bioabsorbable interference screw

27
Interference screw in ACL reconstruction WHAT ARE THE REQUIRED PROPERTIES FOR GOOD SCREW AND WHICH MATERIAL IS THE BEST FOR THAT USE

Transcript of bioabsorbable interference screw

Interference screw in ACL reconstruction

WHAT ARE THE REQUIRED PROPERTIES FOR GOOD SCREW AND WHICH MATERIAL IS THE BEST FOR THAT USE

ACL anatomy and rupture

University of Maryland Medical Center – http://umm.edu/health/medical/ency/presentations/anterior-cruciate-ligament-repair-series

Reconstruction

University of Maryland Medical Center – http://umm.edu/health/medical/ency/presentations/anterior-cruciate-ligament-repair-series

Degradable Interference Screw

NEC-PLUS® Interference Screw

Poly (L/DL Lactide) 70-30 absorbable screw

Screw location

M. Chizari, M. Alrashidi, K. Alrashdan, and I. Yildiz, “Mechanical Aspects of an Interference Screw Placement in ACL Reconstruction,” pp. 18–20

Material requirement

Mech

prop

Bio

comp

Bio

degPLA

M. Chizari, M. Alrashidi, K. Alrashdan, and I. Yildiz, “Mechanical Aspects of an Interference Screw Placement in ACL Reconstruction,” pp. 18–20

Mechanical prop.

K. F. Farraro, K. E. Kim, S. L. Y. Woo, J. R. Flowers, and M. B. McCullough, “Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbablemagnesium-based materials for functional tissue engineering,” J. Biomech., vol. 47, no. 9, pp. 1979–1986, 2014.

892919

701000

100

200

300

400

500

600

700

800

900

1000

Yield Strength [Mpa]

AISI 316L Titanium PLA bone

210

106

4140

50

100

150

200

250

Young Modulus [Gpa]

AISI 316L Titanium PLA bone

1716

7

3

0

2

4

6

8

10

12

14

16

18

Elongation [%]

AISI 316L Titanium PLA bone

Parameters affecting Biocompatibility

Y. Ramot, M. H. Zada, A. J. Domb, and A. Nyska, “Biocompatibility and safety of PLA and its copolymers,” Adv. Drug Deliv. Rev., vol. 107, pp. 153–162, 2015.

Implant Host

Shape and sizeType of tissue

CompositionLocation in the body

Roughness of surfaceSurrounding environment

Morphology Genetics

Porosity

Sterility

Duration of contact

Parameters affecting BioDegradation

Y. Ramot, M. H. Zada, A. J. Domb, and A. Nyska, “Biocompatibility and safety of PLA and its copolymers,” Adv. Drug Deliv. Rev., vol. 107, pp. 153–162, 2015.

Implant Host

Shape and sizepH

Spatial structureTemperature

Hydro-philicity/phobicity

Surface morphology

Porosity

Sterility

Duration of contact

Why Biodegradation ?

Problems of the Traditional screw

potentially need to be removed

hinderMRI/CT

Rupture of implant

Y. Arama, L. J. Salmon, K. Sri-Ram, J. Linklater, J. P. Roe, and L. A. Pinczewski, “Bioabsorbable Versus Titanium Screws in Anterior Cruciate Ligament Reconstruction Using Hamstring Autograft: A Prospective, Blinded, Randomized Controlled Trial With 5-Year Follow-up.,” Am. J. Sports Med., vol. 43, no. 8, pp. 1893–1901, 2015.

Stereoisomerism of PLA

isomerMonomerRepetitive unit

L

D

K. Masutani and Y. Kimura, PLA Synthesis and Polymerization. 2014.

Crystallinity

Y. Onuma and P. W. Serruys, “Bioresorbable scaffold: The advent of a new era in percutaneous coronary and peripheral revascularization?,” Circulation, vol. 123, no. 7, pp. 779–797, 2011.

L-isomer

High crystallinity

Less amorphous region

Reduce Hydration

-CH3

Hydrophobicity

Reduce degradation rate

tensile & yield

strength

Reduce elongation

S. Farah, D. G. Anderson, and R. Langer, “Physical and mechanical properties of PLA, and their functions in widespread applications - A comprehensive review,” Adv. Drug Deliv. Rev., vol. 107, pp. 367–392, 2016.

R. M. Rasal, A. V. Janorkar, and D. E. Hirt, “Poly(lactic acid) modifications,” Prog. Polym. Sci., vol. 35, no. 3, pp. 338–356, 2010.

Reduce FBR

Degradation method

Y. Onuma and P. W. Serruys, “Bioresorbable scaffold: The advent of a new era in percutaneous coronary and peripheral revascularization?,” Circulation, vol. 123, no. 7, pp. 779–797, 2011.

HydrationEster-

HydrolysisMass loss Dissolution

Y. Onuma and P. W. Serruys, “Bioresorbable scaffold: The advent of a new era in percutaneous coronary and peripheral revascularization?,” Circulation, vol. 123, no. 7, pp. 779–797, 2011.

PLA limitations

K. F. Farraro, K. E. Kim, S. L. Y. Woo, J. R. Flowers, and M. B. McCullough, “Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering,” J. Biomech., vol. 47, no. 9, pp. 1979–1986, 2014.

1Young’s modulus similar to the bone

2Degradation

3Allow bone regeneration (?)

4Properties control (?)

5Allow MRI/CT

1Break during surgery

2Slow degradation rate

3Bad bone regeneration

4Inaccurate control

Resent studies

Solution for bone regeneration

3D print

Stem cell

HA coat

Hydro gel

Bone hilling

K. F. Farraro, K. E. Kim, S. L. Y. Woo, J. R. Flowers, and M. B. McCullough, “Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering,” J. Biomech., vol. 47, no. 9, pp. 1979–1986, 2014.

Mg alloys - AZ31 | MgZnCa

K. F. Farraro, K. E. Kim, S. L. Y. Woo, J. R. Flowers, and M. B. McCullough, “Revolutionizing orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based materials for functional tissue engineering,” J. Biomech., vol. 47, no. 9, pp. 1979–1986, 2014.

1.Young modulus similar to the bone = 40-45 [GPa]

2.Tensile strength greater than polymer

3.Good elongation = 16%

4.Allow MRI

5.controlled degradation time

Summery

1. ACL reconstruction is very common, hence it is extensively studied.

2. What makes successful screw is: properties similarity to the human bone, biocompatibility, accelerate bone regeneration.

3. Despite its limitations, PLA demonstrates few important benefits that justifies further research and development.

My Opinion Despite recent breakthroughs in printed metals, I think that PLA still

has major advantage over metals which is the friendly, easy and

cheap printability using FDM printers.

This will be useful especially when availability is an important factor,

for example, in orthopedic departments.

[1] A. Huser, T. Leader, C. Kreofsky, J. Poblocki, and D. Nadler, “Bioactive Interference Screw for

ACL Reconstruction Team Members :,” 2005.

[2] M. Chizari, M. Alrashidi, K. Alrashdan, and I. Yildiz, “Mechanical Aspects of an Interference

Screw Placement in ACL Reconstruction,” pp. 18–20.

[3] M. Chizari, B. Wang, M. Snow, and M. Barrett, “Experimental and numerical analysis of

screw fixation in anterior cruciate ligament reconstruction,” AIP Conf. Proc., vol. 1045, pp. 61–

70, 2008.

[4] N. Caplan and D. F. Kader, “Biomechanical analysis of human ligament grafts used in knee-

ligament repairs and reconstructions,” Class. Pap. Orthop., no. April, pp. 145–147, 2014.

[5] S. O. Adeosun, G. I. Lawal, and O. P. Gbenebor, “Characteristics of Biodegradable

Implants,” J. Miner. Mater. Charact. Eng., vol. 2, no. 2, pp. 88–106, 2014.

[6] M. Losertová, M. Štamborská, J. Lapin, and V. Mareš, “Comparison of deformation behavior

of 316L stainless steel and Ti6Al4V alloy applied in traumatology,” Metalurgija, vol. 55, no. 4,

pp. 667–670, 2016.

[7] S. Farah, D. G. Anderson, and R. Langer, “Physical and mechanical properties of PLA, and

their functions in widespread applications - A comprehensive review,” Adv. Drug Deliv. Rev.,

vol. 107, pp. 367–392, 2016.

[8] K. Choi and S. A. Goldstein, “A comparison of the fatigue behavior of human trabecular

and cortical bone tissue,” J. Biomech., vol. 25, no. 12, pp. 1371–1381, 1992.

[9] Y. Ramot, M. H. Zada, A. J. Domb, and A. Nyska, “Biocompatibility and safety of PLA and its

copolymers,” Adv. Drug Deliv. Rev., vol. 107, pp. 153–162, 2015.

[10]Y. Arama, L. J. Salmon, K. Sri-Ram, J. Linklater, J. P. Roe, and L. A. Pinczewski, “Bioabsorbable

Versus Titanium Screws in Anterior Cruciate Ligament Reconstruction Using Hamstring

Autograft: A Prospective, Blinded, Randomized Controlled Trial With 5-Year Follow-up.,” Am. J.

Sports Med., vol. 43, no. 8, pp. 1893–1901, 2015.

[11]D. N. M. Caborn, W. P. Urban, D. L. Johnson, J. Nyland, and D. Pienkowski, “Biomechanical

comparison between BioScrew and titanium alloy interference screws for bone-patellar tendon-

bone graft fixation in anterior cruciate ligament reconstruction,” Arthroscopy, vol. 13, no. 2, pp.

229–232, 1997.

[12]P. Debieux et al., “Bioabsorbable versus metallic interference screws for graft fixation in

anterior cruciate ligament reconstruction,” Cochrane Database Syst. Rev., vol. 2016, no. 7, 2016.

[13]K. Masutani and Y. Kimura, PLA Synthesis and Polymerization. 2014.

[14]G. E. Luckachan and C. K. S. Pillai, “Biodegradable Polymers- A Review on Recent Trends and

Emerging Perspectives,” J. Polym. Environ., vol. 19, no. 3, pp. 637–676, 2011.

[15]R. M. Rasal, A. V. Janorkar, and D. E. Hirt, “Poly(lactic acid) modifications,” Prog. Polym. Sci.,

vol. 35, no. 3, pp. 338–356, 2010.

[16]Y. Onuma and P. W. Serruys, “Bioresorbable scaffold: The advent of a new era in

percutaneous coronary and peripheral revascularization?,” Circulation, vol. 123, no. 7, pp. 779–

797, 2011.

[17]A. Liu et al., “3D Printing Surgical Implants at the clinic: A Experimental Study on Anterior

Cruciate Ligament Reconstruction.,” Sci. Rep., vol. 6, no. October 2015, p. 21704, 2016.

[18]K. F. Farraro, K. E. Kim, S. L. Y. Woo, J. R. Flowers, and M. B. McCullough, “Revolutionizing

orthopaedic biomaterials: The potential of biodegradable and bioresorbable magnesium-based

materials for functional tissue engineering,” J. Biomech., vol. 47, no. 9, pp. 1979–1986, 2014.

[19]T. M. Keaveny, E. F. Morgan, and O. C. Yeh, “Bone Mechanics,” Stand. Handb. Biomed. Eng.

Des., p. 8.1-8.23, 2004.