Biomedical Signal and Image Processing, Second Edition(2)

33
Fourier Transform 2.1 INTRODUCTION AND OVERVIEW Among all transforms used in signal and image processing , Fourier transform (FT) is probably the most commonly used transform. In this cha pter, we first describe the definition as well as the concepts of FT and then discuss so me of the properties of FT that are commonly used in signal processing. The emphasis of this chapter is on the conceptual interpretations as well as the applications of one- dimensional (1-D) and two- dimensional (2-D) continuous and discrete FT as opposed to mathematical formulation. 2.2 ONE-DIMENSIONAL CONTINUOUS FOURIER TRANSFORM As mentioned in Chapter 1, a signal can be expressed in many different domains among which time is probably the most intuitive domain. Time signals can answer questions regarding "when" events happen, whereas FT domain addresses questions starting with "how often" (this is why FT domain is also c alled frequency domain). As an example, assume that you are to study the shoppi ng habits of members in a community by preparing a questionnaire. You will obta in some useful informa¬ tion when you ask questions such as "What days do you norm ally go shopping?" or "What time of the day you never go shopping?" This inform ation helps you under¬ stand and visualize the "time" elements of people's sho pping habits. Also, if you prepare a time signal that shows the number of people shoppi ng at every instance of time (i.e., a graph of number of people shopping vs. time), yo u can acquire answers to all the aforementioned questions. Now, consider a different set of questions such as "How often do you go shopping?" or "What percentages of peopl e go shopping twice

description

Livro sobre Sinais Biológicos.

Transcript of Biomedical Signal and Image Processing, Second Edition(2)

FourierTransform

2.1INTRODUCTIONANDOVERVIEW

Amongalltransformsusedinsignalandimageprocessing,Fouriertransform(FT)isprobablythemostcommonlyusedtransform.Inthischapter,wefirstdescribethedefinitionaswellastheconceptsofFTandthendiscusssomeofthepropertiesofFTthatarecommonlyusedinsignalprocessing.Theemphasisofthischapterisontheconceptualinterpretationsaswellastheapplicationsofone-dimensional(1-D)andtwo-dimensional(2-D)continuousanddiscreteFTasopposedtomathematicalformulation.

2.2ONE-DIMENSIONALCONTINUOUSFOURIERTRANSFORM

AsmentionedinChapter1,asignalcanbeexpressedinmanydifferentdomainsamongwhichtimeisprobablythemostintuitivedomain.Timesignalscananswerquestionsregarding"when"eventshappen,whereasFTdomainaddressesquestionsstartingwith"howoften"(thisiswhyFTdomainisalsocalledfrequencydomain).Asanexample,assumethatyouaretostudytheshoppinghabitsofmembersinacommunitybypreparingaquestionnaire.Youwillobtainsomeusefulinformationwhenyouaskquestionssuchas"Whatdaysdoyounormallygoshopping?"or"Whattimeofthedayyounevergoshopping?"Thisinformationhelpsyouunderstandandvisualizethe"time"elementsofpeople'sshoppinghabits.Also,ifyouprepareatimesignalthatshowsthenumberofpeopleshoppingateveryinstanceoftime(i.e.,agraphofnumberofpeopleshoppingvs.time),youcanacquireanswerstoalltheaforementionedquestions.Now,consideradifferentsetofquestionssuchas"Howoftendoyougoshopping?"or"Whatpercentagesofpeoplegoshoppingtwiceaweek?"Answerstothesequestionsformthefrequencydomain,whichinsignalprocessingisformedbyFT.Letusremindourselvesthattheinformationintimeandfrequencyareexactlythesame,i.e.,neitherofthedomainsaremoreinformativethantheotherandonecanacquireallinformationononedomainfromtheother.However,consideringthecomputationsizeandthevisibilityofcertaininformationtohumans,onedomaincanbepreferredovertheother,asdiscussedinChapterI.Now,wegiveaformaldefinitionforl-DcontinuousFT.Considerg{t)asacontinuoussignalintime.TheFTofthissignal,shownasG(f),isdefinedasfollows:

+00

G(f)=FT[git)}=Jgit)e-'dt00

(2.1)

where/isthefrequencyvariable(whichisoftenexpressedinunitssuchasHz,kHz,MHz,andsoon)jistheimaginarynumber(i.e.,/=-1)

15

16

BiomedicalSignalandImageProcessing

NotethatinEquation2.1(whichisalsoknownastheanalysisequation),theintegrationistakingplaceovertimeandthereforetheresultingfunction,i.e.,G(/),isnolongerafunctionoftime.Also,notethatG{f)isacomplexfunctionof/ThismeansthatonecandescribeG{f)asfollows:

G(/)=|G(/)|e''*'*(2.2)

where||G(/)||isthemagnitudeofG(f)G{f)representsthephaseofG(/)Acloserlookatthevalueof||G(/)||atagivenfrequencyrevealsthemainadvantagesofexpressingasignalintheFourierdomain.Continuingourexampleonpeople'sshoppinghabits,letusassumethatg{f)isthenumberofpeopleshoppingattimeUwheretimeismeasuredinseconds.Then,inordertoseehowmanypeoplewouldgoshoppingonceaday(i.e.,onceevery86,400s),allweneedtodoistocalculate||G(/)||for/=1/86,400Hz.Notethatonecouldhaveobtainedthesameinformationfromthetimesignal,buttheFTprovidesamucheasierapproachtofrequency-relatedquestionssuchastheoneweexploredearlier.IfonecancalculatetheFTforatimesignal,heorsheshouldalsobeabletocalculatethetimesignalfromafrequencysignalintheFTdomain.SuchatransformationiscalledtheinverseFT(orthesynthesistransform)thatacceptsG{f)asinputandcalculatesg{t)asfollows:

+g{t)=IFT{G(/)}=JGine''df(2.3)cc

Next,wepracticecalculatingtheFTusingsomeusefulfunctionsthatareheavilyusedinsignalprocessing.

Example2.1

Consideranexponentiallydecayingsignalg{t)=e~\(>0.Then,

C(0=Jg{t)e-'"dt

+00=I0

1-0+j2)t

1+/2pty

t'O

,,(2.4)1+jlpf

FourierTransform

Also,wecancalculatethemagnitudeandphaseofG{f)asfollows:

1

17

Vl+(2pO'

(2.5)

and

AC(0=-(i+y2p0

=-tan"\2p/')

(2.6)

Example2.2

ImpulsefunctionS{t)(alsoknownasDiracfunction)playsanimportantroleinmanyareasofscienceandengineeringsuchasphysics,differentialequations,andsignalprocessing.BeforedescribingthemathematicaldefinitionoftheimpulsefunctionandcalculatingtheFTofthisfunction,wefocusontheconceptoftheimpulsefunctionandtheneedforsuchamathematicalentity.Impulsefunctionisamathematicalfunctionthatdescribesveryfastburstsofenergythatareobservedinsomephysicalphenomena.Asanexampleofsuchburstpulses,considertheeffectofsmashingtheballinavolleyballgame.Volleyballplayersarenotallowedtoholdtheballintheirhands;rather,theyaresupposedtohittheball.Whensmashingthebail,playersapplyasignificantamountofenergyinaveryshorttime.Suchanimpulseforceappliedtotheballcreatesthemosteffectivemoveinavolleyballgame.Theeffectsofsuchanactioncanbemodeledusinganimpulsefunction.Impulsefunctionplaysanimportantroleintheidentificationofunknownsystems.Thisrolecanbedescribedthroughasimpleexample.Supposeyouaregivenablackboxandyouareaskedtodiscoverwhatisinthebox.Onequickwayofguessingthecontentsoftheboxistappingonitandlisteningtotheechoes.Inamorescientificworld,youwouldapplysomefastpressureimpulsesonthesurfaceoftheboxandobservetheresponseofthecontentsintheboxwithrespecttotheimpulsefunctionsyouapplied.Iftheboxcontainscoins,youwillhearajinglingsound,andiftheboxisfullofwater,anentirelydifferentsoundandechowillbesensed.Thistypeofidentifyingunknownsystemsisafundamentaltechniqueinafieldofsciencecalled"systemidentification,"whichfocusesonmodelinganddescribingunknownsystems.Now,weslowlyapproachamathematicalformulationoftheimpulsefunction.Theburst-likeconceptoftheimpulsefunctionimpliesthatthemathematicalmodelmustbezeroforallpointsintimeexceptforaninfinitelysmalltimeinterval(asdiscussedearlier).Inamoremathematicalmanner,assumingthattheimpulseisappliedattimet=0,themathematicalrepresentationoftheimpulsefunctionmustbezeroeverywhereexceptforasmallneighborhoodaroundtheorigin.Iftheimpulseisassumedtobenonzerosforaveryshortperiodoftime,thentheamplitudeofimpulseduringthisveryshortintervaloftimemustbeinfinitelylarge;otherwise,thetotalenergyofthesignalwouldbecomezero.Inordertoseethismoreclearly,wefocusonamathematicalmodeloftheimpulsefunction.ConsiderfunctionS{t)showninFigure2.1.Notethattheenergyofthissignal

18

BiomedicalSignalandImageProcessing

a()

1/A

-A/2A/2

t

FIGURE2.15{t)function.

(i.e.,theareaunderthecurve)Istheduration(i.e.,A)multipliedbytheheightofthepulse(i.e.,1/A).ThisshowsthattheenergyofthesignalisalwaysoneregardlessofthevalueofA,i.e.,thearea(energy)independentofA.Nowwecandefinetheimpulsefunctionasfollows:

d(t)=limdA(t)

(2.7)

Thepreviousdefinitionimpliesthateventhoughtheimpulsefunctionisnonzeroonlybetween0"and0%theenergyofthesignalisstillone,i.e.,

(2.8)0"

Inordertohaveameaningfulvisualrepresentationfortheimpulsefunctionemphasizingthefactthattheamplitudeoftheimpulsefunctionis0everywhereexceptattheorigininwhichtheamplitudeapproachesinfinity,anarrowpointedtowardinfinityisusedtoshowtheimpulsefunction(Figure2.2).

8{t)

t

FIGURE2.2Visualrepresentationofanimpulsefunction.

FourierTransform

19

Otherusefulpropertiesoftheimpulsefunctionincludethesamplingcapabilityoftheimpulsefunction,i.e.,foranysignalg{t),

J*d(t)g(t)dt=j'1,wecaneasilycalculatetheFTusingG(f)asfollows:

(2.22)

Thepreviousequationassertsthatonceafunctioniscompressedintime,thefunctioninfrequencydomainexpandswiththesamerate.Thismeansthatoncethewidthofasignalintimedomainapproacheszero,itswidthinfrequencydomainapproachesinfinity.ThisobservationfurtherexplainswhytheFTofanimpulsefunctionmustbeinfinitelyflat.

2.3SAMPLINGANDNYQUISTRATEThetechnologicaladvancementsoftheInternetandotherdigitalmedia,digitalcomputers,digitalcommunicationsystems,andotherdigitalmachinesandsystemsmakestheprocessingofdigitalsignalsandimagesavaluedtechnique.Inaddition,theexistenceofveryfastdigitalsignalprocessorsthataretailoredtoprocessdigitalsignalswithamazinghighspeeds,supportstheprocessingofsignalsinadigitalform.However,knowingthatalmostallsignalscollectedfromnature(includingbiomedicalsignals)arecontinuousinnature,wewouldneedto"digitize"continuoussignalstoformdigital(ordiscrete)signalstobeprocessedwithdigitalsignalprocessors.Next,letusdiscusstwoimportantquestionsthatrequireanswersbeforeanyattemptstosamplethecontinuoussignalscanbemade:"Isitpossibletoformadigitalsignalfromacontinuoussignalwhilemaintainingallinformationinthecontinuoussignal?"Andiftheanswertothefirstquestionisyes,then"Howfastarewesupposedtosampleacontinuoussignalsuchthatallinformationofthecontinuoussignalispreservedintheresultingsampled(discrete)signal?"Theanswertothefirstquestionis"Yes!"Thisanswermaybetosomedegreecounterintuitive.Thereasonwhyitmaybecounterintuitiveisbecauseoncethecontinuoussignalissampled,apparentlythereisnoguaranteethatonecanrecovertheexactvaluesofthesignalbetweenthesamples.Inotherwords,ifwecanreconstructthecontinuoussignal

FourierTransform

27

fromthediscretesignal,thenwecouldclaimthatnoinformationhasbeenlostfromthecontinuoussignal.However,itseemsimpossibletoreconstructtheexactvaluesbetweenthesampledvaluessincetheremightbeseveralpossibleoptionsforeachintermediatepoint.Thekeyissuetoaddresslieson"Howfastcanacontinuoussignalbesampled?"AtheoremcalledNyquistorShannontheoremaddressesourproblem.Themathematicaldetailsandproofofthetheoremwillnotbegivenhere.However,thepracticalprocedureintroducedbythetheoremforsamplingacontinuoussignalwhilemaintainingallinformationintheresultingdiscretesignalisdescribedinthefollowingsteps:

Step1:CalculateFTofthecontinuoussignal.Step2:Findmaximumfrequencyofthesignal,i.e.,maximumfrequencyatwhichtheFTofthesignalisnonzero.Callthisfrequency/.Step3:Samplethecontinuoussignalwithasamplingfrequencywhichisatleasttwiceof/,i.e.,/>2/.Inotherwords,takesamplesofthecontinuoussignalevery