara et al., 1996a; Crozier etal . , 1997), caffeine is synthesized from purine nucle-ot i de s i n y ou n g l ea v es of a l l t h r ee   Coffea    speciesHowever, the rate of caffeine biosynthesis is much lowertha n in  C. arabica , especia lly in   C. bengalensis , and thisis one reason for their low caffeine content.

The size of endogenous caffeine pools can also bere gu la t e d by t h e ra t e of ca f fein e c a t a bol ism, fu r t h ermethylation, and oxidation, and there is some diversityin the pathways operating in different species of coffee(Mazzafera et al., 1991, 1994). For example, leaves ofC. dewevrei ,   C . l i b er i c a  , a n d   C. a b eoku ta e    convertcaffeine to thea crine (1,3,7,9-tetra methyluric acid),methylliberine [O (2)1,7,9-tet ra meth yluric a cid], liberine

[O (2)1,9-trim ethylur ic acid] an d oth er m ethyluric a cids(B a u m a n n et a l ., 1976; P e t er m a n n a n d B a u m a n n ,1983), wh ereas t he ma in route in   C. arabica  is caffeinef  theophylline f 3-methylxanthine f  x an t h in e f  uricacid   f  allantoin   f  alla ntoic acid   f f  C O2 + NH 3 (seeFigur e 2). The rea ction velocity of the init ia l step in th ispathway, the conversion of caffeine to theophylline, isvery low and, as a consequence, caffeine accumulatesin  C. arabi ca  (Ashiha ra et a l., 1996b). The present st udyrevealed tha t a mong thr ee low-ca ffeine-conta ining  Cof- 

fea   species, only   C. eugeni oides   possessed a strongcapacity for ca ffeine cat a bolism, with the demethyla tionof theophylline to xanthine proceeding mainly via 3-me-thylxanthine and to a lesser extent via 1-methylxan-thine (see Figure 2). The reduced caffeine content of   C.

eugenioides  is , thus, the r esult of a low ra te of caffeinebios y n t h e sis combin ed wit h a h ig h ra t e of ca f fein ecata bolism. In   C. sa l va tr i x   a nd  C. bengalensis,  cat abo-l is m o f bo t h c a f fe in e an d t h e o p h y l l in e is v e ry s lo w;therefore, the low ca ffeine content of th ese Coffea  speciesappears to be due primarily to their reduced biosyn-thet ic a ct ivity .

7-Methylxa nth ine, produced via xa nth ine, is a minorcatabolite of [8-14C]theophylline in   C. a r a b i ca    leaves(Ashiha ra et a l., 1996b), wher eas in t ea a nd ma te lea vess mall amo u n t s o f t h e o p h y l l in e are s a lv ag e d fo r t h esynthesis of caffeine via a theophylline   f   3-methyl-xanthine f  theobromine f  caffeine pathway (Figure 2)(Ashihara et al., 1997; Ito et al., 1997). In the present

s t u dy wi t h   C. eugenioides ,  C . s a l v a t r i x  , a n d   C. benga- 

lensis , [8-14C]t h e op h y ll in e wa s n e it h e r con v ert e d t o7-me t h y lx an t h in e n or s a lv ag e d for t h e s y n t h e sis ofcaffeine. I t ha s been r eported previously t hat 7-meth-ylxanthine is not involved in caffeine catabolism in   C.

dewevrei  (Mazza fera, 1993). U nlike C. dewevrei , an d   C.

l iberica , a n d  C. abeokut ae,   there is no evidence that   C.

arabica ,  C. eugenioides ,  C. sa l va tr i x  , an d  C. bengal ensis 

convert caffeine to theacrine, methylliberine, and liberine.

The results of the present study are useful for thelong-term aims of using biotechnology to produce trans-genic, ca ffeine-deficient  C. arabi ca  plants.  C. eugeni oides 

degrades caffeine via theophylline and so, unlike theother species, contains a specific 7N -demethyla se a ctiv-ity. The substr a te specificity of this d emethyla se seemsto be different from tha t of the  N -demethylase isolatedfrom bacteria, such as  Pseudomonas putida  a nd  Pseudo- 

monas cepacia   (Ashihara an d Crozier, 1999), whichcatabolizes caffeine to theobromine rather than theo-phylline (Asa no et a l., 1994). Expression of th e bacter ia lde met h y las e in   C . a r a b i ca    i s u n l ik ely t o re su l t incaf fein e de f icien cy as ca f fein e w i ll be de grade d t ot h e obromin e, wh ich is t h e immedia t e p recu rs or ofca f fein e in cof fee . I n con t ras t , in s er t ion of t h e 7N - 

demethylase encoding gene from  C. eugenioides  into thegenome of   C. a r a b i ca    is much more likely to producecaffeine deficiency because t he  eugeni oid es  gene productwill catalyze the conversion to caffeine to theophyllinean d t h e n a t iv e Arabica e n zy me s h av e t h e cap a c i t y t orapidly degrade theophylline. Work on the isolation andcharacterizat ion of this novel   N -demethylase from   C.

eugenioides   is in progress.

ACKNOWLEDGMENT

This research was supported by the Royal Society,which provided H.A. a nd A.C. with J apa n-U .K. t ra v elgrants. Part of this work is also supported by a Grant-in-Aid for Scientif ic Resear ch from the Ministry of

Educat ion, S cience, Sports a nd Culture of J apa n (No.10640627) to H .A. We tha nk D r. Ma ro Sonda hl (Fit olinkCorp., Mount La urel, NJ ) for his help in obta ining seedsof the four species of coffee used in th is stud y from t heInst itut o Agronom ico, Ca mpina s, S.P ., Bra zil.

LITERATURE CITED

Asano, Y. ; Kom ed a, T. ; Yam ad a, H. Enzym es involved intheobromine production from caffeine by   Pseudomonas 

p u t i d a    No. 352.   Biosci., Bi otechnol., B iochem.   1994,   58 ,2303-2304.

As h ih a r a , H . P u r i n e m e t a b ol is m a n d t h e b io sy n t h es i s ofcaffeine in ma te leaves.   Phytochemistry   1993,   33 , 1427-1430.

Table 5. Metabolism of [8-14C]Theophylline by Young and Mature Coffee Leavesa 

distribution of recovered radioactivity (%total  ( S D )

species lea ves Tp 3-m X 1-mX X Alln Alla urea C O2

total upta ke ofradioact ivity(kBq  ( S D )

C. s al v a t r i x     y ou ng 99.5 ( 0.0 ndb  nd nd nd nd nd 0.5 ( 0.0 54.8 ( 12.2m a t u re 95. 2( 0.7 2.2 ( 0.2 nd 0.5 ( 0.1 nd nd 0.5 ( 0.0 1.0 ( 0.4 50.2 ( 5.2

C. eugenioid es    y ou ng 26.6 ( 1 .0 5 3. 8 ( 1. 0 0. 8 ( 0. 1 1. 3( 0. 2 4. 8( 0. 7 1. 0 ( 0. 0 3. 3( 0.1 7.9 ( 2.9 86.3 ( 14.2m a t u re 36. 4( 0 .3 2 6. 2 ( 0. 7 0. 8 ( 0. 0 4. 8( 0. 3 0. 8( 0. 1 1. 3 ( 0. 0 3. 5( 0 .3 23 .5 ( 0.7 85.7 ( 1.5

C. bengalensis    y ou ng 82.4 ( 1.0 6.9 ( 0. 0 2. 0 ( 0.4 nd 3.4 ( 0.2 nd nd 1.3 ( 0.4 41.7 ( 1.8

m a t u re 78. 2( 0 .3 1 4. 2 ( 0. 2 3. 1 ( 0.2 nd 3.7 ( 0.4 nd nd 0.9 ( 0.1 34.5 ( 3.6a  Segments of young leaves were incubated w ith 9.1  µM [8-14C]theophylline for 18 h. Incorporation of radioactivity into metabolites is

expressed as percentage of total uptake ( S D (n  ) 3). Total upt ake of ra dioactivity is expressed as kBq g-1 of lea f (fw ). Theophy lline (Tp),3-meth ylxan thin e (3-mX), 1-methy lxant hine (1-mX), xant hine (X), a llant oin (Alln), alla ntoic a cid (Alla).   b  nd, not detected.

3430   J. Agric. Food Chem., Vol. 47, No. 8, 1999 Ashihara and Crozier

Page 7: Biosynthesis and Catabolism of Caffeine in Low-Caffeine-Containing Speci

8/20/2019 Biosynthesis and Catabolism of Caffeine in Low-Caffeine-Containing Speci

http://slidepdf.com/reader/full/biosynthesis-and-catabolism-of-caffeine-in-low-caffeine-containing-speci 7/7

Ashihar a, H. ; Cr ozier , C . Biosynt hesis and m et abolism ofcaffeine and related purine alkaloids in plants. In  Ad vances 

in Botanical Research ; Ca llow, J . R. , E d.; Academic P ress:London, U .K., 1999; Vol. 30, pp 117-205.

Ashihara , H.; Kubota , H. Pa tterns of adenine metabolism andcaffeine biosynt hesis in d if fer ent par t s of t ea seed lings.P hysi ol . P l ant .  1986,   68 , 275-281.

Ashihara, H.; Kubota, H. Biosynthesis of purine alkaloids inCamel l i a  p lant s .   P l ant Cel l P hysi ol .  1987,   28 , 535-539.

Ashihar a, H.; S himizu, H.; Takeda , Y.; Suzuki, T.; G illies, F.M.; Crozier, A. Ca ffeine meta bolism in high a nd low caffeine

containing cultivars of   Camel l i a si nensi s. Z. Nat urf orsch.1995,   50 C , 602-607.

Ashihar a, H. ; M ont eir o, A. M . ; Gil l ies , F . M . ; Cr ozier , A.B iosynth esis of caffeine in leaves of coffee (Coffea arabica 

L.).   P l ant P hysi ol .  1996a,   11 1 , 747-753.Ashihar a, H. ; M ont eir o, A. M . ; M or it z , T. ; Gil l ies , F . M . ;

C r oz ie r, A. C a t a b ol is m of ca f f ei n e a n d r el a t e d p ur i nealka loids in lea ves of  Coffea arabica  L .   P l a n t a   1996b,  1 98 ,334-339.

Ashiha ra , H.; G illies, F. M.; Crozier, A. Meta bolism of caffeinea n d r el a t e d p u r in e a l ka l oi d s i n l ea v e s o f t e a (C a m e l l i a  

sinensis  L.).   P l ant Cel l P hysi ol .  1997,   38 , 413-419.Ashihar a, H .; Kat o, M.; Ye, C B iosynthesis and meta bolism of

purine alkaloids in leaves of cocoa tea (Camel l i a pt i l ophyl l a ).J. P l ant Res.  1998,   11 1 , 599-604.

Baum ann, T. W.; Gabr ie l , H. M et abolism and excr et ion of

caffeine during germination of  Coffea ar abica  L .   P l ant Cel l  Physiol.  1984,   25 , 1431-1436.

Baum ann, T. W.; Oechslin, M . ; Wanner , H. Caffe ine andmethylated uric acids: Chemical pa tterns during vegeta tivedevelopment of Coffea l iberica. Bi ochem. Physiol. Pfla nzen.

1976,   17 0 , 217-225.Baumann,T.W.;Dupont-Looser,E.;Wanner,H.7-Methyxantho-

sinesan intermediate in caffeine biosynthesis.  Ph ytochem- 

i s t r y   1978,   17 , 2075-2076.Crozier, A. Decaff.   Biol. Sci. Rev.  1997,   10   (2), 40-41.Crozier, A.; B au ma nn, T. W.; Ashiha ra , H.; S uzuki, T.; Waller,

G . R. P at hwa ys involved in the biosynthesis and cata bolismof caffeine in   Coffea  a nd  Camel l i a. P r oc. 16t h Col l . S ci . I nt .

Caf e, N ai r obi  ; ASIC : P aris, 1998; pp 106-113.Fujimori, N.; Ashihara, H. Biosynthesis of theobromine and

caffeine in developing leaves of  Coffea ar abica. Phyt ochem- 

i s t r y   1994,   36 , 1359-1361.Fujimori, N.; Suzuki, T.; Ashiha ra , H. Sea sonal va riat ions in

biosynt het ic capacit y for t he synt hesis of caf feine in t ealeaves.   Phytochemistry  1991,   30 , 2245-2248.

Ito, E. ; Ashihara, H. Contribution of purine nucleotide bio-synthesis   de novo  to the formation of caffeine in young tea(Camell ia sinensis)  leaves. J . P l ant P hysi ol . 1999,  1 54 , 145-151.

Ito, E.; Crozier, A.; Ashihara, H. Theophylline metabolism inplant s .  B i ochi m . B i ophys. A ct a  1997,   1336 , 323-330.

Ka to, M.; Mizuno, K.; Fujimura, T.; Iwa ma , M.; Irie, I.; Crozier,A.; Ashiha ra, H . Purification an d cha ra cterization of caffeine

synt hase fr om t ea leaves.   P l ant P hysi ol .   1999,   12 0 , 579-586.

Looser, E. ; Ba uman n, T. W.; Wan ner, H . The biosynthesis ofcaffeine in the coffee plant .  Phytochemi stry  1974,  1 3 , 2515-2518.

M azzafer a , P . 7-M et hylxant hine is not involved in caf fe inecatabolism in   Coffea dewevrei. J. Agric. Food Chem.  1993,41 , 1541-1543.

Maz za fera, P .; Crozier, A.; Maga lha es, A. C. Ca ffeine meta bo-lism in   Cof f ea arabi ca   and other species of coffee.   P hy-  

tochemistry  1991,   30 , 3913-3916.M a z z a f er a , P . ; C r oz i er , A. ; S a n d be rg , G . S t u d ie s o n t h e

metabolic control of caffeine turnover in developing endo-sperms and leaves of   Coffea arabica   a nd   Coffea dewevrei.

J. A gri c. Food Chem.  1994,   42 , 1423-1427.Mosli Waldha user, S. S. ; G illies, F. M.; Crozier, A.; B aum ann ,

T. W. S epar at ion of t he   N -7   m et hylt r ansfer ase , t he keyenzyme in caffeine biosynthesis.   Phytochemistry  1997,   45 ,1407-1414.

Negishi, O.; Ozawa, T.; Imagawa, H. The role of xanthosinein t he biosynthesis of caffeine in coffee plant s.   A gri c. B i ol .

Chem.  1985a,   49 , 2221-2222.Negishi, O.; Ozaw a, T.; Imaga wa , H. Methyla tion of xanth osine

by tea-leaf extracts and caffeine biosynthesis.   A gri c. B i ol .

Chem.  1985b,   49 , 887-890.Negishi, O.; Ozawa , T.; Imaga wa , H. B iosynthesis of caffeine

from purine nucleotides in tea plant.   Biosci., Biotechnol.

Biochem.  1992,   56 , 499-503.Pet er m ann, J . B . ; Ba um ann, T. W. M et abolic r e lat ionships

bet w een m et hylxant hines a nd m et hylur ic ac ids in   Coffea 

L.   P l ant P hysi ol .  1983,   73 , 961-964.Roberts, M. F .; Waller, G . R.  N - Methyltransferase and 7-meth-

yl -N 9 - nucleoside hydrolase activity in  Coffea arabica  and t hebiosynthesis of caffeine.  Phytochemi stry  1979,  1 8 , 451-455.

S c h u l t h e s s , B . H . ; M o r a t h , P . ; B a u m a n n , T . W . C a f f e i n ebiosynthesis starts with the metabolically channelled for-ma tion of 7-meth yl-XMPsA new h ypothesis.  Phytochemistry 

1996,   41 , 169-175.Suzuki, T.; Takahashi, E. Caffeine biosynthesis in   Camel l i a 

sinensis. Ph ytochemistr y  1976,   15 , 1235-1239.Suzuki, T.; Waller, G . R. B iosynthesis and biodegrada tion of

caffeine, t heobromine, an d theophylline in   Coffea arabica 

L. fruits.   J. A gri c. Food Chem.  1984a,   32 , 845-848.Suzuki, T.; Waller, G . R. Biodegrada tion of caffeine: Format ion

of theophylline and caffeine in mature   Coffea arabica  fruits.J. S ci . Food A gri c.  1984b,   35 , 66-70.

S uzuki, T. ; Ashihar a , H. ; Waller , G. R . Pur ine and pur inealkaloid metabolism in   Camel l i a   a nd   Coffea   p lant s .   P hy-  

tochemistry  1992,   31 , 2575-2584.

Received for review November 5, 1998. Revised manuscriptreceived May 18, 1999. Accepted J une 2, 1999.

J F981209N

Caffeine Metabolism in Low-Caffeine-Containing  Coffea  Species   J. Agric. Food Chem.,  Vol. 47, No. 8, 1999   3431