Biomechatronics lab. Escola Politecnica. University of São Paulo. Brazil

15
Biomechatronics Laboratory Mechatronics Departament Arturo Forner Cordero [email protected] http://sites.poli.usp.br/pmr/ biomecatronica/ http://sites.poli.usp.br/p/arturo.for ner

description

Presentation of the Biomechatronics Lab. Presented at the Todai USP Workshop held on the November in São Paulo. Introduces BioRob2014

Transcript of Biomechatronics lab. Escola Politecnica. University of São Paulo. Brazil

  • 1. Biomechatronics Laboratory Mechatronics Departament Arturo Forner Cordero [email protected] http://sites.poli.usp.br/pmr/biomecatronica/ http://sites.poli.usp.br/p/arturo.forner

2. Goal Biomechatronics= Biomechanics+Motor Control Models of the human motor control system from a control engineering perspective 3. Members Prof. Tarcisio H. Coelho Prof. Oswaldo Horikawa PhD Luis Filipe Rossi Reinaldo de Bernardi Colaborators Prof. Liu Aline Arcanjo Carlos Noriega Virginia H. Quadrado MSc Andrey Bugarin Milton Cortez Junior Masanori Ishizawa IC/TCC Gabriel Reis Mateus Dias Marcelo Slyzt Rafael S. Souza Rodrigo M. Carnier Rodrigo M. Otake INTERNATIONAL Prof. Hermano I. Krebs. MIT (EUA) Prof T. Komeda . Shibaura Inst. Technology (Japan) Juan Alvaro Gallego CSIC (Spain) NATIONAL Prof. Sergio T. Rodrigues UNESP. Prof. Marko Ackermann, FEI. NAP-NEAR (USP) Prof. Linamara R. Battistella Prof. Adriano Siqueira Prof. Glauco Caurin Prof. Gustavo Goroso Prof. Michele Schultz Prof. Mario Pedrazzolli 4. NAP-NEAR 5. Biomechatronics Group Motor control models Internal models Exoskeletons Arm Leg Bioinspired robots Humanoid bipeds New actuators Kamambar. Chameleon 6. Gait analysis Human gait on irregular environments Technique to analyse biped robot stability (Basin of Attraction) Biped gait stability Human motor control models Forner-Cordero A; van der Helm FCT; Koopman B. (2006) Describing gait as a sequence of states. Journal of Biomechanics 39:948-957 7. Gait analysis under perturbations 8. Lower limb exoskeleton Direct actuation Brushless motors Harmonic reduction Knee and ankle Sagittal plane: Flexo- extension Goal: Perturb gait Fixed instants Impedance control 9. Kamambar MSc R. de Bernardi, Prof. J.J. Da Cruz Biped robot stability L.F. Rossi (PhD) 10. Normal Gait and Reactions to Perturbations Eng et al, 1994 Exp Brain Res, 102. Forner Cordero et al, 2004. Biol. Cyb. 91(4):212-22 Trip in the swing phase triggers either: 1) an elevating strategy (long step + longer time) 2) a lowering strategy (short step + shorter time) early swing mid/late swing 11. No reaction Elevating strategy Click for video FORNER-CORDERO, A; ACKERMANN, M.; FREITAS, M. L. A Method to Simulate Motor Control Strategies to Recover from Perturbations: Application to a Stumble Recovery During Gait. Proc. of the 33rd Annual Intl IEEE EMBS Conf, 2011. 12. Bioinspired Mechanical Design of an Upper Limb Exoskeleton for Rehabilitation MIRANDA, A.B.W.; YASUTOMI, A.Y.; SOUIT, C.; FORNER-CORDERO, A . Bioinspired Mechanical Design of an Upper Limb Exoskeleton for Rehabilitation and MotorControl Assessment. BioRob2012. 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, p1776-81. Bioinspired elbow exoskeleton 13. Tests 14. The Fifth IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics IEEE BIOROB 2014 So Paulo, Brazil August 12-15, 2014 Call for Papers: February 15, 2014