Biocatalysis : an industrial perspectiveBiocatalysis AnIndustrialPerspective Editedby...

13
Biocatalysis An Industrial Perspective Edited by Gonzalo de Gonzalo University ofSeville, Spain Email: gdegonzalo@us. es and Pablo Dommguez de Maria Sustainable Momentum, SL, Las Palmas de Gran Canaria, Spain Email: dominguez@sustainable-momentum. net ROYAL SOCIETY OF CHEMISTRY THE QUEEN'S AWARDS FOR ENTERPRISE: INTERNATIONAL TRADE 2013

Transcript of Biocatalysis : an industrial perspectiveBiocatalysis AnIndustrialPerspective Editedby...

Page 1: Biocatalysis : an industrial perspectiveBiocatalysis AnIndustrialPerspective Editedby GonzalodeGonzalo University ofSeville, Spain Email:gdegonzalo@us.es and PabloDommguezdeMaria SustainableMomentum,SL,

BiocatalysisAn Industrial Perspective

Edited by

Gonzalo de Gonzalo

University ofSeville, SpainEmail: gdegonzalo@us. es

and

Pablo Dommguez de Maria

Sustainable Momentum, SL, Las Palmas de Gran Canaria, SpainEmail: dominguez@sustainable-momentum. net

ROYALSOCIETYOF CHEMISTRY

THE QUEEN'S AWARDS

FOR ENTERPRISE:

INTERNATIONAL TRADE

2013

Page 2: Biocatalysis : an industrial perspectiveBiocatalysis AnIndustrialPerspective Editedby GonzalodeGonzalo University ofSeville, Spain Email:gdegonzalo@us.es and PabloDommguezdeMaria SustainableMomentum,SL,

Contents

Part I: Context and Challenges for Industrial Biocatalysis

Chapter 1 An Appreciation of Biocatalysis in the Swiss ManufacturingEnvironment 3

Rebecca Buller, Katrin Hecht, Marco Antonio Mirata and

Hans-PeterMeyer

1.1 Introduction 3

1.1.1 Biocatalysis in the Swiss ManufacturingEnvironment 7

1.1.2 Current Status 7

1.1.3 Patent Analysis 14

1.2 Selected Enzyme Classes Used in the Swiss

Manufacturing Environment 16

1.2.1 Oxidoreductases EC1 17

1.2.2 Transferases EC2 22

1.3 Challenges 25

1.3.1 Regulation 25

1.3.2 Development Time 30

1.3.3 Technological Lock-in 32

1.3.4 Public Perception 32

1.3.5 Education 33

1.4 Opportunities 35

1.4.1 Starting Materials 35

1.4.2 Sustainability and Greenness 36

1.4.3 Swiss Industrial Biocatalysis Consortium 36

1.4.4 New Business Ideas 37

Catalysis Series No. 29

Biocatalysis: An Industrial PerspectiveEdited by Gonzalo de Gonzalo and Pablo Dominguez de Maria

© The Royal Society of Chemistry 2018Published by the Royal Society of Chemistry, www.rsc.org

ix

Page 3: Biocatalysis : an industrial perspectiveBiocatalysis AnIndustrialPerspective Editedby GonzalodeGonzalo University ofSeville, Spain Email:gdegonzalo@us.es and PabloDommguezdeMaria SustainableMomentum,SL,

X Contents

1.5 Future Directions 37

Acknowledgements 39

References 39

Chapter 2 Biocatalysis - A Greener Alternative in Synthetic Chemistry 44

Madhuresh Kumar Sethi, Purbita Chakrabortyand Rohit Shukla

2.1 Introduction 44

2.2 Motivation for Industry to Use/Research on

Biocatalysis 47

2.3 Challenges Faced by Biocatalysis in Industry 49

2.4 Prospects 52

2.5 Overview of Current Enzyme-based Processes

Implemented/In-progress at Industrial, Commercial

Scale 52

2.6 Our Experience in Some Chemoenzymatic Projects 56

2.6.1 Protease-mediated Synthesis of ValganciclovirIntermediate 58

2.6.2 Chemoenzymatic Synthesis ofOptically Pure

Rivastigmine Intermediate Using ADH from

Baker's Yeast and KRED 58

2.6.3 Preparation of Deoxynojirimycin, Key

Intermediate of an Anti-diabetic Drug 60

2.7 Potential Safety Aspects 66

2.8 Conclusions 67

Abbreviations 68

Glossary 68

References 70

Chapter 3 Biocatalytic Synthesis of Small Molecules - Past, Present

and Future 77

Roland Wohlgemuth

3.1 Introduction 77

3.2 Biocatalytic Conversions of Racemates 78

3.2.1 Biocatalytic Resolution of Racemates 79

3.2.2 Biocatalytic Deracemizations 79

3.3 Biocatalytic Desymmetrizations 80

3.4 Biocatalytic Asymmetric Oxidations and Reductions 81

3.4.1 Biocatalytic Asymmetric Oxidations 81

3.4.2 Biocatalytic Asymmetric Reductions 83

3.5 Biocatalytic Asymmetric Hydrolysis and AcylationReactions 84

3.5.1 Biocatalytic Asymmetric Hydrolysis Reactions 85

3.5.2 Biocatalytic Asymmetric Acylation Reactions 86

Page 4: Biocatalysis : an industrial perspectiveBiocatalysis AnIndustrialPerspective Editedby GonzalodeGonzalo University ofSeville, Spain Email:gdegonzalo@us.es and PabloDommguezdeMaria SustainableMomentum,SL,

Contents xi

3.6 Biocatalytic Asymmetric Transfer Reactions 86

3.7 Biocatalytic Asymmetric Addition and Elimination

Reactions 88

3.8 Summary and Outlook 89

References 90

Chapter 4 EntreChem: Building a Sustainable Business Case

in Biotechnology: From Biocatalysis to SyntheticBiology 98

Javier Gonzalez Sabin and Francisco Moris

4.1 Introduction 98

4.2 Biocatalysis 99

4.2.1 Enantiopure Chiral Building Blocks 99

4.2.2 Cascade Processes Taking Advantage of

Biocatalysis 100

4.3 Drug Development 105

4.3.1 Natural Products in Drug Discovery 105

4.3.2 EntreChem's Approach to Natural Products

Drug Discovery 107

4.3.3 Aureolic Acids: The Quest for Clinically Viable

"Mithralogs" 109

4.3.4 Collismycin Analogs as Immunosuppressiveand Neuroprotective Drugs 112

4.3.5 Glycosylated Indolocarbazoles as Potent and

Selective Kinase Inhibitors 115

4.4 Business Models in Biocatalysis and Natural

Products Drug Discovery 117

References 121

Part II: Biocatalysis: from Pharmaceuticals to Bulk

Chemistry

Chapter 5 Bristol-Myers Squibb: Preparation of Chiral

Intermediates for the Development of Drugs and APIs 127

Ramesh N. Patel

5.1 Introduction 127

5.2 Anti-Alzheimer's Drug. Enzymatic Preparation of

(i?)-5,5,5-Trifluoronorvaline 128

5.3 Cholesterol Lowering Agents 130

5.3.1 Enantioselective Enzymatic Acylation of

Racemic Alcohol 130

5.3.2 Enzymatic Synthesis of (3S,5i?)-Dihydroxy-6-(benzyloxy)hexanoic Acid, Ethyl Ester 131

Page 5: Biocatalysis : an industrial perspectiveBiocatalysis AnIndustrialPerspective Editedby GonzalodeGonzalo University ofSeville, Spain Email:gdegonzalo@us.es and PabloDommguezdeMaria SustainableMomentum,SL,

xii Contents

5.4 Calcitonin Gene-related Peptide Receptors

Antagonists (Migraine Treatment): EnzymaticPreparation of (#)-2-Amino-3-(7-methyl-l//-indazol-5-yl)propanoic Acid 132

5.5 Antidiabetic Drugs 134

5.5.1 Saxagliptin: Enzymatic Synthesis of (S)~N-Boc-3-hydroxyadamantylglycine 134

5.5.2 Saxagliptin: Enzymatic Synthesis oiN-Cbz-

4,5-dehydro-L-prolineamide and N-Boc-4,5-

dehydro-L-prolineamide 136

5.5.3 Saxagliptin: Enzymatic Ammonolysis of (5S)-4,5-Dihydro-lH-pyrrole-l ,5-dicarboxylic Acid,1-(l,l-Dimethylethyl)-5-ethyl Ester 137

5.5.4 GLP-1 Receptor Agonists: EnzymaticPreparation of (S)-Amino-3-[3-{6-(2-methylphenyl)}pyridyl]-propionic Acid 138

5.6 Antihypertensive Drugs 140

5.6.1 Enzymatic Synthesis of [S)-6-Hydroxynorleucine 140

5.6.2 Vanlev: Enzymatic Synthesis of AllysineEthylene Acetal 141

5.6.3 Vanlev: Enzymatic Synthesis ofThiazepine 142

5.6.4 Captopril: Enzymatic Preparation of (S)-3-Benzoylthio-2-methylpropanoic Acid 143

5.7 Antiviral Drugs. Case Study: Atazanavir 144

5.7.1 Atazanavir: Enzymatic Synthesis of

(S)-Tertiary-leucine 144

5.7.2 Atazanavir: Enzymatic Preparation of [1S,2R)-

[3-Chloro-2-hydroxy-l-(phenylmethyl)propyl]carbamic Acid, 1,1-Dimethyl-ethyl Ester 146

5.8 Antianxiety Drug. Buspirones: EnzymaticPreparation of 6-Hydroxybuspirone 147

5.9 Antiviral Drugs. Hepatitis B Viral (HBV) Inhibitor:

Enzymatic Asymmetric Hydrolysis and Acetylation 149

5.10 Chemokine Receptor Modulators: EnzymaticDesymmetrization of Dimethyl Ester 150

5.11 Anticancer Drugs 151

5.11.1 Paclitaxel Semisynthetic Process 151

5.11.2 Water-soluble Taxane Derivatives 154

5.11.3 Epothilones: Epothilone B and

Epothilone F 155

5.11.4 IGF-1 Receptor Inhibitor: EnzymaticPreparation of (5)-2-Chloro-l-(3-chlorophenyl)ethanol 157

5.11.5 Retinoic Acid Receptor Agonist:Enzymatic Preparation of 2-(i?)-Hydroxy-2-(l',2',3',4'-tetrahydro-l',l',4',4'-tetramethyl-6'-naphthalenyl)acetate 158

Page 6: Biocatalysis : an industrial perspectiveBiocatalysis AnIndustrialPerspective Editedby GonzalodeGonzalo University ofSeville, Spain Email:gdegonzalo@us.es and PabloDommguezdeMaria SustainableMomentum,SL,

Contents xiii

5.12 Microbial Hydroxylation of Mutilin and

Pleuromutilin 158

5.13 Conclusions 160

Acknowledgements 161

References 161

Chapter 6 Johnson Matthey: A Technology Provider Perspective to

Biocatalysis in the Fine Chemicals Industry 168

Elina Siirola, AhirPushpanath, Desmond M. Schofieldand Paolo Braiuca

6.1 Introduction 168

6.2 Commercial Considerations 170

6.2.1 Technology Value 170

6.2.2 Manufacturing 172

6.2.3 Market Analysis 172

6.2.4 Catalyst Portfolio 173

6.3 Technical Considerations 174

6.3.1 Enzyme Recruitment 175

6.3.2 Enzyme Engineering 179

6.3.3 Process Improvement 182

6.4 Conclusions 186

Acknowledgements 188

References 188

Chapter 7 EnzymeWorks: Recent Advances in Enzyme

Engineering for Chemical Synthesis 190

KuiK. Chan, JuXin, Xiaoliang Liang, LizengPengBin Sun andJunhua Tao

7.1 Introduction to EnzymeWorks 190

7.1.1 Current Status of Biocatalyst Development 191

7.2 Biocatalysis in the Food and Beverage Industry 192

7.2.1 Introduction of Stevia Development 193

7.2.2 Plant Family 1 UDP-glycosyltransferaseApplications 194

7.2.3 Chemoenzymatic Synthesis of

Rebaudioside M 199

7.2.4 Enzyme Immobilization and Whole Cell

Biosynthesis Development 201

7.2.5 Future Perspectives on Biocatalysis in the

Food and Beverage Industry 202

7.3 Ketoreductase (KRED) Applications 202

7.3.1 Ibrutinib Development 205

7.3.2 Future Perspectives on Ketoreductase

(KRED) Biocatalysis 208

7.4 Biocatalysis in the Antibiotic Industry 208

7.4.1 Introduction to Cephalosporin C Acylase (CCA) 210

Page 7: Biocatalysis : an industrial perspectiveBiocatalysis AnIndustrialPerspective Editedby GonzalodeGonzalo University ofSeville, Spain Email:gdegonzalo@us.es and PabloDommguezdeMaria SustainableMomentum,SL,

xiv Contents

7.4.2 Gene Expression, Structure and CatalyticMechanism of Acylases 212

7.4.3 Recent Advances in Cephalosporin C Acylase(CCA) Development 216

7.4.4 Future Perspectives on Acylase Biocatalysis 217

7.4.5 Introduction to Deacetoxycephalosporin C

Synthase 217

7.4.6 Deacetoxycephalosporin C SynthaseStructure and Mechanism 219

7.4.7 Recent Advances in DeacetoxycephalosporinC Synthase Development 220

7.4.8 Future Perspectives ofAntibiotic

Biocatalysis 222

7.5 Future Perspectives of Biocatalyst Development 222

References 223

Chapter 8 Almac: An Industrial Perspective of Ene Reductase

(ERED) Biocatalysis 229

Gareth Brown, Thomas S. Moody, Megan Smyth and

StephenJ. C. Taylor

8.1 Introduction 229

8.1.1 Almac Group 229

8.1.2 Biocatalysis at Almac 230

8.1.3 The Rise of Biocatalysis 230

8.2 Introduction to Alkene Reduction 231

8.3 An Introduction to Ene Reductases and How

They Work 232

8.4 Examples of Ene Reductase Reactions Reportedin the Literature 233

8.4.1 Ene Reductases as Part of a Reaction

Sequence 234

8.4.2 Ene Reductases and Solvents 239

8.4.3 Challenges of Co-factor Recycle 240

8.4.4 Avoiding the Use of Nicotinamide

Co-factors 241

8.4.5 Impact of Synthetic Biology 245

8.4.6 Ene Reductases in Reverse: Oxidation 247

8.4.7 Thermophilic Ene-reductases 248

8.4.8 Alternative Screening Methods 248

8.5 Example of Utilisation of an ERED at Industrial

Scale 249

8.6 Transition of Ene Reductases to Mainstream

Biocatalytic Use 251

8.7 Conclusions 252

Acknowledgements 253

References 253

Page 8: Biocatalysis : an industrial perspectiveBiocatalysis AnIndustrialPerspective Editedby GonzalodeGonzalo University ofSeville, Spain Email:gdegonzalo@us.es and PabloDommguezdeMaria SustainableMomentum,SL,

Contents xv

Chapter 9 GSK: Biocatalyst Discovery and Optimisation 257

Marcelo Kern, Gheorghe-Doru Roiban, Andrew Fosberryand Radka Snajdrova

9.1 Introduction 257

9.2 Biocatalyst Discovery 260

9.2.1 Design of Enzyme Panels 260

9.2.2 Imine Reductase Panel - Importance and

Applicability 260

9.3 Biocatalyst Optimisation 268

9.3.1 Nelarabine Case Study 269

9.4 Conclusions 272

Acknowledgements 273

References 273

Chapter 10 PETROBRAS: Efforts on Biocatalysis for Fuels and

Chemicals Production 276

Aline Machado de Castro andJose Andre Cavalcanti

da Silva

10.1 PETROBRAS Overview 276

10.2 Hydrolysis of Lignocellulosic and StarchyBiomass 277

10.3 Synthesis of Solvents 280

10.3.1 Glycerol Carbonate 280

10.3.2 Butyl Acetate 281

10.4 Synthesis and Degradation of Polymers 282

10.4.1 Synthesis of Polyesters 282

10.4.2 Depolymerization of Poly(ethyleneterephthalate) 284

10.5 Synthesis of Biolubricants 285

10.6 Synthesis of Biodiesel 289

10.7 Concluding Remarks 292

References 292

Chapter 11 MetGen: Value from Wood - Enzymatic Solutions 298

Klara R. Birikh, Matti W. Heikkila, Alex Michine,

Antoine Mialon, Toni Gronroos, Petri Ihalainen, Antti

Varho, Veera Hamalainen, Anu Suonpaa and Sami-Pekka

Rantanen

11.1 Introduction 298

11.1.1 METGEN - Masters of Enzyme Technologyand Genetic Engineering 298

11.1.2 Biocatalysis of Wood - Motivation and

Challenges 300

11.2 Enzymes in Pulp and Paper 301

Page 9: Biocatalysis : an industrial perspectiveBiocatalysis AnIndustrialPerspective Editedby GonzalodeGonzalo University ofSeville, Spain Email:gdegonzalo@us.es and PabloDommguezdeMaria SustainableMomentum,SL,

Contents

11.2.1 Enzymes in Pulp & Paper Industry Sector -

Business Aspect 301

11.2.2 Major Enzyme Components for Wood

Applications 302

11.2.3 Enzyme Development - from Laboratoryto Industry 304

11.2.4 MetZyme® LIGNO 305

11.2.5 MetZyme® BRILA 309

11.2.6 Concluding Remarks on Enzymes in Pulpand Paper 313

11.3 Biorefinery Enzymes 313

11.3.1 Renewable Chemical Industry Segment -

Business Aspect 313

11.3.2 Wood Biorefinery Concept 314

11.3.3 Biomass Hydrolysis - Chemicals and Enzymes 315

11.3.4 Biomass Is Not Oil; It Is More Like Soupof the Day 316

11.3.5 Beyond Sugars 317

11.3.6 Biorefinery Enzymes - Concluding Remarks 320

11.3.7 Wood in Pulp and Paper and Biorefinery -

Common Problems or Window for

Opportunity? 320

Abbreviations 320

References 320

Part III: Biocatalyst Optimization with Industrial

Perspectives

Chapter 12 LentiKafs: Industrial Biotechnology, Experiencesand Visions 325

Radek Stloukal, Jarmila Watzkovd and Kristyna Turkovd

12.1 Introduction 325

12.2 Lentikats Biotechnology 326

12.2.1 Potential of Lentikats Biotechnology 327

12.2.2 Properties of Lentikats Biotechnology 329

12.2.3 Production of Lentikats Biocatalyst 330

12.3 Experiences in Wastewater Treatment 331

12.3.1 Municipal Wastewater Treatment 331

12.3.2 Industrial Wastewater Treatment 332

12.3.3 Special Applications 332

12.3.4 Advantages of Lentikats Biotechnology in

Wastewater Treatment 332

Page 10: Biocatalysis : an industrial perspectiveBiocatalysis AnIndustrialPerspective Editedby GonzalodeGonzalo University ofSeville, Spain Email:gdegonzalo@us.es and PabloDommguezdeMaria SustainableMomentum,SL,

Contents xvii

12.3.5 Product Lines 333

12.3.6 Wastewater Treatment Applications 334

12.4 Experiences in the Pharmaceutical & Food Industry 338

12.4.1 Food Technology Industry 338

12.4.2 Pharmaceutical Industry 338

12.4.3 Bio-based Chemicals Industry 339

12.4.4 Advantages of Lentikats Biotechnology in

the Pharmaceutical & Food Industry 339

12.4.5 Application Examples in the Pharmaceutical

& Food Industry 339

12.4.6 Pharmaceutical & Food Applications 342

12.5 Vision 343

References 344

Chapter 13 EziG: A Universal Platform for Enzyme Immobilisation 345

Karim Engelmark Cassimjee and Hans-Jurgen Federsel

13.1 Introduction 345

13.2 A General Methodology for Enzyme Reuse 348

13.2.1 The Potential of Biocatalysis by Far Exceeds

Its Current Exploitation 348

13.2.2 Unlocking the Potential of Enzymes 349

13.2.3 Immobilised Enzymes for the

Pharmaceutical Industry 350

13.2.4 The Reusable Enzyme Utopia - Enzymes

Anchored in Space 350

13.2.5 The EziG Technology 351

13.2.6 Standardised Procedure for Immobilisation 354

13.2.7 Lower Cost Materials versus HighPerformance 354

13.3 Case Studies 355

13.3.1 In-reactor Enzyme Immobilisation 355

13.3.2 Two-phase System in Flow for in situ

Product Removal 356

13.3.3 Candida antarctica Lipase B (CalB) 357

13.3.4 Co-immobilisation for Cascade Reactions 358

13.4 Prospects 359

13.4.1 Stability versus Activity - Replacing LowCost Catalysts 359

13.4.2 Biocatalysis in Flow - Towards ManufacturingProcesses in Continuous Mode 360

13.5 Conclusions 360

Acknowledgements 361

References 361

Page 11: Biocatalysis : an industrial perspectiveBiocatalysis AnIndustrialPerspective Editedby GonzalodeGonzalo University ofSeville, Spain Email:gdegonzalo@us.es and PabloDommguezdeMaria SustainableMomentum,SL,

xviii Contents

Chapter 14 Cross-linked Enzyme Aggregates (CLEAs): FromConcept to Industrial Biocatalyst 363

RogerA. Sheldon

14.1 Introduction: Biocatalysis is Green and

Sustainable 363

14.2 Immobilisation of Enzymes 364

14.3 The CLEA Technology 365

14.3.1 The Concept 365

14.3.2 Preparation of CLEAs 366

14.3.3 Physical Properties of CLEAs 369

14.3.4 Advantages and Limitations of CLEAs 370

14.3.5 Reactor Design 371

14.4 Scope of the CLEA Technology 373

14.4.1 Hydrolase CLEAs 373

14.4.2 Oxidoreductase and Lyase CLEAs 376

14.5 Multi-and Combi-CLEAs 378

14.6 Magnetic CLEAs: The New Frontier 381

14.7 Applications of CLEAs, Combi-CLEAs and

mCLEAs 384

14.7.1 1G and 2G Biofuels Production 385

14.7.2 Food and Beverages Processing 387

14.7.3 Synthesis of Semi-synthetic Penicillin

and Cephalosporin Antibiotics 388

14.7.4 Removal of Dyes, Pharma Residues and

Endocrine Disruptors from Waste

Water 389

14.7.5 Other Potential Applications 389

14.8 Conclusions and Future Prospects 390

References 390

Chapter 15 SynBiocat: Protein Purification, Immobilization and

Continuous-flow Processes 397

Diana Weiser, Zoltdn Boros, JozsefNagy, Gdbor Hornydnszky,Evelin Bell, Peter Sdtorhelyi and Ldszld Poppe

15.1 Introduction 397

15.2 SynBiocat - From Protein Purification to

Continuous-flow Processes 398

15.2.1 Enzyme Production and

Purification 400

15.2.2 Enzyme Immobilization 405

15.2.3 Desktop Bioreactor Applications 418

15.3 Conclusion 423

List of Abbreviations 424

Acknowledgements 425

References 425

Page 12: Biocatalysis : an industrial perspectiveBiocatalysis AnIndustrialPerspective Editedby GonzalodeGonzalo University ofSeville, Spain Email:gdegonzalo@us.es and PabloDommguezdeMaria SustainableMomentum,SL,

Contents xix

Part IV: Emerging Industrial Biocatalysis

Chapter 16 Microvi: MicroNiche Engineering for Biocatalysisin the Water and Chemical Industries 433

Ameen Razavi andFatemeh Shirazi

16.1 Introduction to Microvi 433

16.2 Microvi's MicroNiche Engineering Platform 436

16.3 Case Study: MicroNiche Biocatalysts for Water

Purification 443

16.4 Producing Case Study: MicroNiche Biocatalystsfor Biobased Chemicals 449

16.5 Conclusions 454

References 455

Chapter 17 Nofima: Peptide Recovery and Commercialization byEnzymatic Hydrolysis ofMarine Biomass 459

Birthe Vang, Themis Altintzoglou, Ingrid Mage, Sileshi G.

Wubshet, Nils K. Afseth and Ragnhild D. Whitaker

17.1 Nofima: The Company 459

17.2 Hydrolysis ofMarine Biomass 461

17.2.1 Chemical Hydrolysis of Marine Biomass 461

17.2.2 Enzymatic Hydrolysis of Marine Biomass 462

17.3 Enzymes Used for Bioconversion 464

17.4 Quality and Classification ofMarine Biomass 465

17.5 Functional Properties and Bioactivities of

Hydrolyzed Marine Biomass 466

17.6 Commercialization of Products from Marine

Biomass 471

17.7 Conclusions 472

17.8 Case Examples 472

17.8.1 Marealis - Producing a Nutraceutical from

Shrimp Peels 472

17.8.2 Polybait AS - Producing Fishing Bait

from Fisheries By-products 473

References 473

Chapter 18 COz Solutions: A Biomimetic Approach to Mitigate C02Emissions - The Use ofCarbonic Anhydrase in an

"Industrial Lung" 477

Eric Madore and Sylvie Fradette

18.1 Introduction 477

18.2 Conventional Post-combustion C02 Capture

Technologies 478

Page 13: Biocatalysis : an industrial perspectiveBiocatalysis AnIndustrialPerspective Editedby GonzalodeGonzalo University ofSeville, Spain Email:gdegonzalo@us.es and PabloDommguezdeMaria SustainableMomentum,SL,

XX Contents

18.3 CSI'Technology: An Industrial Lung 481

18.4 Selection and Development of a Robust CA 484

18.4.1 Elevated Ionic Strength 485

18.4.2 HighpH 486

18.4.3 Temperatures Above 60 °C 486

18.4.4 Effect of High Surface Volume Ratio 486

18.4.5 Effect of High Shear Stress 487

18.4.6 Effect of Contaminants 487

18.4.7 Effect of Solid-Liquid Interface 488

18.4.8 Carbonic Anhydrase Development 488

18.5 Technology Validation/Demonstration at Pilot Scale 491

18.6 Conclusions 494

Acknowledgements 494

References 495

Subject Index 497