Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt...

21
Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

Transcript of Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt...

Page 1: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints

Paul King, Vanderbilt University

Richard Fries, Datex-Ohmeda Corp.

Page 2: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

Why?

• ABET requires a capstone design course.

• No BME Design Textbook exists.

• No BME Specific Design Taxonomy Exists.

• Are Industrial & Academia Viewpoints different?

• Are there any suggestions regarding additions?

Page 3: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

ABET Statement: Criterion 4“Students must be prepared for

engineering practice through the curriculum culminating in a major design experience based upon the knowledge and skills acquired in earlier coursework and incorporating engineering standards and realistic constraints that include most of the following considerations: economic; environmental; sustainability; manufacturability; ethical; health and safety; social; and political.”

Page 4: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

ABET Criteria for BME Design

• One course, primarily design, preferably senior (Jr acceptable)

• More than ½ engineering design

• Must require prerequisite(s)

• Reference: 2000-2001 Criteria for Engineering Programs – ABET p14,15

Page 5: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

No BME Design Textbook exists

• Teaching notes: Mixture of ME/EE/NSF

• Proposal to Whittaker (Outline)->Reject

• Fries: Reliable Design of Medical Devices

• K&F -> Whittaker (Outline) ->Accept

• 4 Chapters -> Whittaker -> Reject

Page 6: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

No BME Specific Taxonomy Exists.

• NSF ERC in Bioengineering Education has a Design Thrust, part of the work to be done involves development of a Taxonomy of Design Education.

• Can we determine this taxonomy via scrutiny of the literature and a survey of industry and academia?

Page 7: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

Survey

• 42 Topics, H,M,L,X & ask for additions

• Industry (Fries)

• Academia (US, King, see: http://vubme.vuse.vanderbilt.edu/King/design_education.htm )

Page 8: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

BME Specific Topics

7/42 – Design Topic Survey = Biomedical

• Definition: Medical Device, History

• FDA: Human Factors, Trials, Reporting, Documenting

• Materials & environment(s)

• Animal & Clinical Trials

• Safety, Reliability, …

Page 9: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

Results:

• 17 Academic Responses (47US)

• 9 Industrial (8 Industries)

• H=3, M=2, L=1, X=0, averages & t-test

• … to date

Page 10: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

Highest Rated (Academia)

• Product Definition Issues – Initial Specification Issues – 2.88 (out of 3)

• Progress Reports – Expectations for Written Reports – 2.76

• Product Specification – Requirements, Design, Reliability, Tracking – 2.65

• Design Examples – 2.53

Page 11: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

Highest Rated - Industry

• Product Specification – Requirements, Design, Reliability, Tracking AND Risk Analysis/Hazard Analysis – 2.89

• Design Examples – 2.78

• Product Definition Issues – Initial Specification AND Design Documentation Requirements - 2.67

Page 12: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

Lowest - Academia

• Professional Societies and Licensure AND Business Plan Development 1.24 AND The Future of the Design Process

• Reverse Engineering – Software and Hardware –1.17

• Poster Presentation Basics AND History of Biomedical Engineering Devices- 1.06

• Accident Reconstruction – 1.00

Page 13: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

Lowest - Industry

• Industrial Design Group Construction and Management AND Accident Reconstruction – 1.0

• Gannt and Pert Charts and Related Software - .89

• Professional Societies and Licensure AND Business Plan Development - 78

Page 14: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

Maximum Difference: Industry-Academic• Software and Process Design

Considerations +.76 (p=0.12)

• Risk Analysis/Hazard Analysis +.71 (p=0.01)

• Brainstorming/Idea Generation –.75 (p=.05)

• Gannt and Pert Charts & Related Software AND Progress Reports – Expectations -.87 (p=0.03)

Page 15: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

Maximum Agreement: Industry:Academic• Accident Reconstruction 1.0 p=1.0

• QFD (1.89) & Decision Matrix (2.1) p=.99

• Future of the Design Process (1.2:1.2) p=.97

• Estimating Life Cycle Costs (1.6) p=.94

• Formal design (1.8) AND Reverse Engineering (2.2) AND DFMA (1.9) AND FDA/ISO (2.2) p=.9

• Product Safety & Liability (2.2) p=.88

Page 16: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

Maximum Disagreement: Industry:Academic• Animal/Clinical Trials, GLP (2.2:1.6) AND

Medical Device Definition (2.6:1.9) AND IP Considerations (1.4:2) p=.1

• Brainstorming (1.6:2.4) p=.05

• Written Progress Reports (1.9:2.8) p=.04

• CAD(2.1:1.4) AND Gannt/Pert (.9:1.8) p=.03

• Risk/Hazard Analysis (2.9:2.1) p=.01

Page 17: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

Comments Gathered:• . .. the course should prepare students to

manage projects in the medical device industry. They should learn about project management and be given the opportunity to develop their interpersonal and communication skills. They should also learn something about business and how a company functions. At Marquette, we are presenting lectures to help prepare them for their careers by including topics such as professional development, career survival and management, and personal finance.

Page 18: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

Comments, Continued

…Nonetheless, I am a big believer in process, and think the students should leave a design course understanding that design is primarily a decision making process (i.e. Decision-based design) and that by following a process successful designs will be achieved. SUNY-SB

Page 19: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

Suggested Additions• Ethics (7!)

• Economics/Cost/benefit analysis (2)

• Experimental design

• Clinical experiences

• Top-down design, Systems engineering

• OOPs, FOI, Large system errors

• …

Page 20: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

To Be Done

• More Industrial Responses needed

• International Survey?

• Report at ASEE

• Report at BMES

• Report in journal form

Page 21: Biomedical Engineering Design Course Content: Industrial v Academic Viewpoints Paul King, Vanderbilt University Richard Fries, Datex-Ohmeda Corp.

Summary

• Preliminary results indicate a fair amount of academic-industrial agreement.

• Academics emphasize training for reporting (oral/written) and overall project planning v Industry expects reporting ability and delegates planning elsewhere.