Biochar Production Technology - Slide 1

25
Biochar Production Technology Robert C. Brown Center for Sustainable Environmental Technologies Department of Mechanical Engineering Iowa State University

Transcript of Biochar Production Technology - Slide 1

Page 1: Biochar Production Technology - Slide 1

Biochar Production Technology

Robert C. BrownCenter for Sustainable Environmental Technologies

Department of Mechanical EngineeringIowa State University

Page 3: Biochar Production Technology - Slide 1

Purported Properties of Biochar

• High soil organic matter

• Enhanced cation exchange capacity (nutrient holding capacity)

• Improved water retention

• Beneficial soil microbial activity

• Enhanced fertility

• Stable (“aromatic”) carbon structure

Page 4: Biochar Production Technology - Slide 1

Car

bon

Stor

ed (l

b/ac

re/y

r)

0200400600800

100012001400160018002000

Pyrolytic Char No-Till Switchgrass No-Till Corn Plow-Tilled Corn

Greenhouse gases reduction by carbon storage in agricultural soils

Char from pyrolyzing one-half of corn stover

Page 5: Biochar Production Technology - Slide 1

Pit kiln Mound kiln 

Traditional Charcoal Making

Page 6: Biochar Production Technology - Slide 1

Brick kiln  TPI* transportable metal kiln 

*Tropical Products Institute

Traditional Charcoal Making

Page 7: Biochar Production Technology - Slide 1

Missouri‐type charcoal kiln 

Continuous multiplehearth kiln 

Traditional Charcoal Making

Page 8: Biochar Production Technology - Slide 1

Kiln Type Charcoal Yield* (%)

Pit 12.5-30Mound 2-42Brick 12.5-33Portable Steel (TPI) 18.9-31.4Concrete (Missouri) 33

Charcoal yields (dry weight basis) for different kinds of batch kilns

Kammen, D. M., and Lew, D. J. (2005) Review of technologies for the production and use of charcoal, Renewable and Appropriate Energy Laboratory, Berkeley University, March 1, http://rael.berkeley.edu/files/2005/Kammen-Lew-Charcoal-2005.pdf, accessed November 17, 2007.

*ηchar = (mchar/mbio) x100

Page 9: Biochar Production Technology - Slide 1

Charcoal Yield Corrected for Ash Content of Biomass

ηfc = (mchar/mbio)[cfc/(1‐ba)] x 100

where:mchar = dry mass of charcoal from the kilnmbio = dry mass of biomass loaded into the kilncfc = fixed C content of biochar as measured by 

ASTM Standard D 1762‐84 ba = ash content of the dry biomass

Charcoal yield on the basis of ash‐free organic mass into ash‐free carbon is calculated according to:

A perfect kiln would have fixed‐C yield equal to the solid C yield predicted by thermodynamic equilibrium.  For example, the pyrolysis of cellulose at 400° C and 1 MPa should have a fixed‐C yield of 27.7%.  

Page 10: Biochar Production Technology - Slide 1
Page 11: Biochar Production Technology - Slide 1

Air emissions per kilogram biomass from different kinds of charcoal kilns

CO(g kg-1)

CH4(g kg-1)

NMHC1

(g kg-1)TSP2

(g kg-1)Uncontrolled batch

160-179 44-57 7-60 197-598

Low control batch

24-27 6.6-8.6 1-9 27-89

Controlled continuous

8.0-8.9 2.2-2.9 0.4-3.0 9.1-30

1 NMHC – non‐methane hydrocarbons (includes recoverable methanol and acetic acid)

2 TSP – total suspended particulates

Shafizadeh, Fred, 1982, Chemistry of pyrolysis and combustion of wood, in Sarkanen, K.V., Tillman, D.A., and Jahns, E.C., eds., Progress in biomass conversion: London, Academic Press, p. 51–76.

Page 12: Biochar Production Technology - Slide 1

Typical product yields (dry basis) for different modes of pyrolysis

Mode Conditions Liquid Char GasFast Moderate temperature ~ 500°C

short vapor residence time ~ 1 s75% 12% 13%

Moderate moderate temperature ~ 500°Cmoderate vapor residence time ~ 10-20 s

50% 20% 30%

Slow moderate temperature ~ 500°Cvery long vapor residence time ~ 5-30 min

30% 35% 35%

Gasification high temperature > 750°Cmoderate vapor residence time ~ 10-20 s

5% 10% 85%

Page 13: Biochar Production Technology - Slide 1

Thermogravimetric analysis of the pyrolysis of plant components

Constant heating rate (10° C/min) with N (99.9995%) sweep gas at 120 ml/min

Yang, H., Yan, R., Chen, H., Lee, D. H., and Zheng, C. (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis Fuel 86, 1781-1788.

Page 14: Biochar Production Technology - Slide 1

Reaction pathways for cellulose decomposition

Mok, W. S. L.; Antal, M. J. Effects of Pressure on Biomass Pyrolysis. II. Heats of Reaction of Cellulose Pyrolysis. Thermochim. Acta 1983, 68, 165.

Page 15: Biochar Production Technology - Slide 1

Effect of reaction pressure and diluentgas flow on char production

Mok, W. S. L.; Antal, M. J. Effects of Pressure on Biomass Pyrolysis. II. Heats of Reaction of Cellulose Pyrolysis. Thermochim. Acta 1983, 68, 165.

endothermic

exothermic

Page 16: Biochar Production Technology - Slide 1

Secondary Charcoal Generation

Page 17: Biochar Production Technology - Slide 1

Some specific goals for advanced biochar manufacture

• Continuous feed pyrolyzers to improve energy efficiency and reduce pollution emissions associated with batch kilns

• Exothermic operation without air infiltration to improve energy efficiency and biochar yields

• Recovery of co‐products to reduce pollution emissions and improve process economics

• Control of operating conditions to improve biochar properties and allow changes in co‐product yields

• Feedstock flexibility allowing both woody and herbaceous biomass to be converted to biochar

Page 18: Biochar Production Technology - Slide 1

Concepts for Advanced Charcoal Kilns

• Slow pyrolyzers (drum pyrolyzer, rotary kiln)

• Flash carbonizer

• Fast pyrolyzers (fluid bed, screw reactor, entrained)

• Biomass gasifiers (fluid bed, downdraft)

• Hydrothermal processing reactors

• Wood‐gas stoves

Page 19: Biochar Production Technology - Slide 1

Preliminary Studies to Compare Chars from Different Thermal Processes

Process Air filtration Heat Source Temperature Time

Slow pyrolysis

None External 500 C 30 minutes

Fast pyrolysis

None External 500 C Few seconds

Gasification 20% equivalence ratio

Combustion of infiltrated air

750 C Few minutes

Page 20: Biochar Production Technology - Slide 1

Scanning Electron MicrographsSwitchgrass Feedstock

Gasification CharSlow Pyrolysis Char

Fast Pyrolysis Char

Page 21: Biochar Production Technology - Slide 1

Effect of Feedstock and Thermal Process on Char Properties

Feedstock Process Higher Heating Value(kJ/kg)

  BET Surface Area (m2/g)

Corn Stover Slow Pyrolysis 21,596 4.1

Switchgrass Slow Pyrolysis 12,799 22.8

Corn Stover Fast Pyrolysis 13,833 4.5

Switchgrass Fast Pyrolysis 16,337 17.7

Corn Stover Gasification 15,290 43.6

Switchgrass Gasification 15,864 39.2

Page 22: Biochar Production Technology - Slide 1

Fourier Transform Spectra of Feedstock and Resulting Chars

Corn S tover Feedstock & Char

W avenumber (cm-1)

1000200030004000

Arbi

trary

Uni

ts

Corn S tov er Feedstock

S low Pyrolysis Char

Fast Pyrolysis Char

G asif ication Char

Page 23: Biochar Production Technology - Slide 1

Cation Exchange Capacity (CEC) of Chars

Feedstock Process Reactor type CEC (cmol/kg)

Corn stover Fast pyrolysis PDU fluidized bed 29.89

Switchgrass  Fast pyrolysis PDU fluidized bed 16.3

Loblolly pine Fast pyrolysis Lab scale fluidized bed 14.21

Corn stover Fast pyrolysis Lab scale free fall reactor 12.23

Switchgrass  Gasification  PDU fluidized bed 11.34

Corn stover  Gasification (cyclone 1)  PDU fluidized bed 31.4

Corn stover Gasification (cyclone 2)  PDU fluidized bed 17.21

Hardwood  Slow pyrolysis Lab scale fixed bed 19.04

Switchgrass  Slow pyrolysis Lab scale fixed bed 12.35

Woodwaste Gasification Large pilot‐scale 12.11

Used modified Compulsive Exchange Method (Gilman & Sumpter 1986, Laird & Fleming 2008)

Page 24: Biochar Production Technology - Slide 1

Conclusions

• Traditional charcoal kilns are unsuitable for biochar production (too inefficient and polluting)

• Modern processes will produce several co‐products (biochar, bio‐oil, syngas)

• Opportunities for controlling yields of co‐products and properties of biochars in an environmentally sustainable manner

Page 25: Biochar Production Technology - Slide 1

Acknowledgments

This presentation is based on a chapter to appear in the book “Biochar for Environmental Management: Science and Technology,” edited by Johannes Lehmann and Stephen Joseph, and to be published early next year by Earthscan Publishers Ltd.   Some of the materials presented are the result of research performed by ISU graduate students Catie Brewer, Randy Kasparbauer, Cody Ellens, A.J. Sherwood Pollard, and Jared Brown and assisted by undergraduate students Hernan Trevino  and Daniel Assmann.  Drs. Justinus Satrio and Sam Jones also contributed to this research.  Frontline Bioenergy provided some of the charcoal samples evaluated in this study.