Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have...

171
Big Ideas in Mathematics for Future Elementary Teachers Big Ideas in Geometry and Measurement John Beam, Jason Belnap, Eric Kuennen, Amy Parrott, Carol E. Seaman, and Jennifer Szydlik (Updated Summer 2017)

Transcript of Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have...

Page 1: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

BigIdeasinMathematics

forFutureElementaryTeachers

BigIdeasinGeometryandMeasurement

JohnBeam,JasonBelnap,EricKuennen,AmyParrott,CarolE.Seaman,andJenniferSzydlik

(UpdatedSummer2017)

Page 2: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

1

ThisworkislicensedundertheCreativeCommonsAttribution-NonCommercial-NoDerivatives4.0InternationalLicense.Toviewacopyofthislicense,visithttp://creativecommons.org/licenses/by-nc-nd/4.0/orsendalettertoCreativeCommons,POBox1866,MountainView,CA94042,USA.

Page 3: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

2

DearFutureTeacher,Wewrotethisbooktohelpyoutoseethestructurethatunderlieselementarymathematics,togiveyouexperiencesreallydoingmathematics,andtoshowyouhowchildrenthinkandlearn.Wefullyintendthiscoursetotransformyourrelationshipwithmath.Asteachersoffutureelementaryteachers,wecreatedorgatheredtheactivitiesforthistext,andthenwetriedthemoutwithourownstudentsandmodifiedthembasedontheirsuggestionsandinsights.Weknowthatsomeoftheproblemsaretough–youwillgetstucksometimes.Pleasedon’tletthatdiscourageyou.There’smuchvalueinwrestlingwithanidea. Allourbest,

John,Jason,Eric,Amy,Carol&Jen

Page 4: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

3

Hey!Readthis.Itwillhelpyouunderstandthebook. Theonlywaytolearnmathematicsistodomathematics. PaulHalmosThisbookwaswrittentopreparefutureelementaryteachersforthemathematicalworkofteaching.Thefocusofthismoduleisgeometry–andthisdomainencompassesmanydeepandwonderfulmathematicalideas.Thistextisnotintendedtohelpyourelearnyourelementarymathematics;itisaboutteachingyoutothinklikeamathematiciananditisabouthelpingyoutothinklikeamathematicsteacher.TheNationalCouncilofTeachersofMathematics(NCTM,2000)writes:

Teachersneedseveraldifferentkindsofmathematicalknowledge–knowledgeaboutthewholedomain;deep,flexibleknowledgeaboutcurriculumgoalsandabouttheimportantideasthatarecentraltotheirgradelevel;knowledgeaboutthechallengesstudentsarelikelytoencounterinlearningtheseideas;knowledgeabouthowtheideascanberepresentedtoteachthemeffectively;andknowledgeabouthowstudents’understandingcanbeassessed(p.17).

Wearegoingtoworktowardthesegoals.(Readthemagain.Thisisatallorder.Inwhichareasdoyouneedthemostwork?)Throughoutthisbook,wewillaskyoutoconsiderquestionsthatmayariseinyourelementaryclassroom.

Isasquarealwaysarectangle?

Whatdoesthisnumbercalledprepresent?Whatdoesitmeantomeasure“area”?

Cantworectangleswiththesameareahavedifferentperimeters?

Whatissospecialaboutrighttriangles? IfIbuya5-inchpizzaandmyfriendbuysa10-inchpizza,doessheget twiceasmuchtoeat? Whatisgeometryabout?Asmathematicianswewillalsoconveytoyouthebeautyofoursubject.Weviewmathematicsasthestudyofpatternsandstructures.Wewanttoshowyouhowtoreasonlikeamathematician–andwewantyoutoshowthistoyourstudentstoo.Thiswayofreasoningisjustasimportantasanycontentyouteach.Whenyoustandbeforeyourclass,youarearepresentativeofthemathematicalcommunity;wewillhelpyoutobeagoodone.

Page 5: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

4

Noonecandothisthinkingforyou.Mathematicsisn’tasubjectyoucanmemorize;itisaboutwaysofthinkingandknowing.Youneedtodoexamples,gatherdata,lookforpatterns,experiment,drawpictures,think,tryagain,makearguments,andthinksomemore.Thebigideasofgeometryarenotalwayseasy–buttheyarefundamentallyimportantforyourstudentstounderstandandsotheyarefundamentallyimportantforyoutounderstand.EachsectionofthisbookbeginswithaClassActivity.Theactivityisdesignedforsmall-groupworkinclass.Someactivitiesmaytakeyourclassaslittleas20minutestocompleteanddiscuss.Othersmaytakeyoutwoormoreclassperiods.TheReadandStudy,ConnectionstotheElementaryGrades,andHomeworksectionsarepresentedwithinthecontextoftheactivityideas.Nosolutionsareprovidedtoactivitiesorhomeworkproblems–youwillhavetosolvethemyourselves.ThemathematicscontentinthisbookpreparesyoutoteachtheCommonCoreStateStandardsforMathematicsforgradesK-8.Thesearethestandardsthatyouwilllikelyfollowwhenyouareanelementaryteacher,sowewillhighlightaspectsofthemthroughoutthetext.Inorderforyoutoseehowthemathematicalworkyouaredoingappearsintheelementarygrades,wehavemadeexplicitconnectionstoBridgesinMathematicsfromTheMathLearningCenter.ThisistheonlineelementarygradesmathematicscurriculumadoptedbytheOshkoshAreaSchoolDistrict.Youwilloftenbeaskedtogotothesitebridges.mathlearningcenter.orgtoreadordoproblems.Yourinstructorwillprovideyouwithacodesothatyoucanaccessthesematerials.

Page 6: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

5

BigIdeasinGeometryandMeasurementTableofContents

Tobeateacherrequiresextensiveandhighlyorganizedbodiesofknowledge.Shulman,1985,p.47

Chapter1:SEEINGTHEWORLDGEOMETRICALLYClassActivity1:TrianglePuzzle………….……………….……………………….……………………………….…p.10 WhatisGeometry?

NatureofMathematicalObjectsMathematicalCommunication

ClassActivity2:DefiningMoments……….…………………………..…………..…………………………......p.17 RoleofDefinitions Lines,Segments,RaysandPolygons ParallelandPerpendicularLinesClassActivity3:GetitStraight…………….…..……………………………….……....…………………………..p.26 LanguageofMathematics

IdeaofAxioms DeductiveversusInductiveReasoning MakingConvincingMathematicalArguments ClassActivity4:AlltheAngles……………………………………………………………………………………..…p.40 MeasuringAnglesinDegrees

VertexAngleSumsRegularPolygons

ClassActivity5:ALogicalInterlude……….………………………………………………………..…….…..……p.46 ConverseandContrapositive ClassifyingQuadrilaterals ClassActivity6:EnoughisEnough...……………………………………….…...…..………………………….…p.50 Congruence TriangleCongruencetheoremsSummaryofBigIdeasfromChapterOne………………...………………………………………………………p.56

Page 7: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

6

Chapter2:TRANSFORMATIONS,TESSELLATIONS,ANDSYMMETRIESClassActivity7:Slides…………………….……………………………………….…………..………………………….p.60 TranslationsClassActivity8:Turn,Turn,Turn…………………………………………………………..…………………......…p.62 Rotations

ClassActivity9:ReflectingonReflection.………………..……………………………………...……………..p.67 ReflectionsClassActivity10:Zoom…………………………………………………………………………………………………….p.72 Similarity Similarpolygons

ClassActivity11:SearchingforSymmetry……………………………………...……............................p.75 SymmetriesinthePlaneClassActivity12:Tessellations……………………...………….………………………………….………………….p.79 TrianglesandQuadrilaterals

RegularTessellations

SummaryofBigIdeasfromChapterTwo………………………………………………………………………...p.85Chapter3:MEASUREMENTINTHEPLANEClassActivity13:MeasureforMeasure.…………………....……………………………………..….….…….p.87 StandardandNon-StandardUnits ApproximationandPrecisionClassActivity14A:Triangulating……………………………………………………………………….…………….p.93ClassActivity14:AreaEstimation…………………………………………………………………………………...p.94 IdeaofArea CoveringwithUnitSquares ClassActivity15:FindingFormulas………..………………………………………………………………...…..p.100

MakingSenseofAreaFormulasRectangles,Parallelograms,Triangles,andTrapezoids

ClassActivity16:TheRoundUp…………………………………………...…...………...........................p.105 Whatisp? CircleArea InscribedPolygons

Page 8: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

7

ClassActivity17:PlayingPythagoras……….…………………….……...…………………………….…….…p.110 ProofsofthePythagoreanTheorem GeometricandAlgebraicRepresentationsClassActivity18:Coordination………………………………………………………………………………...……p.115 GeoboardArea CoordinateGeometry UsingthePythogoreanTheoremSummaryofBigIdeasfromChapterThree…………………………….………………………………...…...p.121

Chapter4:THETHIRDDIMENSIONClassActivity19:StrictlyPlatonic(Solids)..………………………………………………………………......p.123 RegularPolyhedra SpatialReasoningClassActivity20:PyramidsandPrisms………………………………………………………………….…..….p.130 CountingVertices,Edges,andFaces ClassActivity21:SurfaceArea…………..…………………………….…………………………………………….p.131 IdeasofSurfaceArea ConstantVolume–ChangingSurfaceArea ClassActivity22:NothingbutNet…………………………………………………………………………….…..p.135 NetsforCylindersandPyramids ClassActivity23:BuildingBlocks……………………………………………………………………………………p.136 IdeasofVolume VolumesofPrismsandCylinders Scalingin3DimensionsClassActivity24:VolumeDiscount…………………..……………..………………………….…………..…….p.140 Capacity

VolumesofPyramids,Cones,&SpheresClassActivity25:VolumeChallenge…………………………………………………………….………….……p.147 BuildingModelstoSpecification VolumeandSurfaceAreaApplications SummaryofBigIdeasfromChapterFour…………………………..………………….……………………...p.150

Page 9: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

8

APPENDICESEuclid’sElementsExcerpt……………………………………………………………………………………………..p.152Glossary………………………………………………………………………………………………………………….……p.158References……………………………………………………………………………..…………………………………….p.168

Page 10: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

9

ChapterOne

SeeingtheWorldGeometrically

Page 11: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

10

ClassActivity1:TrianglePuzzleGeometryisthescienceofcorrectreasoningonincorrectfigures.

Originalauthorunknown,butquotedfromG.Polya,HowtoSolveIt.Princeton:PrincetonUniversityPress.1945.

Whathappenedtothemissingsquare?

Page 12: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

11

ReadandStudy

Geometricfiguresshouldhavethisdisclaimer:“Noportrayalofthecharacteristicsofgeometricalfiguresorofthespatialpropertiesofrelationshipsofactualbodiesisintended,andanysimilaritiesbetweentheprimitiveconceptsandtheircustomarygeometricalconnotationsarepurelycoincidental.”

"GeometryandEmpiricalScience"inJ.R.Newman(ed.)TheWorldofMathematics,NewYork:SimonandSchuster,1956.

Mathematicalobjects–geometricobjectsincluded–arenotrealobjects.Theyareidealobjects.Thismightseemdisturbingbecausethismeansthatgeometricobjects–liketrianglesandcircles–donotexistinthephysicalworld.Youcandrawsomethingthatlookslikeatriangleoracircle,butitwon’thavethepreciseandperfectpropertiesthattheidealmathematicaltriangleorcirclehas.Thesketchwillsimplycalltomindtheidealobject.Whilewedrawlotsofpicturesingeometry,weneedtokeepinmindthatthepicturescanbemisleading.TaketheTrianglePuzzleasanexample.Thispuzzleiscompellingbecauseitreallylookslikethetopandbottomfiguresarebothtriangles.Theyarenot.Onlybyreasoningabouthowtheidealizedpiecesfittogethercanwediscoverthetruth.Thepuzzleisgovernedbyanunderlyingstructure–thepropertiesoftheshapesinvolveddeterminehowtheywillfittogether.Mathematicianslovetorevealhiddenstructureandtoexplainpatterns.Thisiswhatmathematicsisabout.Andthisiswhatgeometry,inparticular,isabout.Onedefinitionofgeometryisthatitisthestudyofidealshapesandtheirproperties,ofthepatternsthoseshapescanform,andoftheactionsonthoseshapesthatpreservetheirproperties.Wewillbegivingyouotherdefinitionsofgeometryaswegoalong.Watchforthevarietyofwaysofthinkingaboutgeometry.Thisbookisdesignedsothatyougettodogeometry.Wegenerallydonotteachyoutechniquesandthenhaveyoupractice.Instead,weaskthatyouworkonproblemstohelpyouconstructimportantideas.Theproblemscanbedifficult–whichiswhywehopethatyouwillworkonthemingroupsandthendiscussthemasaclass.Wemadethemthatwayonpurpose.Webelievethataproblemisonlyaproblemifyoudon’tknowhowtosolveit.Ifyoudoknowhowtosolveit,thenitisjustanexercise.Wehopethisbookisfullofproblemsforyouandthatyouwill‘getstuck’alot.Trynottoletbeingstuckdiscourageyou.Itispartofdoingmathematics.Thereisnomagictechniqueforsolvingamathematicsproblem–whichisgood,becauseotherwisemathematicswouldn’tbeanyfun.Basically,youjusthavetowrestlewiththe

Page 13: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

12

problem.Theprocessmighttakeminutes,orhours,orevenyears.Therearestrategiesthatmayprovehelpful,andapurposeofthisfirstsectionistomakeyouawareofsomeofthethingspeopledotoworkonproblems.Fornow,wewouldlikeyoutoseparateyourthinkingaboutproblemsolvingintofourcategories:

1) Understandingtheproblem.Whatdoesitmeantosolvethisproblem?Doyouunderstandtheconditionsandinformationgiveninthestatementoftheproblem?(FortheTrianglePuzzleabove,thismeansunderstandingthatsinceareamustbepreserved,thepictureshavetobemisleadinginsomeway.Solvingthisproblemmeansshowingexactlyhowthepicturesaremisleading.)

2) Reflectingonyourproblemsolvingstrategies.Whatdidyoudotoworkonthe

problem?(Didyoustudythepiecestoseehowtheyfittogether?Randomlyorinsomesystematicmanner?Didyoukeeptrackofanything?Didyoudrawpictures?Didyoucomputesomething?)

3) Explainingthesolution.Whatistheanswertothequestion?(Exactlywhatiswrong

withthepictures?)

4) Justifyingthatyouarebothdoneandcorrect.Whydoesyoursolutionmakesense?Canyouprovethatyouarecorrectandthattheproblemiscompletelysolved?

Beforewegetintothisbookanyfurther,wemightaswelltellyouthatwe’rebossy.Throughoutthereadingsections(whichyoumustdo–youoweittothechildreninyourfutureclassrooms)wewillaskquestionsandissuecommandsinitalics.Dothethingswesuggestinitalics.Don’tworrythatitslowsthereadingdown.Mathematiciansreadvery,very,agonizinglyslowlyandcarefully,withpencilinhand.Wewriteonourbooks–alloverthem.Weverifyclaims;wedotheproblems;weasknewquestionsandtrytoanswerthem.Sowechallengeyoutodofourthingsthisterm.Firstandsecond,readeverywordofyourtextandworkhardoneachandeveryproblem.Third,makeacontributiontoeachdiscussionofaclassactivity.Andfinally,practicelisteningtoandmakingsenseofotherstudents’mathematicalideas.Asateacher,youwillneedtounderstandthemathematicalthinkingofothers;useyourclasstopracticethatskill.

Page 14: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

13

ConnectionstotheElementaryGrades

Instructionalprogramsfromprekindergartenthroughgrade12shouldenableallstudentstoorganizeandconsolidatetheirmathematicalthinkingthroughcommunication;tocommunicatetheirmathematicalthinkingcoherentlyandclearlytopeers,teachers,andothers;toanalyzeandevaluatethemathematicalthinkingandstrategiesofothers;andtousethelanguageofmathematicstoexpressmathematicalideasprecisely.

NCTMPrinciplesandStandardsforSchoolMathematics,2000 Learningviaproblemsolvingandcommunicationofideasaretwomajorthreadsinelementarymathematicseducation.TheNationalCouncilofTeachersofMathematics(2000),inadoptingthePrinciplesandStandardsforSchoolMathematics,advocatedthatallstudentsofmathematicsengageinproblemsolvingandcommunication,bothoralandwritten,atallgradelevels.Theywrite:

“Solvingproblemsisnotonlyagoaloflearningmathematicsbutalsoamajormeansofdoingso”(p.52).“Communicationisanessentialpartofmathematicsandmathematicseducation.Itisawayofsharingideasandclarifyingunderstanding….Whenstudentsarechallengedtothinkandreasonaboutmathematicsandtocommunicatetheresultsoftheirthinkingtoothersorallyorinwriting,theylearntobeclearandconvincing”(p.60).

Mathematicseducatorsbelievethatproblemsolvingandwrittencommunicationarealsoessentialcomponentsofyourmathematicalpreparationtobecomeelementaryschoolteachers.Wewillbeaskingyoutowriteaboutmathematicsinthisclass.Wewillaskyoutowriteinterpretationsofproblems,descriptionsofstrategies,explanationsofsolutions,andjustificationsofsolutions.Howdowewriteaboutmathematics?Isn’tmathematicsallaboutnumberslike2andp?Andaboutsymbolslike║andÐ?Well,no,it’snot.Mathematiciansusesymbolslikethesetowritestatementsandtosolvesomeproblems,andyoucanusesymbolslikeÐand^and@whenyouwriteaboutgeometryproblems.Butmathematicsismuchmoreaboutexploringpatterns,makingconjectures,explainingresultsandjustifyingsolutions.Theseactivitiesrequireustowritewithwordsincompletesentencesthatusemathematicallanguageandlogicappropriately.

Page 15: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

14

Symbolsareatoolwewilluse.Butfornow,youshouldfocusonwritingwithwords–clearly,completely,correctly,andconvincingly.Asfutureteachersyoumustpracticecommunicatinginthelanguageofmathematics.Youwillhaveachancetopracticerightnowinthehomework.Homework

Youalwayspassfailureonthewaytosuccess.

MickeyRooney(MQS)

1) TheTangrampuzzleiscomposedofsevenshapesincludingonesquare,oneparallelogram,twosmallisoscelesrighttriangles,onemedium-sizedisoscelesrighttriangle,andtwolargeisoscelesrighttriangles.Inthediagrambelow,thesevenpiecesarearrangedsothattheyfittogethertoformasquare.a) Tracethepieces,cutthemout,andthenidentifyeachone.Lookuptheterms

isosceles,righttriangleandparallelogramintheglossaryandlearnthosedefinitions.

b) Figureouthowtorearrangeallsevenpiecestoformatrapezoid.Noticethatyoufirstneedtounderstandtheproblem.Lookupthedefinitionofatrapezoidifyouneedtodoso.

c) Reflectonyourproblemsolvingstrategiesandwriteadescriptionofthestrategies

youusedtoworkontheaboveTangrampuzzle.

d) Explainthesolutionbygivingcarefulinstructions,usingwordsonly(nopictures),forarrangingthesevenpiecestoformatrapezoid.

Page 16: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

15

2) ChildrenintheearlyelementarygradescansolvepuzzlessimilartotheTangrampuzzleusingpatternblocks(asetofflatblocksinsixshapes:regularhexagon,isoscelestrapezoid,tworhombi,square,andequilateraltriangle).Lookupthetermsrhombus(thepluralformofrhombusisrhombi)andhexagonintheglossary,thendotheactivitydescribedbelow.

a) Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade1TeachersGuide(yourprofessorshouldhaveacodeforyoutoviewthis).Spend10-15minuteslookingthroughUnit5Module1.ThenworkthroughPatternBlockPuzzle3.Howmanydifferentwaysarepossibletofillthisshape?Seeifyoucanfindatleast5.

b) Whatmightchildrenlearnabouttherelationshipsamongthepatternblocksbyworkingontheseproblems?

Page 17: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

16

3) HereisapictureofallsevenTangrampiecesrearrangedtomakeatriangle.

Youaregoingtobeginto“justifythatwearecorrect.”Thisinvolvesarguingthatthepiecesreallydofittogetherasshown.(Rememberthatjust“lookingliketheyfit”isn’tgoodenough.)Yougettoassumethattheoriginalpiecesreallyareallperfectshapesandthattheyoriginallyfitperfectlytoformasquarelikethis:

a) Arguethatthevertexoftheyellowtrianglealongwiththeverticesofthelargeorangeandbluetrianglesreallydomeettomake180degrees(theyformastraightangle)atthebottomedgeofthepuzzle.

b) Arguethattheedgeoftheorangetrianglefitsperfectlywiththeedgesofthesquareandyellowtriangleandthatthebigbluetrianglereallyfitsperfectlyalongtheedgesoftheparallelogramandyellowtriangle.

Page 18: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

17

ClassActivity2:DefiningMoments

Wherethereismatter,thereisgeometry.JohannesKepler(1571-1630)

Mathematicaldefinitionsareimportanttomathematiciansbecausetheygiveustheexactcriteriaweneedtoclassifyobjects.Usethedefinitionofapolygontodecidewhethereachoftheobjectsthesketchcallstomindarepolygons.Ifanobjectdoesnotmeetthedefinition,explainexactlyhowitfails.Visittheglossaryifyouneedtolookupterms.Apolygonisasimple,closedcurveintheplanecomposedonlyofafinitenumberoflinesegments.

1) 2)3) 4) 5)6) 7)

8) 9)

Page 19: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

18

ReadandStudy

Everythingyou’velearnedinschoolas“obvious”becomeslessandlessobviousasyoubegintostudytheuniverse.Forexample,therearenosolidsintheuniverse.There’snotevenasuggestionofasolid.Therearenosurfaces.Therearenostraightlines. R.BuckminsterFuller

Mathematicianscaredeeplyaboutthewordsweusetotalkaboutmathematics.Wehavemanyspecialwords,likeisosceles,thatdonotappearineverydaylanguage.Thesewordshaveprecisedefinitionsthatprovidepowerfulknowledgeabouttheobjectstowhichtheyrefer.Evencommonwordslikerighttakeonspecialmeaningwhentheyareusedinmathematicaltalk.Wewillsaylots,andwemeanlots,moreaboutthetermsweuseinmathematicsthroughoutthepagesofthisbook.Everytimeyouencounteratermyoudon’tknow,lookupthedefinitionintheglossaryandmakecertainyouunderstandjusthowthewordisusedinmathematicaltalk.Tohelpyoudothis,wewillcontinuetounderlineandboldfacemathematicaltermsthefirsttimeweusethem.Thiswillletyouknowthatthewordhasaparticularmeaninginmathematicstowhichyouneedtopayattention.Mathematicaldefinitionsaresoimportantbecause:

1) Definitionsprovideprecisecriteriafordescribingandclassifyingtheseidealobjects;

2) Definitionsdescriberelationshipsamongobjects;and

3) Definitionsgiveusthepowertomakemathematicalarguments.

Let’stalkabitmoreabouteachofthese.IntheClassActivityyouhadtheopportunitytomakesenseofadefinitionandtouseittoclassifypolygons.Diditsurpriseyouthatthedefinitionreliedonsomanyotherterms?Afterall,theideaofapolygondoesn’tseemthatcomplicated.Howeveryouwillfindthatyourstudentshavemanydifferentideasinmindaboutpolygons.Somewillthinkthatsolidshapesarepolygons.Somemightclassifyshapeswithcurvededges(likecircles)aspolygons.Inordertobesurethatweareallimaginingthesameidealobjects,wemustallhavethesamedefinition.Thatsaid,wehavetostartsomewherewhenwritingourdefinitions,andthatmeansthatnotalltermscanbepreciselydefined.Inparticular,ingeometry,weacceptthefollowingideasasundefined:point,line,plane,andspace.Thesetermscorrespondtothe0-dimensional,the1-dimensional,the2-dimensional,andthe3-dimensionalobjectstowhichthedefinitionsofgeometryapply.

Page 20: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

19

Maybeitseemsstrangethatsuchafundamentalobjectasalineisanundefinedterm,buteventhoughwedon’tdefineit,wecanunderstandalinetobeacollectionofpoints(alsoundefined)thatobeysasetofrules.Wehaveintuitiveideasaboutwhatapointorlineis,butwecanbestunderstandortalkaboutpointsorlinesintermsofamodel.Usefulmodelsofalineincludethecreaseinasheetofpaper,thestraightedgewherethewallofaroommeetsthefloor,atautpieceofthinstring,orthepicturebelow.Ofcourseeachofthesemodelsisonlyarepresentationofaline.A“true”linehasnowidthatall–onlylength–anditextendsindefinitelyinbothdirections.Likeallothermathematicalobjects,a“true”lineisanidealobject–itexistsonlyinourminds.Itmayalsoseemstrangethatwecan’tdefinealinebysayingthatitis“straight.”Thepropertyof“straightness”isanotherintuitiveideathatcarrieswithitthenotionof“shortestdistance.”Thatis,wesaythatalineis“straight”ifitismeasuringtheshortestdistancebetweenpoints(the“tautstring”idea).Theseintuitiveideasof“straight”workwellonflatsurfaces(andintheworldofEuclideangeometry),butarenotashelpfuloncurvedsurfacessuchasasphere.Whatistheshortestdistancebetweentwopointsonasphere?Findaball(oranorangeoraglobe)andastringandhavealook.Twocommonmodelsforaplaneareaflatsheetofpaperandthesurfaceofawhiteboard(providedwerememberthateachisonlyaportionoftheplanewhichactuallyextendsinfinitelyinalldirections).Asecondwaythatweusedefinitionsistocreaterelationshipsbetweenobjects.Forexample,wesaythattwolinesareparalleliftheylieinthesameplaneanddonotintersect.Thisdefinitionhelpsusunderstandtherelationshipbetweenlinesthatareparallelprovidedweunderstandwhataplaneisandwhatitmeansforlinestointersect.Alternatively,wecansaythattwolinesareparalleliftheylieinthesameplaneanddonothaveanypointsincommon.Thisseconddefinitionincorporatestheideaofnon-intersectionwithoutusingawordthatmaynotbeknown.Weusedefinitionsinathirdwaywhenwemakearguments.Wewilltalkaboutthisfurtherinthenextsection,butfornow,let’slookatasimpleexample:Supposewewanttoarguethatnotrianglecanalsobeasquare.Sincethedefinitionofatrianglestatesthatitisapolygonwithexactlythreesidesandthedefinitionofasquarestatesthatitisapolygonwithexactlyfourcongruentsidesandfourrightangles,andsincethreedoesnoteverequalfour;wecanconcludethatitisnoteverpossibleforatriangletohavefoursides.Soatrianglecanneveralsobeasquare.Nowthisargumentmayseemtrivial,butthepointhereisthatweusedefinitionstomakearguments.Usethedefinitionsof“parallel”and“perpendicular”toarguethattwolinesthatareparallelcanneveralsobeperpendicular.

Page 21: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

20

ConnectionstotheElementaryGrades

Inprekindergartenthroughgrade2allstudentsshouldrecognize,name,build,draw,compare,andsorttwo-andthree-dimensionalshapes.

NCTMPrinciplesandStandardsforSchoolMathematics,2000Inrecentyearsmoststates(includingWisconsin)haveadoptedcommonstandardsforschoolmathematics.Thesestandards,calledtheCommonCoreStateStandards(CCSS),prescribethemathematicalcontentandpracticesthatteachersshouldaddressateachgradelevel.Asafutureteacher,youwillneedtoknowandunderstandthem.Thepracticestandardsdescribeexpectationsforstudentsacrossallgradelevels.Whichofthesestandardshaveyouexperiencedsofarinthisclass?

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdfInthisbook,wewillfocusonthecontentstandardsrelatedtogeometryandmeasurement,andwewillbeginnowwithgeometryforchildreninkindergartenandfirstgrade.Takeaminutereadthem.

CommonCoreStateStandardsforMathematicalPractice

Childrenshould…

1. Makesenseofproblemsandpersevereinsolvingthem.2. Reasonabstractlyandquantitatively.3. Constructviableargumentsandcritiquethereasoningofothers.

4. Modelwithmathematics.

5. Useappropriatetoolsstrategically.

6. Attendtoprecision.

7. Lookforandmakeuseofstructure.

8. Lookforandexpressregularityinrepeatedreasoning.

Page 22: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

21

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

Inordertohelpchildrentodistinguishbetweendefiningandnon-definingattributes,youmightaskchildrentosortshapesintocategories.Forexample,youmightaskthattheyidentifyallthetrianglesinthefollowinggroupofshapes:

CCSSKindergarten:GeometryIdentifyanddescribeshapes(squares,circles,triangles,rectangles,hexagons,cubes,cones,cylinders,andspheres).

1. Describeobjectsintheenvironmentusingnamesofshapes,anddescribetherelativepositionsoftheseobjectsusingtermssuchasabove,below,beside,infrontof,behind,andnextto.

2. Correctlynameshapesregardlessoftheirorientationsoroverallsize.

3. Identifyshapesastwo-dimensional(lyinginaplane,“flat”)orthree-dimensional(“solid”).

Analyze,compare,create,andcomposeshapes.

4. Analyzeandcomparetwo-andthree-dimensionalshapes,indifferentsizesandorientations,usinginformallanguagetodescribetheirsimilarities,differences,parts(e.g.,numberofsidesandvertices/“corners”)andotherattributes(e.g.,havingsidesofequallength).

5. Modelshapesintheworldbybuildingshapesfromcomponents(e.g.,sticksandclayballs)anddrawingshapes.

6. Composesimpleshapestoformlargershapes.Forexample,“Canyoujointhese

twotriangleswithfullsidestouchingtomakearectangle?”

Page 23: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

22

Whatconversationscouldyouhavewithchildrenregardingthisactivity?InwhatwaysmightyouuseittoaddresstheCCSSforkindergarten?

(http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

Anotherideaistoaskchildrentomakeuptherule,sorttheshapes,andthenhaveotherchildrenfigureoutarulethatwillgivethesame“sort.”Childrensometimesattendtoattributesinsolvingsortingproblemsthatwe,asmathematicians,wouldnotpayattentionto.Thusactivitiesliketheseprovideopportunitiestodrawchildren’sattentiontodifferentthings.Forexample,manychildrenwouldsaythatthis

figure▼is“upsidedown”orthattheseare“differentshapes”becausetheyareorienteddifferently.Mathematicianswouldsaythattheabovefiguresarethesameshape.Theydonottakeorientationoftwo-dimensionalshapesintoaccountwhendecidingifthoseshapesare“thesame.”Belowweshowa“studentsort”fromafirstgradeclassroom.CanyoufigureoutDevione’srule?Istheremorethanonerulethatcouldgivethesamesort?

CCSSGrade1:GeometryReasonwithshapesandtheirattributes.

1. Distinguishbetweendefiningattributes(e.g.,trianglesareclosedandthree-sided)versusnon-definingattributes(e.g.,color,orientation,overallsize);buildanddrawshapestopossessdefiningattributes.

2. Composetwo-dimensionalshapes(rectangles,squares,trapezoids,triangles,half-circles,andquarter-circles)orthree-dimensionalshapes(cubes,rightrectangularprisms,rightcircularcones,andrightcircularcylinders)tocreateacompositeshape,andcomposenewshapesfromthecompositeshape.

3. Partitioncirclesandrectanglesintotwoandfourequalshares,describetheshares

usingthewordshalves,fourths,andquarters,andusethephraseshalfof,fourthof,andquarterof.Describethewholeastwoof,orfouroftheshares.Understandfortheseexamplesthatdecomposingintomoreequalsharescreatessmallershares.

Page 24: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

23

TheseshapesfitMyRule TheseshapesdonotfitMyRule

TheCommonCoreStateStandardsaskthatyou,asateacher,alsohelpchildrentotalkaboutthepositionofobjects,toreasonabouthowobjectsarecomposedofotherobjects,andtorecognizewhetheranobjectistwo-dimensional(flat)orthree-dimensional.Whataresomeactivitiesthatyoumightdowithchildrentoaccomplishthesethings?

Page 25: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

24

A B

Homework Theonlyplacesuccesscomesbeforeworkisinthedictionary. VinceLombardi

1) DoalltheitalicizedthingsintheReadandStudysection.

2) DoalltheitalicizedthingsintheConnectionssection.

3) Thereareseveraltermsassociatedwithlinesthatyouneedtounderstandandusewithpropernotation.Takeafewminutestostudythese.

Supposewehavethethreepoints,A,B,andC.(Noticethatmathematicianscustomarilyusecapitallettersfromthebeginningofthealphabettodenotepoints.SometimeswearetalkingaboutenoughpointsthatwemakeitallthewaytoZ,butwealmostalwaysstartwithA.)ThelineABistheentiresetofpointsextendingforeverinbothdirections.We

commonlydenotealineas AB andrepresent AB asshownbelow(notethearrowsateachendindicatingthatthelinecontinues):

TherayABisthesetofpointsincludingAandallthepointsonthelineABthatareontheBsideofA.ThepointAiscalledthevertexoftheray.WecommonlydenotearayasAB andrepresent ABasshownbelow:

ThelinesegmentABisthesetofpointsbetweenAandB,includingbothAandB,whicharecalledtheendpointsofthelinesegment.WecommonlydenotealinesegmentasAB andrepresent AB asshownbelow:

4) Visittheglossaryandlearntheprecisedefinitionsforeachofthefollowingterms:square,

parallelogram,rectangle,rhombus,andtrapezoid.Makesureyoucanexplainthedefinitionsusinggoodmathematicallanguage.Sketchanexampleofeach.

A B

A B

Page 26: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

25

Concave PolygonsConvex Polygons

5) Whichpropertiesaresufficienttodefinearectangle?Thatis,ifaquadrilateralhasaparticularproperty,doyouknowforcertainthatthequadrilateralmustbearectangle?Explainwhyyouransweris‘yes’or‘no’ineachcase.

a) Ifaquadrilateralhastwosetsofcongruentsides,thenitmustbearectangle.b) Ifaquadrilateralhasoppositeanglescongruent,thenitmustbearectangle.c) Ifaquadrilateralhasdiagonalsthatbisecteachother,thenitmustbearectangle.d) Ifaquadrilateralhastworightangles,thenitmustbearectangle.e) Ifaquadrilateralhascongruentdiagonals,thenitmustbearectangle.f) Ifaquadrilateralhasperpendiculardiagonals,thenitmustbearectangle.g) Ifaquadrilateralhastwosetsofparallelsidesandonerightangle,thenitmustbea

rectangle.h) Ifaquadrilateralhastwosetsofcongruentsidesandonerightangle,thenitmustbe

arectangle.

6) Studythefollowingexamplesandformadefinitionofeachoftheseterms:convexandconcave,inyourownwords.Thenlookupthemathematicaldefinitionsintheglossary.Explainthemathematicaldefinitionsinyourownwords.

7) Athirdgradeclassweobservedwaslearningaboutparallellines.Theteacherexplained

thatparallellinesarelinesintheplanethathavenocommonpoints.Thenshedrewthepicturebelowandaskedthechildrenwhetherthelinesshownwereparallelornot.

Severalchildrenarguedthattheywereparallel.Whymighttheyhavesaidthat,andwhatwouldyousaytothemastheirteacher?

Page 27: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

26

ClassActivity3:GetitStraight

Gobackalittletoleapfurther. JohnClarke

1) Hereisanactivitytohelpyourupperelementarychildrenmaketheconjecturethattakentogether,theanglesofanytrianglecanformastraightangle.Eachgroupshouldcutoutalargeobtusetriangle,alargeacutetriangleandalargerighttriangle.Foreachtriangle,labelthevertexangles(inanyorder)#1,#2and#3.Then,foreachtriangle,tearoffthethreecornersandputthemtogethersothattheanglesareadjacent.Dothis,anddiscusswhatchildrenmightlearn.Didthisactivityprovethattheanglesofatrianglealwayscanformastraightangle?Whyorwhynot?

2) Again,asinpart1),eachgroupshouldcreatealargeobtusetriangle,alargeacutetriangleandalargerighttriangleand,foreachtriangle,labelthevertexangles#1,#2and#3.Butinsteadoftearingoffthecorners,thistimehaveonepersonuseaprotractortocarefullymeasureeachanglelabeled#1,anotherpersonmeasureeachanglelabeled#2,andanotherpersonmeasureeachanglelabeled#3(eachwithoutlookingattheothers’measurements).Wasthetotalanglemeasureforeachtriangle180degrees?Shouldithavealwaysbeen?Explainanydiscrepancies.

(continuedonthenextpage)

Page 28: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

27

3) Ourexplorationsinparts1)and2)mighthaveconvincedyouthatthesumofthevertexanglesofanytriangleisthesameasastraightangle,butmathematiciansdonotconsidereitherofthosedemonstrationstobeaproof.Whynot,doyouthink?Nowwearegoingtolearntomathematicallyprovethatsumofthevertexanglesofanytriangleisthesameasastraightangle.

Step1.Startwithanytriangle:Nowwe’llcreatealinethroughonevertexthatisparalleltotheoppositesideofthetriangleandlabelalltheanglessowecantalkaboutthem.Weknowwecanalwaysdothisbecauseitisanaxiomofplanegeometrythatthroughapointnotonalinetherecanbedrawnone(andonlyone)lineparalleltothegivenline.

Bytheway,itshouldn’tbeobvioustoyouwhywe’vedecidedtocreatethisparallelline;itjustturnsouttogiveusagreatwaytobeginourproof.InStep2,wearegoingtoprovethatÐ1iscongruenttoÐ5,andthatÐ2iscongruenttoÐ4.Sofornow,supposingthistobetrue,arguethatangles1,2,and3wouldcombinetoformastraightangle.

(continuedonthenextpage)

m

5

432

1

B

A

C

Page 29: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

28

Step2.Thisistheonlymissingpieceofourproof.Lookupthedefinitionsofatransversalandofalternateinteriorangles.CanyouseethatÐ1andÐ5arealternateinteriorangles?Whatisthecorrespondingtransversal?

CanyouseethatÐ2andÐ4arealternateinteriorangles?Whatisthecorrespondingtransversal?Nowarguethatiftwoparallellinesarecutbyatransversal,thenthealternateinterioranglesarecongruent.Youmayassumethatiftwoparallellinesarecutbyatransversal,thentheinterioranglesonthesamesideofthetransversalformastraightangle.(Note:Thisisabigthingtoassume.ItisoneofEuclid’sfundamentalassumptionsaboutgeometry.)

Page 30: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

29

ReadandStudy

Iargueverywell.Askanyofmyremainingfriends.Icanwinanargumentonanytopic,againstanyopponent.Peopleknowthisandsteerclearofmeatparties.Often,asasignoftheirgreatrespect,theydon’teveninviteme.

DaveBarryMathematicalthinkingalwaysinvolvesreasoningandmakingarguments,andwehaveawholevocabularyfordescribingthatprocess.Inthissection,wehighlightthetermswemathematiciansusetodescribefacetsofdoingmathematics.Theseareimportant.Makesureyouunderstandthem.

1) Anaxiomisastatementthatweagreetoacceptwithoutproof.Itisanassumptionorstartingpoint.(Note:Anotherwordforaxiomispostulate.)

2) Inductivereasoningiscomingtoaconclusionbasedonexamples.Forexample,Iobservethat3,5and7areallprimenumbers.Now,basedontheseexamplesImightreason(incorrectly,bytheway)thatalloddnumbersareprime.OrImightnoticethatthesunrosedaybeforeyesterday,itroseyesterday,itrosetoday.SoImightconcludethatthesunwillrisetomorrow.Thisisinductivereasoning.

3) Deductivereasoningiscomingtoconclusionbasedonlogic.Forexample,Iwillargue

deductivelythatthesunwillcomeuptomorrow:Theearthiscaughtinthesun’sgravitysoitwon’tfloataway,andtheearthisspinning.Wearehereontheearthandsowhenourpartoftheearthturnstowardthesun,wesayit“comesup.”Aslongasnocatastropheoccurstochangethesefacts,thesunwillrisetomorrow.We’llgiveyouanother(moremathematical)exampleinaminute.

4) Aconjectureisahypothesisoraguessaboutwhatistrue.Forexample,aftersome

experiencewithcircles,astudentmightconjecturethattwointersectingcirclesalwayssharetwodistinctpointsincommon.Conjecturesareoftenmadebasedoninductivereasoning.

5) Acounterexampleisaspecificexamplethatshowsaconjectureisfalse.Forexample,

thetwocirclesbelowaretangent(theyshareexactlyonepointincommon)andsotheaboveconjectureisshowntobefalsebythecounterexampleshownhere:

Page 31: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

30

6) proof:amathematicalproofconsistsofadeductiveargumentthatestablishesthetruth

ofaclaim.(Note:Bytruthwemeantruthinthecontextofthemathematicalworldthatiscreatedbytheaxioms.Somethingistrueifitisalogicalimplicationoftheaxioms.)

7) theorem:atheoremisamathematicalstatementthathasbeenprovedtobetrue.For

example,itisatheoremthatverticalanglesarecongruent.YouprovedthisintheClassActivity.(Note:Anotherwordfortheoremisproposition.)

WearegoingtousewhatyoudidintheClassActivitytohighlightthemeaningofsomeoftheseterms.First,youtoreapartavarietyoftrianglesandarrangedthemtoseethateachappearedtohaveastraightangle(180degrees)ofvertexangles.Thiswasinductivereasoning,becauseyouweretestingexamplesoftrianglestoseewhatseemedtrueabouttheirvertexanglemeasure.Atthispointitwouldhavebeenreasonabletoconjecturethatthesumofthevertexanglesofatriangleis180degrees.Thenyouwereaskedtomakeanargumentusingdefinitions,axioms,andlogicthatyouwerecorrect.Inotherwordsyougaveaproofthatthevertexanglesofatrianglesumto180degrees,andnowthatconjectureiscalledatheorem.Oneofthereasonsthatgeometryclass(remembertenthgrade?)hastraditionallyfocusedonproofisthattheaxiomsofgeometryareeasiertostatethantheaxiomsofarithmetic.Butproofispartofallmathematics.Don’tworry,wearenotplanningtofocusontwo-columnproofsoranaxiomaticdevelopmentofgeometry,butwewouldberemissifwedidn’tatleaststatetheoriginalaxioms(assumptions)ofplanegeometry.TheaxiomswerefirstmadeexplicitbyEuclid,aGreekmathematicianwholivedandworkedattheAcademyinAlexandria,Egypt.Heisbestknownforwritinga13-volumebookofmathematicscalledTheElements-thesecondmostpublishedbookintheworld.Ithasbeenusedasamathematicstextbookforover2000years.Inthefirsttwovolumesofthiswork,hedevelopedallofthe(then)knowntheoremsabouttwo-dimensional(plane)geometrystartingwithjustfiveaxioms:

TheAxiomsofEuclideanGeometry:

1. Auniquestraightlinesegmentcanbedrawnfromanypointtoanyotherpoint.

2. Alinesegmentcanbeextendedtoproduceauniquestraightline.

3. Auniquecirclemaybedescribedwithagivencenterandradius.

Page 32: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

31

4. Allrightanglesareequaltoeachother.

5a.Ifastraightlinefallingontwostraightlinesmaketheinterioranglesonthesameside

lessthantworightangles,thetwostraightlines,ifproducedindefinitely,meetonthat

sideonwhicharetheangleslessthanthetworightangles.

5b.Throughapointnotonalinetherecanbedrawnexactlyonelineparalleltothegiven

line.

Uponassumingaxioms1-4,axioms5aand5bareequivalent.Axiom5aisEuclid’sversion,and5bisamoremoderninterpretationknownasPlayfair’sAxiom.Lookinthisbook’sappendixandyouwillfindtheaxioms(postulates)andtheorems(propositions)fromBook1ofEuclid’sElements,writtenmorethan2,000yearsago.Axiom5aishisfifthpostulate.Youmayfinditinterestingthatuntilthelate1800s,manymathematiciansthoughtEuclid’sfifthaxiomwasredundant–thatitalreadyhadtobetrueifaxioms1-4wereassumedtobetrue–butithassincebeenproventhatthosemathematicianswerewrong.Noticethateachoftheaxiomsdescribessomethingthatcanbeconstructedwiththeexceptionofthefourth.Axiom4saysthattheEuclideanplaneis,insomesense,uniform(nodistortions).Namely,itsaysthatwhereveryouconstructaperpendicularlinesontheplane(andsoformfourangles),thoseangleswillallhavethesamemeasure.ItturnsoutthatEuclidmadesomeimplicitassumptionsthatheshouldhavestatedasadditionalaxiomsinordertodogeometryrigorously–andsomodernmathematicianshaveextendedhislistofaxioms.Butyoudon’tneedtoworryaboutthosetechnicalitiesinthiscourse.Sketchapictureofaxioms1–3and5tohelpyoumakesenseofeach.Then,describehowyoucancreateanequilateraltrianglebyfollowingEuclid’saxioms.WealsowanttonotethatEuclidoftenusedtheword“equal”whenwewouldusetheword“congruent.”Today’smathematiciansuse“equal”whentheywanttocomparetwonumbers.Sowemightsaythat½isequalto0.5.Weusetheword“congruent”whenwewanttosaythattwoobjects(liketwotrianglesortwosegments)arethesamesizeandshape.Thebasicidea

Page 33: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

32

hereisthattwoobjectsarecongruentinthecasewhereifoneobjectwasmovedtolieontopoftheotherobject,theywouldcorrespondexactly.Wewilldoamorecarefuljobofdefining“congruent”later.Whileprovingtheoremsisnotthefocusofthiscourse,wemayoccasionallyaskthatyoutrytoproveaEuclideantheorem.Whenwedo,youshouldturntotheAppendix(startingonp.168)whereEuclid’spostulates(axioms)andpropositionsarelistedandfindit.Thenyouarefreetouse(assume)anypostulateandanypropositionlistedbeforetheoneyouaretryingtoprove.Forexample,sayyouwanttoprovethatinanisoscelestriangle,thebaseanglesarecongruent.GototheAppendix(reallydoit)andseeifyoucanfindthattheorem.Thencomerightbackhere.Let’sendthissectionwiththebigidea:Geometryintheplanearisesfromsomeintuitiveidealobjects,theirmathematicaldefinitions,thesefiveaxioms,andalotofdeductivereasoning.Infact,asecondpossibledefinitionofgeometryisthis:anaxiomaticsystemaboutidealobjectscalled“points,”collectionsofpointscalled“lines,”andtherelationshipsbetweenpointsandlines.ConnectionstotheElementaryGrades

Instructionalprogramsfromprekindergartenthroughgrade12shouldenableallstudentstorecognizereasoningandproofasfundamentalaspectsofmathematics;tomakeandinvestigatemathematicalconjectures;todevelopandevaluatemathematicalargumentsandproofs;andtoselectandusevarioustypesofreasoningandmethodsofproof.

ReasoningandProofStandard,NCTMPrinciplesandStandardsforSchoolMathematics,2000

Itisimportantthatyouprovidechildreninyourfutureclasseswiththeopportunitiestoreallydomathematics.Theytooneedtouseinductivereasoning,makeconjectures,lookforcounterexamples,andmakedeductivearguments.Inordertounderstandbetterwhatyoushouldexpectfromchildren,readthefollowingfromthediscussionoftheReasoningandProofstandardforthePreK–2gradebandfoundinNCTMPrinciplesandStandardsforSchoolMathematics,2000,pages122–125.Noticetheiruseofmathematicallanguage.

Whatshouldreasoningandprooflooklikeinprekindergartenthroughgrade2?p.122

Theabilitytoreasonsystematicallyandcarefullydevelopswhenstudentsareencouragedtomakeconjectures,aregiventimetosearchforevidencetoproveordisprovethem,andareexpectedtoexplainandjustifytheirideas.Inthebeginning,perceptionmaybethepredominantmethodofdeterminingtruth:ninemarkersspreadfarapartmaybeseenas“more”thanelevenmarkersplacedclosetogether.Later,asstudentsdeveloptheir

Page 34: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

33

mathematicaltools,theyshoulduseempiricalapproachessuchasmatchingthecollections,whichleadstotheuseofmore-abstractmethodssuchascountingtocomparethecollections.Maturity,experiences,andincreasedmathematicalknowledgetogetherpromotethedevelopmentofreasoningthroughouttheearlyyears.»

Creatinganddescribingpatternsofferimportantopportunitiesforstudentstomakeconjecturesandgivereasonsfortheirvalidity,asthefollowingepisodedrawnfromclassroomexperiencedemonstrates.

Thestudentwhocreatedthepatternshowninfigure4.27proudlyannouncedtoherteacherthatshehadmadefourpatternsinone.“Look,”shesaid,“there’striangle,triangle,circle,circle,square,square.That’sonepattern.Thenthere’ssmall,large,small,large,small,large.That’sthesecondpattern.Thenthere’sthin,thick,thin,thick,thin,thick.That’sthethirdpattern.Thefourthpatternisblue,blue,red,red,yellow,yellow.”

Herfriendstudiedtherowofblocksandthensaid,“Ithinktherearejusttwopatterns.See,theshapesandcolorsareanAABBCCpattern.ThesizesareanABABABpattern.ThickandthinisanABABABpattern,too.Soyoureallyonlyhavetwodifferentpatterns.”Thefirststudentconsideredherfriend’sargumentandreplied,“Iguessyou’reright—butsoamI!”

Fig.4.27.Fourpatternsinone

Beingabletoexplainone’sthinkingbystatingreasonsisanimportantskillforformalreasoningthatbeginsatthislevel.

Findingpatternsonahundredboardallowsstudentstolinkvisualpatternswithnumberpatternsandtomakeandinvestigateconjectures.Teachersextendstudents’thinkingbyprobingbeyondtheirinitialobservations.Studentsfrequentlydescribethechangesinnumbersorthevisualpatternsastheymovedowncolumnsoracrossrows.Forexample,askedtocoloreverythirdnumberbeginningwith3(seefig.4.28),differentstudentsarelikelytoseedifferentpatterns:“Somerowshavethreeandsomehavefour,”or“Thepatterngoessidewaystotheleft.”Somestudents,seeingthediagonalsinthepattern,willnolongercountbythreesinordertocompletethepattern.Teachersneedtoaskthesestudentsto

Page 35: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

34

explaintotheirclassmateshowtheyknowwhattocolorwithoutcounting.Teachersalsoextendstudents’mathematicalreasoningbyposingnewquestionsandaskingforargumentstosupporttheiranswers.“Youfoundpatternswhencountingbytwos,threes,fours,fives,andtensonthehundredboard.Doyouthinktherewillbepatternsifyoucountbysixes,sevens,eights,ornines?Whataboutcountingbyelevensorfifteensorbyanynumbers?”Withcalculators,studentscouldextendtheirexplorationsoftheseandothernumericalpatternsbeyond100.

Fig.4.28.Patternsonahundredboard

p.123

Students’reasoningaboutclassificationvariesduringtheearlyyears.Forinstance,whenkindergartenstudentssortshapes,onestudentmaypickupabigtriangularshapeandsay,“Thisoneisbig,”andthenputitwithotherlargeshapes.Afriendmaypickupanotherbigtriangularshape,traceitsedges,andsay,“Threesides—atriangle!”andthenput»itwithothertriangles.Bothofthesestudentsarefocusingononlyoneproperty,orattribute.Bysecondgrade,however,studentsareawarethatshapeshavemultiplepropertiesandshouldsuggestwaysofclassifyingthatwillincludemultipleproperties.

Bytheendofsecondgrade,studentsalsoshouldusepropertiestoreasonaboutnumbers.Forexample,ateachermightask,“Whichnumberdoesnotbelongandwhy:3,12,16,30?”Confrontedwiththisquestion,astudentmightarguethat3doesnotbelongbecauseitistheonlysingle-digitnumberoristheonlyoddnumber.Anotherstudentmightsaythat16doesnotbelongbecause“youdonotsayitwhencountingbythrees.”Athirdstudentmighthaveyetanotherideaandstatethat30istheonlynumber“yousaywhencountingbytens.”

Studentsmustexplaintheirchainsofreasoninginordertoseethemclearlyandusethemmoreeffectively;atthesametime,teachersshouldmodelmathematicallanguagethatthe

Page 36: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

35

studentsmaynotyethaveconnectedwiththeirideas.Considerthefollowingepisode,adaptedfromAndrews(1999,pp.322–23):

Onestudentreportedtotheteacherthathehaddiscovered“thatatriangleequalsasquare.”Whentheteacheraskedhimtoexplain,thestudentwenttotheblockcornerandtooktwohalf-unit(square)blocks,twohalf-unittriangular(triangle)blocks,andoneunit(rectangle)block(showninfig.4.29).Hesaid,“Ifthesetwo[squarehalf-units]arethesameasthisoneunitandthesetwo[triangularhalf-units]arethesameasthisoneunit,thenthissquarehastobethesameasthistriangle!”

Fig.4.29.Astudent’sexplanationoftheequalareasofsquareandtriangularblockfaces

p.124Eventhoughthestudent’swording—thatshapeswere“equal”—wasnotcorrect,hewasdemonstratingpowerfulreasoningasheusedtheblockstojustifyhisidea.Insituationssuchasthis,teacherscouldpointtothefacesofthetwosmallerblocksandrespond,“Youdiscoveredthat»theareaofthissquareequalstheareaofthistrianglebecauseeachofthemishalftheareaofthesamelargerrectangle.”

Whatshouldbetheteacher’sroleindevelopingreasoningandproofinprekindergarten

throughgrade2?

Teachersshouldcreatelearningenvironmentsthathelpstudentsrecognizethatallmathematicscanandshouldbeunderstoodandthattheyareexpectedtounderstandit.Classroomsatthislevelshouldbestockedwithphysicalmaterialssothatstudentshavemanyopportunitiestomanipulateobjects,identifyhowtheyarealikeordifferent,andstategeneralizationsaboutthem.Inthisenvironment,studentscandiscoveranddemonstrate

Page 37: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

36

generalmathematicaltruthsusingspecificexamples.Dependingonthecontextinwhicheventssuchastheoneillustratedbyfigure4.29takeplace,teachersmightfocusondifferentaspectsofstudents’reasoningandcontinueconversationswithdifferentstudentsindifferentways.Ratherthanrestatethestudent’sdiscoveryinmore-preciselanguage,ateachermightposeseveralquestionstodeterminewhetherthestudentwasthinkingaboutequalareasofthefacesoftheblocks,oraboutequalvolumes.Oftenstudents’responsestoinquiriesthatfocustheirthinkinghelpthemphraseconclusionsinmore-precisetermsandhelptheteacherdecidewhichlineofmathematicalcontenttopursue.

Teachersshouldpromptstudentstomakeandinvestigatemathematicalconjecturesbyaskingquestionsthatencouragethemtobuildonwhattheyalreadyknow.Intheexampleofinvestigatingpatternsonahundredboard,forinstance,teacherscouldchallengestudentstoconsiderotherideasandmakeargumentstosupporttheirstatements:“Ifweextendedthehundredboardbyaddingmorerowsuntilwehadathousandboard,howwouldtheskip-countingpatternslook?”or“Ifwemadechartswithrowsofsixsquaresorrowsoffifteensquarestocounttoahundred,wouldtherebepatternsifweskip-countedbytwosorfivesorbyanynumbers?”

Throughdiscussion,teachershelpstudentsunderstandtheroleofnonexamplesaswellasexamplesininformalproof,asdemonstratedinastudyofyoungstudents(CarpenterandLevi1999,p.8).Thestudentsseemedtounderstandthatnumbersentenceslike0+5869=5869werealwaystrue.Theteacheraskedthemtostatearule.Annsaid,“Anythingwithazerocanbetherightanswer.”Mikeofferedacounterexample:“No.Becauseifitwas100+100that’s200.”Annunderstoodthatthisinvalidatedherrule,sosherephrasedit,“Isaid,umm,ifyouhaveazeroinit,itcan’tbelike100,becauseyouwantjustplainzerolike0+7=7.”

Thestudentsinthestudycouldformrulesonthebasisofexamples.Manyofthemdemonstratedtheunderstandingthatasingleexamplewasnotenoughandthatcounterexamplescouldbeusedtodisproveaconjecture.However,moststudentsexperienceddifficultyingivingjustificationsotherthanexamples.

p.125Fromtheverybeginning,studentsshouldhaveexperiencesthathelpthemdevelopclearandprecisethoughtprocesses.Thisdevelopmentofreasoningiscloselyrelatedtostudents’languagedevelopmentandisdependentontheirabilitiestoexplaintheirreasoningratherthanjust»givetheanswer.Asstudentslearnlanguage,theyacquirebasiclogicwords,includingnot,and,or,all,some,if...then,andbecause.Teachersshouldhelpstudentsgainfamiliaritywiththelanguageoflogicbyusingsuchwordsfrequently.Forexample,ateachercouldsay,“Youmaychooseanappleorabananaforyoursnack”or“Ifyouhurryandputonyourjacket,thenyouwillhavetimetoswing.”Later,studentsshouldusethewordsmodeledforthemtodescribemathematicalsituations:“Ifsixgreenpatternblockscoverayellowhexagon,thenthreebluesalsowillcoverit,becausetwogreenscoveroneblue.”

Page 38: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

37

Sometimesstudentsreachconclusionsthatmayseemoddtoadults,notbecausetheirreasoningisfaulty,butbecausetheyhavedifferentunderlyingbeliefs.Teacherscanunderstandstudents’thinkingwhentheylistencarefullytostudents’explanations.Forexample,onhearingthathewouldbe“StaroftheWeek”inhalfaweek,Benprotested,“Youcan’thavehalfaweek.”Whenaskedwhy,Bensaid,“Sevencan’tgointoequalparts.”Benhadtheideathattodivide7by2,therecouldbetwogroupsof3,witharemainderof1,butatthatpointBenbelievedthatthenumber1couldnotbedivided.

Teachersshouldencouragestudentstomakeconjecturesandtojustifytheirthinkingempiricallyorwithreasonablearguments.Mostimportant,teachersneedtofosterwaysofjustifyingthatarewithinthereachofstudents,thatdonotrelyonauthority,andthatgraduallyincorporatemathematicalpropertiesandrelationshipsasthebasisfortheargument.Whenstudentsmakeadiscoveryordetermineafact,ratherthantellthemwhetheritholdsforallnumbersorifitiscorrect,theteachershouldhelpthestudentsmakethatdeterminationthemselves.Teachersshouldasksuchquestionsas“Howdoyouknowitistrue?”andshouldalsomodelwaysthatstudentscanverifyordisprovetheirconjectures.Inthisway,studentsgraduallydeveloptheabilitiestodeterminewhetheranassertionistrue,ageneralizationvalid,orananswercorrectandtodoitontheirowninsteadofdependingontheauthorityoftheteacherorthebook.

NCTMPrinciplesandStandardsforSchoolMathematics

Homework

Euclidtaughtmethatwithoutassumptionsthereisnoproof.Therefore,inanyargument,examinetheassumptions. EricTempleBell

1) DoalltheitalicizedthingsintheReadandStudysection.WriteadescriptionofthestrategiesyouusedinsolvingtheproblemofcreatinganequilateraltriangleusingonlyEuclid’sfiveaxioms.

2) WhichofthechildrenfromtheConnectionsreadingareusingdeductivereasoningand

whichareusinginductivereasoning?Explain.

3) AccordingtotheNCTM,whatistheteacher’sroleinpromotingreasoningamongchildrenintheearlyelementarygrades?

4) Explainwhyverticalanglesformedbyintersectinglinesarethesame.

Page 39: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

38

5) HavealookatProposition32oftheappendix.Doyouseethatitisthetheoremyou

provedintheClassActivity?Whichpropositionsthatcomebefore#32didyouuseintheproof?

6) DecideifeachofthefollowingstatementsaboutEuclideanlinesandanglesistrueorfalsebyexploringexamplesandlookingupdefinitions.Ifyoudecidethatastatementistrue,writeadeductiveargumentbasedonaxiomsanddefinitions.Ifyoudecidethestatementisfalse,giveacounterexampleoradeductiveargumentthatitisnotpossible.

a) Anytwodistinctlineswilleitherintersectinexactlyonepointortheywillbeparallel.

b) Thereexisttwoacuteangleswhicharesupplementary.c) Everytwolinesthatareeachparalleltoathirdlinemustbeparalleltoeach

other.d) Everytwolinesthatareeachperpendiculartoathirdlinewillbeperpendicular

toeachother.e) Everytwoacuteanglesmustbecomplementary.f) Thereexisttwooppositesidesinanytrapezoidwhichareparallel.g) Ifoneoftwosupplementaryanglesisacute,theotheranglemustbeobtuse.

7) Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade

2TeachersGuide(yourprofessorshouldhaveacodeforyoutoviewthis).Spend10-15minuteslookingthroughUnit6Module1.CarefullyreadthroughtheactivityGuessMyShape,thenmakeupyourownriddleforyoursecondgradestudentstosolve.

8) Wehaveaconjecture.Everyrectangleisaparallelogram.Giveaninductiveargumentthatthisconjectureistrue.Now,sincemathematiciansarenotsatisfieduntiltheyhaveadeductiveargument,giveoneofthose.

9) Wehaveanotherconjecture!Everyrectangleisasquare.Isthisconjecturetrueorfalse?Ifitistrue,giveadeductiveargument.Ifitisfalse,giveacounterexample.

Page 40: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

39

10) HerearesomemoreoftheCommonCoreStateStandardsrelatedtoreasoningaboutshapes.InwhatwaysdoHWproblems4)–7)addressthesestandards?

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

11) DrawaVenndiagramshowingtherelationshipbetweenallthevariousquadrilateralswehavestudied.HowdoesthisfitwiththeCommonCoreStateStandardsdescribedbelow?

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

CCSSGrade3:Reasonwithshapesandtheirattributes.

1. Understandthatshapesindifferentcategories(e.g.,rhombuses,rectangles,andothers)mayshareattributes(e.g.,havingfoursides),andthatthesharedattributescandefinealargercategory(e.g.,quadrilaterals).Recognizerhombuses,rectangles,andsquaresasexamplesofquadrilaterals,anddrawexamplesofquadrilateralsthatdonotbelongtoanyofthesesubcategories.

CCSSGrade5:Classifytwo-dimensionalfiguresintocategoriesbasedontheirproperties.

1. Understandthatattributesbelongingtoacategoryoftwo-dimensionalfiguresalsobelongtoallsubcategoriesofthatcategory.Forexample,allrectangleshavefourrightanglesandsquaresarerectangles,soallsquareshavefourrightangles.

2. Classifytwo-dimensionalfiguresinahierarchybasedonproperties.

Page 41: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

40

ClassActivity4:AlltheAngles

DonotworryaboutyourdifficultiesinMathematics.Icanassureyouminearestillgreater.

AlbertEinstein

1) Hereisthedescription–fromtheCommonCoreStateStandardsforgradefour–ofhowtothinkaboutmeasuringanglesusingdegrees.Readitcarefullyandsketchapicturetohelpyourgroupmakesenseoftheirexplanation.

Anangleismeasuredwithreferencetoacirclewithitscenteratthecommonendpointoftherays,byconsideringthefractionofthecirculararcbetweenthepointswherethetworaysintersectthecircle.Ananglethatturnsthrough1/360ofacircleiscalleda“one-degreeangle,”andcanbeusedtomeasureangles.

Ananglethatturnsthroughnone-degreeanglesissaidtohaveananglemeasureofndegrees.

2) Makesureeveryoneinyourgroupcanusetheirprotractortomeasure(indegrees)theangleindicatedbelow:

(continuedonthenextpage)

Page 42: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

41

3) Findaformulaforthesumofthemeasuresofthevertexanglesofann-gon(apolygonwithnsides).Youmayneedtocollectsomedata.Intheend,makeamathematicalargumentthattheformulayoufindwillworkforaconvexpolygonofanynumberofsides.(Theformulathatyoudevelopedwillworkforconcavepolygonsaswell,buttheargumentistrickier,sowearenotaskingyoutojustifyitatthistime.)

Page 43: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

42

ReadandStudy

Theknowledgeofwhichgeometryaimsistheknowledgeoftheeternal. PlatoAregularpolygonisoneinwhichallofthelinesegmentsarecongruentandallofthevertexanglesarealsocongruent.Sketcharegulartriangleandaregularquadrilateral.Isthebelowrhombusaregularquadrilateral?Explain.

Polygonsareoftennamedforthenumberofsidestheycontain.Infact,theprefix“poly”means“many”andtheroot“gon”means“side.”So“polygon”means“many-sided”figure.Inordertonamepolygons,you’llneedtoknowthefollowingprefixes: Five–“penta” Six–“hexa” Seven–“hepta” Eight–“octa” Nine–“nona” Ten–“deca” Twelve–“dodeca”Forexample,five-sidedpolygonsarecalledpentagons.Hereareacoupleexamplesofconvexpentagons.Drawanexampleofaconcavepentagon.Mathematiciansidentifythreetypesofanglesinapolygon:thevertexangles,thecentralangles,andtheexteriorangles.Studythehexagoninthefollowingdiagramandthenexplainthedifferencebetweenthethreetypesofanglesinyourownwords.Theboldarcsmarkthevertexangles;thethinsolidarcsmarkthecentralangles;andthedashedarcsmarktheexteriorangles.PointGisanyinteriorpoint.

Page 44: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

43

ThinkaboutthesumofthesixcentralanglesformedatpointG.Thissumwillalwaysbe360°regardlessofwhereintheinteriorpointGis,regardlessofhowmanysidesthepolygonhas,andregardlessofwhetherornotthepolygonisregular.Why?Wealsoclaimthatthesumoftheexterioranglesofanypolygonis360°.Wewillaskyoutomakeamathematicalargumenttosupportthisclaiminthehomeworksection.Thecaseofthesumofthevertexanglesofapolygonistheinterestingcase.IntheClassActivityyoufoundthatthissumdoesdependonthenumberofsidesinthepolygon.Doesitdependonwhetherthepolygonisregular?Explain.ConnectionstotheElementaryGrades

Mathematicallyproficientstudentsunderstandandusestatedassumptions,definitions,andpreviouslyestablishedresultsinconstructingarguments. CCSS,p.6

Anglesarenotoriouslydifficultidealobjectsforchildren.Ontheonehand,theyareoftendefinedasafigureformedbytworayswithacommonendpoint(and,infact,thatisexactlyhowwehavedefinedthem).Ontheotherhand,whatisimportantinmeasuringanangleisitsdegreeofturn.

A

B

C

DE

F

G

Page 45: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

44

Whenyoutalkaboutangleswithchildren,wesuggestthatyoualwaysuseyourhandorarmtoshowthesweepoftheangleinadditiontoshowingthestaticpicture.

Childreningradefourlearntouseaprotractortomeasureanglesindegreesandtoaccuratelyestimatethemeasureofangles.BelowyouwillfindtheCCSSrelatedtoanglemeasureinthisgrade.Readthemcarefully.

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

CCSSGrade4:Geometricmeasurement:understandconceptsofangleandmeasureangles.

1. Recognizeanglesasgeometricshapesthatareformedwherevertworaysshareacommonendpoint,andunderstandconceptsofanglemeasurement:

a. Anangleismeasuredwithreferencetoacirclewithitscenteratthecommon

endpointoftherays,byconsideringthefractionofthecirculararcbetweenthepointswherethetworaysintersectthecircle.Ananglethatturnsthrough1/360ofacircleiscalleda“one-degreeangle,”andcanbeusedtomeasureangles.

b. Ananglethatturnsthroughnone-degreeanglesissaidtohaveananglemeasureofndegrees.

2. Measureanglesinwhole-numberdegreesusingaprotractor.Sketchanglesof

specifiedmeasure.

3. Recognizeanglemeasureasadditive.Whenanangleisdecomposedintonon-overlappingparts,theanglemeasureofthewholeisthesumoftheanglemeasuresoftheparts.Solveadditionandsubtractionproblemstofindunknownanglesonadiagraminrealworldandmathematicalproblems,e.g.,byusinganequationwithasymbolfortheunknownanglemeasure.

CCSSGrade4:Drawandidentifylinesandangles,andclassifyshapesbypropertiesoftheirlinesandangles.

1. Drawpoints,lines,linesegments,rays,angles(right,acute,obtuse),andperpendicularandparallellines.Identifytheseintwo-dimensionalfigures.

2. Classifytwo-dimensionalfiguresbasedonthepresenceorabsenceofparallelorperpendicularlines,orthepresenceorabsenceofanglesofaspecifiedsize.Recognizerighttrianglesasacategory,andidentifyrighttriangles.

Page 46: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

45

Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade4TeachersGuide.Spend10-15minuteslookingthroughUnit5Module1.PrintoutandthenworkthroughtheMeasuringPatternBlockAnglesactivity.(Notethatinthisactivitystudentsarenotusingprotractorstomeasuretheangles.Youalsowillnotneedtouseaprotractor.).

Homework Energyandpersistenceconquerallthings. BenjaminFranklin

1) DoalltheitalicizedthingsintheReadandStudysection.

2) DoalltheitalicizedthingsintheConnectionssection.

3) ChildreninyourclassmaysaythatÐABCissmallerthanÐDEF.Isthistrue?Astheirteacher,whatwouldyousaytothesechildren?

4) Usingtheresultsoftheclassactivity,findthemeasureofonevertexangleinanequilateraltriangle,asquare,aregularpentagon,aregularhexagon,aregularoctagon,aregulardecagon,andaregulardodecagon.

5) Astudentsclaimsthatthesumofthevertexanglesofahexagonis6×180becauseeachtrianglehas180degreesofanglesmeasureandshehasshownthat6trianglestomakeupthehexagon.Whatwillyousayasherteacher?

6) IntheReadandStudysectionweclaimthatthesumoftheexterioranglesofanypolygonisalways360°.Makeamathematicalargumenttosupportthisclaim.

B

A

CE

D

F

Page 47: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

46

ClassActivity5:ALogicalInterlude

Equationsarejusttheboringpartofmathematics.Iattempttoseethingsintermsof geometry.

StephenHawkingInthepicturebelow,eachcardhasacolorononesideandashapeontheotherside.Whichcard(s)wouldyouhavetoturnovertobesurethatthefollowingstatementistrue?

Ifacardisredononeside,thenithasasquareontheotherside.

Page 48: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

47

ReadandStudy

Whenintroducedatthewrongtimeorplace,goodlogicmaybetheworstenemyofgoodteaching.

GeorgePolya TheAmericanMathematicalMonthly,v.100,no3.HerearetwotheoremsaboutparallellinesthatcanbeprovedfromEuclid’saxioms.

1) Iftwolinesarecutbyatransversalandthealternateinterioranglesarecongruent,thenthelinesareparallel.

2) Iftwoparallellinesarecutbyatransversal,thenthealternateinterioranglesarecongruent.

Drawasketchtomakesurethatyouseewhateachofthesehastosay.

Noticethattheybothhavean‘if-then’statementform.Lotsofmathematicaltheoremsarelikethis.Whenatheoremisstatedin‘if-then’form,whateverfollowsthe‘then’isalwaystruewhenevertheconditionsstatedinthe‘if’partaremet.Youcanthinkofan‘if-then’statementasapromisethatiskeptunlessthe‘if’partistrueandthe‘then’partisnot.Wecallstatement2)theconverseofstatement1).Thesetwotheoremsmaysoundthesametoyou,buttheyarenotsayingthesamething.Tohelpyouseethis,let’schangethecontext.Hereisanotherpairofstatementsinwhichthesecondistheconverseofthefirst(andviceversa):

3) IfIliveinChicago,thenIliveinIllinois.

4) IfIliveinIllinois,thenIliveinChicago.Thinkabouteachofthestatements.Whichoftheseistrue?Sinceoneistrueandtheotherfalse,thesetwostatementscannotbesayingthesamething.Inotherwords,theconverseofastatementisalogicallydifferentstatementfromtheoriginalstatement.Nowhereisastatementthatislogicallyequivalenttotheoriginalstatementmadein3)above.Itiscalledthecontrapositiveofstatement3).

5) IfIdonotliveinIllinois,thenIdonotliveinChicago.

ThisisessentiallywhatyoufoundwhenyouworkedontheClassActivity.Writethecontrapositivetostatement4)above.

Page 49: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

48

Itishelpfultoknowthatastatementanditscontrapositiveareequivalentbecausethatmeansthatyoucanproveastatementbyprovingitscontrapositive.ConnectionstotheElementaryGrades

Thebeginningofknowledgeisthediscoveryofsomethingwedonotunderstand. FrankHerbert

Nowthatwehavetalkedabitaboutdoingmathematics,wewanttoshowyouthattheCommonCoreStateStandardsrequirethatchildrenalsodomathematics.Giveanexampleofsomethingyouhavedoneinclasssofarthistermthatmeetseachofthesestandards.

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

CommonCoreStateStandardsforMathematicalPractice

Childrenshould…

1. Makesenseofproblemsandpersevereinsolvingthem.

2. Reasonabstractlyandquantitatively.

3. Constructviableargumentsandcritiquethereasoningofothers.

4. Modelwithmathematics.

5. Useappropriatetoolsstrategically.

6. Attendtoprecision.

7. Lookforandmakeuseofstructure.

8. Lookforandexpressregularityinrepeatedreasoning.

Page 50: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

49

Homework

Amultitudeofwordsisnoproofofaprudentmind. Thales

1) DoalltheitalicizedthingsintheReadandStudysection.

2) DoalltheitalicizedthingsintheConnectionssection.

3) Decideifeachofthefollowingstatementsistrueorfalse.Iftrue,giveamathematicalexplanation.Iffalse,giveacounterexample.

a) Ifaquadrilateralisasquare,thenitisarectangle.b) Ifaquadrilateralhasapairofparallelsides,thenitmusthaveapairof

oppositesidesthatarecongruent.c) Ifthediagonalsofaquadrilateralareperpendiculartoeachother,thenthe

quadrilateralisarhombus.d) Ifaquadrilateralhasonerightangle,thenallofitsanglesmustberight

angles.e) Writetheconverseofeachofthestatementsina)–d)above.Whichare

true?f) Writethecontrapositiveofeachofthestatementsina)–d)above.Which

aretrue?

4) Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade4TeachersGuide.Spend10-15minuteslookingthroughUnit5Module4.ThenworkthroughtheClockAngles&ShapeSketchesfromthehomelinksection.Howisdeductivereasoningusedtosolvetheseproblems?

Page 51: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

50

ClassActivity6:EnoughisEnough

Ilearnedveryearlythedifferencebetweenknowingthenameofsomethingandknowingsomething.

RichardFeynman

SupposeyouaregivensomeinformationaboutatriangleABC.Inwhichofthefollowingcaseswilltheinformationbeenoughtoallowyoutodeterminetheexactsizeandshapeofthetriangle?Ifyouhaveenoughinformation,drawatriangleguaranteedtobeexactlythesamesizeandshapeasDABC.Ifyoudonothaveenoughinformation,describetheproblemyouencounterinattemptingtodrawDABC.Youwillneedtousearulertomeasurelengthsincentimeters(cm)andaprotractortomeasuretheanglesindegrees.

a) AB =4cmand BC =5cm

b) AB =8cmand AC =6cmandÐBAC=45°

c) AB =8cmand AC =7cmandÐABC=45°

d) ÐABC=75°,ÐBCA=80°,andÐCAB=25°

e) BC =7cm, AC =8cm,and AB =9cm

f) AB =9cm,BC =3cm,and AC =4cm

g) AB =7cm,ÐABC=25°,andÐBAC=105°

h) BC =11cm,ÐABC=75°,andÐBAC=40°

Page 52: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

51

ReadandStudy

Puremathematicsis,initsway,thepoetryoflogicalideas. AlbertEinstein

Nowitistimetotalkabouttheideaofcongruence.YouwereworkingwiththisideaintheClassActivity.Fornowwewillusethefollowingdefinition:twogeometricobjectsarecongruentiftheycanbemovedsothattheycoincide(sitontopofoneanotherandfitexactly).Wewillmakethisdefinitionmorepreciselaterinthebook.Theideaofcongruenceisrelatedtotheideaofequality,butitisnotthesamething.Congruenceisarelationshipbetweenobjectswhereasequalityisarelationshipbetweennumbers.Wewouldsaytwolinesegmentsarecongruent(coincide),andwewouldsaythatthemeasuresoftheirlengths(numbers)areequal.Wewouldsaythattwoanglesarecongruent(coincide),andwewouldsaytheirmeasuresindegrees(numbers)areequal.Wedonotusetheequalssign(=)forcongruence.Insteadwehaveaspecialsymbol( )tosaythat AB iscongruenttoCD ,( CDAB ).Besuretouse whenyoumeancongruenceand=whenyoumeanequality.IntheClassActivityyouinvestigatedconditionsthatwillensurethattwotrianglesarecongruent.Youfoundthathavingtwopairsofcongruentsidesisnotsufficient,butthathavingthreepairsofcongruentsidesdoesguaranteethetrianglescoincide.Thecaseofanglesismorecomplex.Havingthreepairsofcongruentanglesisnotsufficientinformation,butifwehavetwopairsofcongruentanglesandonepairofcongruentsides,wedogetcongruenttriangles.Andthenthereisthecasewherewehavetwopairsofcongruentsidesandonepairofcongruentangles–sometimeswehavecongruenttrianglesandsometimesnot–itmakesadifferencewhetherornottheanglesinquestionaretheanglesbetweenthetwopairsofcongruentsides.Euclidcompiledallofthisinformationaboutwhentrianglesarecongruentintothesefourtheorems.Noticethateachofthesetheoremsisinthe“if-then”statementform.Readeachonecarefully–makecertainyouunderstandallthetermsandcanexplaineachoneinyourownwords.Thensketchapicturetoillustratewhateachoneissaying.

Page 53: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

52

1) Angle-Side-AngleTriangleCongruence(ASA):Iftwoanglesandtheincludedsideofonetrianglearecongruenttotwoanglesandtheincludedsideofanothertriangle,thenthetrianglesarecongruent.

2) Side-Angle-SideTriangleCongruence(SAS):Iftwosidesandtheincludedangleofone

trianglearecongruenttotwosidesandtheincludedangleofanothertriangle,thenthetrianglesarecongruent.

3) Side-Side-SideTriangleCongruence(SSS):Ifthreesidesofonetrianglearecongruent

tothreesidesofanothertriangle,thenthetrianglesarecongruent.

4) Angle-Angle-SideTriangleCongruence(AAS):Iftwoanglesandthesideoppositeoneoftheminonetrianglearecongruenttothecorrespondingpartsofanothertriangle,thenthetrianglesarecongruent.

YoumighthavenoticedthatTheorem4)isredundanttoTheorem1),inlightofafactwe’vealreadyestablishedabouttrianglesinaprevioussection.Towhatfactarewereferring?WewantyoutotaketimetorelatethesetheoremstothecasesyouinvestigatedintheTriangleExplorationActivity.Infact,wearegoingtogiveyouspaceheretorevisiteachsetofconditionsanddecidewhich,ifany,oftheabovefourtheoremsapplytothegivencases.Reallydothis.

a) AB =4cmand BC =5cm

b) AB =8cmand AC =6cmandÐBAC=45°

c) AB =8cmand AC =7cmandÐABC=45°

d) ÐABC=75°,ÐBCA=80°,andÐCAB=25°

e) BC =7cm, AC =8cm,and AB =9cm

f) AB =9cm,BC =3cm,and AC =4cm

g) AB =7cm,ÐABC=25°,andÐBAC=105°

h) BC =11cm,ÐABC=75°,andÐBAC=40°Okay,nowthatyouknowthetrianglecongruencetheorems,let’stakealookatsomeoftheothernicetheoremsabouttriangles:

Page 54: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

53

5) Thesumoftheanglemeasuresinanytriangleis180degrees.(Youalreadyproved

this.)

6) Inatriangle,anglesoppositecongruentsidesarecongruent.

7) Inatriangle,sidesoppositecongruentanglesarecongruent.

Theorems6)and7)areoftencalledtheIsoscelesTriangleTheorems–andtheyarequiteuseful.Drawasketchofeachtobecertainyouunderstandwhattheysay.Noticethat6)and7)arenottheoremsabouttwodifferenttrianglesbeingcongruent.Boththeoremstalkaboutasingletriangleinwhicheithertwosidesofthattrianglearecongruentortwoanglesofthattrianglearecongruent.Hereisonemoreideathatiscommonlyusedaspartoftrianglecongruenceproofs:

8) Correspondingpartsofcongruenttrianglesarecongruent.Wewillusetheorem8)almosteverytimewemakeanargumentinvolvingtrianglesfromnowon.Since,byourdefinitionofcongruentobjects,twocongruenttrianglescoincide,everypairofcorrespondingpartsormeasurementsofanattributemustbeidentical.So,intwocongruenttriangles,thesmallestangles(iftherearesmallestangles)arecongruent,andthelongestsides(iftherearelongestsides)arecongruent,andsoon.Youmay(fondly)recalltheanagramforthistheorem,CPCTC,fromahighschoolgeometrycourse.

Page 55: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

54

Homework

Homecomputersarebeingcalledupontoperformmanynewfunctions,includingthe consumptionofhomeworkformerlyeatenbythedog.

DougLarson

1) DoalltheitalicizedthingsintheReadandStudysection.

2) Studyeachboldandunderlinedtermusedinthissection.Thismeansyoushouldbeabletoexplainthedefinitionusinggoodmathematicallanguageandthatyoushouldbeablemakeexamplesandnon-examplesofeachterm.

3) ForeachofTheorems1),2),3),5),6),and7)ofReadandStudy,findEuclid’scorrespondingpropositionintheAppendix.(EucliddidnotstateTheorems4)or8).)

4) Atwhichstepdoyouknowenoughtodrawatrianglethatiscongruenttotheonewearedescribing?Explainyouranswer.

I. Oneofthesidesis8cmlong.II. Oneofthesidesis4cmlong.III. Theanglebetweenthesidesmentionedaboveis60degrees.IV. Thetrianglehasa90degreeangle.

5) Atwhichstepdoyouknowenoughtodrawatrianglethatiscongruenttotheonewearedescribing?Explainyouranswer.

I. Oneofthesidesis3cmlongandanotheris7cmlong.II. Theanglebetweenthe7cmsideandtheunknownsideis20degrees.III. Theunknownsideisthelongestside.IV. Thetrianglehasanobtuseangle.

6) Atwhichstepdoyouknowenoughtodrawatrianglethatiscongruenttotheonewe

aredescribing?Explainyouranswer.

I. Oneoftheanglesmeasures140degrees.II. Anotherofmyanglesmeasures25degrees.III. Oneofmysidesmeasures7cm.IV. Mylongestsidemeasures7cm.

7) Makeamathematicalargumentthatatrianglecanonlyhaveoneobtuseangle.

Page 56: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

55

8) Makeamathematicalargumentthatthetwoacuteanglesofarighttrianglearecomplementary

9) MakeamathematicalargumentforTheorem7),thatinasingletriangle,theanglesthatareoppositethecongruentsidesmustbecongruent.

10) Makeamathematicalargumentthattwoacuteanglesofanisoscelesrighttriangleareeach45°.

11) Makeamathematicalargumentthateachangleinanequilateraltriangleis60°.

Page 57: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

56

SummaryofBigIdeasfromChapterOne Hey!What’sthebigidea? Sylvester

• Geometryisastudyofidealobjects–notrealobjects.

• Definitionsallowustonameandcategorizeidealobjects,tocreaterelationshipsbetweenobjects,andtomakeargumentsaboutthepropertiesofobjects.

• Onedefinitionofgeometryisthatitisthestudyofidealshapesandtheirproperties,of

thepatternsthoseshapescanform,andoftheactionsonthoseshapesthatpreservetheirproperties.

• Aseconddefinitionisthatgeometryisanaxiomaticsystemaboutobjectscalled

“points,”collectionsofpointscalled“lines,”andtherelationshipsbetweenpointsandlines.

• Mathematicalthinkingalsoinvolvesdeductivereasoningandmakingarguments–this

meansusinglogicaswellasusingdefinitionsandaxioms.• Congruenceisanimportantrelationshipbetweengeometricobjects.Wesaytwo

objectsarecongruentiftheycoincidewhenplacedontopofeachother.

• InEuclideangeometrythesumoftheanglesinatriangleisalways180degreesandyoucanexplainwhythisisso.

• Youwillrepresentthemathematicalcommunityforyourstudents.Theywilllooktoyoutounderstandwhatwemathematiciansdoandhowwethink.Yourstudentswilltrytodiscernthemeaningsthatyou,yourcurriculummaterials,andotherstudentsgivetoideas,strategies,andsymbolsthroughtheirparticipationindoingmathematicsinyourclassroom.Youmustbeawarethattalkingaboutthemeaningsofwords,ideas,andsymbolsisanimportantpartofyourroleasateacher;andyoumustbetransparentandcarefulinyouruseofwords,symbols,andnotationwhenyouareteachingmathematics.

Page 58: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

57

ChapterTwo

Transformations,Tessellations,andSymmetries

Page 59: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

58

ClassActivity7:Slides

Forthethingsofthisworldcannotbemadeknownwithoutaknowledgeofmathematics. RogerBacon

Thinkofatranslationasamotionwhich“slides”theentireplaneinonedirectionaparticulardistance.Inordertotranslateanobjectwemustknowhowfartoslideitandwemustknowthedirectiontouse.Thesetwopiecesofinformationareusuallygiventousintheformofatranslationvector(alsocalledatranslationarrow).

1) OnthesquaregridbelowyouaregiventranslationvectorRSandseveralgeometricobjectsontheplane.ShowwhereeachobjectendsupaftertheplaneistranslatedbyvectorRS.

2) Hereisadefinitiontostudy:AtranslationAA’isarigidmotionoftheplanethattakesAtoA’,andforallotherpointsPontheplane,PgoestoP’wherevectorPP’andvectorAA’havethesamelengthanddirection.Discuss,inyourgroups,howthisdefinitionfitswiththeaboveidea.

3) Whatrelationshipsdoyouseebetweentheoriginalfiguresandtheirtranslatedimages?

Betweentheobjects,theirimages,andthetranslationvector?Makeasmanyconjecturesasyoucanabouttranslations.

4) IfwetranslatetheplaneusingRSandthenperformasecondtranslation,say,ST,whatistheresultingrigidmotion?Explain.

H

K

JC

IF G

S

D E

A RB

Page 60: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

59

ReadandStudy

Onlythecuriouswilllearnandonlytheresoluteovercometheobstaclestolearning.Thequestquotienthasalwaysexcitedmemorethantheintelligencequotient.

EugeneS.WilsonTransformationsareabigcategoryofmotionswecanapplytothepointsofaplanewhichcauseobjectsintheplanetochangetheirposition,ortheirsize,oreventheirshape.Sometransformations,likescaling,onlychangethesizeofanobject.Othertransformations,likeashearingcanchangeboththesizeandshapeofanobject.Theobjectthatistheresultofatransformationappliedtoanobjectiscalledtheimageoftheobjectunderthattransformation.Forexample,therectanglebelowisenlarged1½timestoproducethescaledimageandisshearedhorizontallytoproducetheshearedimage.

Inthisandthenexttwosections,wewillstudythreetransformationsthatchangethepositionofanobjectbutdonotchangeitssizeoritsshape.Thesetypesoftransformationsarecalledrigidmotions.Rigidmotionsarethetransformationsoftheplaneforwhichthedistancebetweenpointsispreserved.Inotherwords,iftwopointswereacertaindistanceapartbeforethemotion,thentheyarestillthatsamedistanceapartafterthemotion.(Whydoesthename“rigidmotion”makesense?)Usingtheideaofrigidmotions,wecanmorepreciselydefinecongruence:twoobjectsarecongruentifthereexistsaseriesofrigidmotionswhereoneobjectistheimageoftheother.Therigidmotionsarethetranslation,therotation,andthereflection.Eachofthesetransformationswillmovetheplaneinauniqueway.Thetranslationwillslidetheplaneaparticulardistanceinaparticulardirection.Therotationwillturntheplaneeitherclockwiseorcounterclockwisearoundafixedcenter.Thereflectionwillmovetheplanebyflippingitacrossaline.Itturnsoutthatallrigidmotionsoftheplanearecombinationsofjustthesemoves.Asyoudiscoveredintheclassactivity,atranslationvectorisusedtodescribethedistanceanddirectioneachpointismovedinatranslation.Iftheendpointsofthevectoraregivenascoordinatesonasquaregrid,wecandescribethedistanceanddirectioneachpointismovedassomanyunitsupordownandsomanyunitsrightorleft.UsethislanguagetodescribethetranslationvectorRSonthepreviouspage.

sheared image

scaled imageoriginalrectangle

Page 61: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

60

Weuseastandardnotationtolabeltheverticesoftheimageofanobjectunderatranslation.Forexample,iftheoriginalobjectistherectangleABCD,thenitsimageislabeled DCBA .Herevertex A oftheimagecorrespondingtovertexAoftheoriginalrectangle,vertex B tovertexB,etc.ThepointsAand A arecalledcorrespondingpoints.ThesidesABand BA arecalledcorrespondingsides.ConnectionstotheElementaryGrades

Instructionalprogramsfromprekindergartenthroughgrade12shouldenableallstudentstoapplytransformationsandusesymmetrytoanalyzemathematicalsituations.

NCTMPrinciplesandStandardsforSchoolMathematics,2000Studentsintheelementarygradescanpredictanddescribetheresultsofsliding,flipping,andturningtwo-dimensionalshapes.Variouselementarycurriculausedifferentapproaches.Somemakeuseofmanipulativesandothershavestudentscutoutshapesinordertophysicallyperformtheslide,flip,orturntheshapes.

Homework

Youmaybedisappointedifyoufail,butyouaredoomedifyoudon’ttry.

BeverlySills

1) DoalltheitalicizedthingsintheReadandStudysection.

2) Decideifeachofthestatementsabouttranslationsistrueorfalse.Iftrue,giveamathematicalexplanation;iffalse,explainwhyorgiveacounterexample.

a) Correspondingsidesofanobjectanditstranslatedimagearealwaysparallel.b) If DCBA istheimageofABCDunderatranslation,thenthelinesegment

joiningvertexAtovertex A isthetranslationvector.c) Iftheparallelsidesofatrapezoidarehorizontal,thenitispossibleforthe

parallelsidesofitsimagetobeverticalafteratranslation.d) IfAand A andBand B arecorrespondingpointsunderatranslation,itis

possibleforthelines AA and BB tointersect.e) Everypointintheplanemovestoanewpositionunderatranslation,i.e.,there

arenofixedpointsinatranslation.

Page 62: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

61

3) Belowyouwillfindacoordinategrid.Applythefollowingthreetranslationstoatrianglewithverticesinitiallylocatedat(0,0),(-2,-3),and(3,-3).Whatisashortcutwayofdoingpartc)?

a) up5,left3 b)down2,right4 c)up5,left3followedbydown2,right4

Page 63: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

62

ClassActivity8:Turn,Turn,Turn

Theessenceofmathematicsisnottomakesimplethingscomplicated,buttomakecomplicatedthingssimple.

S.GudderArotationinvolves“turning”theplaneaboutafixedpoint.Inordertospecifyarotation,weneedanangle(withdirection,clockwiseorcounterclockwise)andthefixedpoint(calledthecenteroftherotation).Ineachcaseyourgroupshouldusetracingpaperandacompassandprotractortofigureoutwhereeachshapeendsupafterthegivenrotation.(Therearequestionsonthenextpagetoo.)

1) Rotatetheplane60degreescounterclockwiseaboutpointA. A

2) Rotatetheplane140degreesclockwiseaboutpointP.

P.

(Thisactivityiscontinuedonthenextpage.)

Page 64: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

63

3) Rotatetheplane90degreesclockwiseaboutapointQintheexactcenterofthesquare.

4) Studythethreerotationsinthisactivity.Whatrelationshipsdoyouseebetweenthe

originalfiguresandtheirrotatedimages?BetweencorrespondingpointsandthepointP?Makeasmanyconjecturesasyoucanaboutrotations.

5) Hereisthedefinition.Studyittoseehowitfitswiththeideaofrotation.ArotationaboutapointPthroughanangleqisatransformationoftheplaneinwhichtheimageofPisPand,iftheimageofAis 'A ,then PA @ 'PA and 'm APA =q.PointPiscalledthecenteroftherotation.

Page 65: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

64

ReadandStudy

Wedon’tseethingsastheyare.Weseethingsasweare. AnaisNinArotationisa“turn”aboutagivenpointcalledthecenterthroughagivenangleofturn.(Theturncanbemadeclockwiseorcounterclockwise.Thisistypicallyindicatedintheproblem.)Formally,arotation(aboutapointPthroughanangleq)isatransformationoftheplaneinwhichtheimageofPisPand,iftheimageofAis 'A ,thenPA @ 'PA and 'm APA =q.PointPiscalledthecenteroftherotation.HavealookatthefollowingillustrationofthemotionofturningtriangleABCclockwise240°aroundpointP.

NoticehoweachvertexofthetrianglemovesalongacirclewhosecenterisP.Whatpartofthedefinitionsaysthatthismusthappen?Howcanweseethe240°angleinthepictureabove?HowarethesegmentsAPand PA related?ThesegmentsBPand PB ?ThesegmentsCPandPC ?

C'

A'B'

B

A

C

P

Page 66: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

65

Homework

Courageandperseverancehaveamagicaltalisman,beforewhichdifficultiesdisappearandobstaclesvanishintoair. JohnQuincyAdams

1) DoalltheitalicizedthingsintheReadandStudysection.

2) Usethegridtorotatetheplane90degreescounterclockwiseaboutpointP.Showtheimageofthefiguresaftertherotation.

K

PJ

H

IG F

AD E

C

B

Page 67: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

66

3) Decideifeachofthestatementsaboutrotationsistrueorfalse.Iftrue,giveamathematicalexplanation;iffalse,explainwhyorgiveacounterexample.

a) Correspondingsidesofanobjectanditsrotatedimagearealwaysparallel.b) If DCBA istheimageofABCDunderarotation,thenthelinesegmentjoining

vertexAtovertex A goesthroughthecenteroftherotation.c) Iftheparallelsidesofatrapezoidarehorizontal,thenitispossibleforthe

parallelsidesofitsimagetobeverticalafterarotation.d) IfAand A andBand B arecorrespondingpointsunderarotation,itispossible

forthelines AA and BB tointersect.e) Everypointintheplanemovestoanewpositionunderarotation,i.e.,thereare

nofixedpointsinarotation.f) Thelinesegmentsjoiningcorrespondingverticesarecongruent.

Page 68: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

67

ClassActivity9:ReflectingonReflection Mathematics,rightlyviewed,possessesnotonlytruth,butsupremebeauty–abeautycoldandaustere,likethatofsculpture. BertrandRussell

Areflectionflipstheentireplaneaboutagivenlineresultinginitsmirrorimage.OfficiallyareflectioninalinelisarigidmotionoftheplaneinwhichtheimageofapointPonlisP,andifAisapointnotonlandiftheimageofAis 'A ,thenlistheperpendicularbisectorof 'AA .

1) Studythatdefinition.Makesureeveryoneinyourgroupunderstandshowitfitswiththeideaofareflection.SeeifyoucanusethedefinitiontohelpyoutosketchthereflectionoftriangleABCinlinel.

l

(Thisactivityiscontinuedonthenextpage.)

Page 69: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

68

2) Carefullyusethedefinitionofareflectiontosketchthereflectionofthetrapezoidshown.Firstyouwillreflectitinlinemandthenyouwillreflectwhatyougetinlinen(thatisparalleltolinem).

m n

Whatisthesinglerigidmotionthatwouldtaketheinitialfiguredirectlytothefinalfigure?Explain.

3) Whatwouldhappenifthelinesintersected?Tryitandthenuseyourobservationstomakeaconjecture.

Page 70: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

69

ReadandStudy

WecoulduseuptwoEternitiesinlearningallthatistobelearnedaboutourownworldandthethousandsofnationsthathavearisenandflourishedandvanishedfromit.Mathematicsalonewouldoccupymeeightmillionyears.

MarkTwainThereareseveralwaystohelpchildrenpicturetheresultsofareflection.Thinkaboutthereflectionoftheparallelograminlineshownbelow.

Onewaytoseewheretheimageshouldbelocatedistotracetheparallelogramandthelineofreflectiononasheetofthinpaperandthenphysicallyflipthepaperoverandplaceitbackontopoftheoriginalpapersothatthetwolinescoincide.Thecopyoftheparallelogramonthetracingpaperisnowpositionedastheimageofthereflection.Useasheetofpaperandtrythismethod.Anotherwaytovisualizeareflectionimageistophysicallyfoldtheoriginalsheetofpaperalongthelineofreflection.Theoriginalobjectanditsimageunderreflectionshouldnowcoincide,asinan“ink-blot”drawing.Trythis.Reallydoit.RecallthatareflectioninalinelisatransformationoftheplaneinwhichtheimageofapointPonlisP,andifAisapointnotonlandiftheimageofAis 'A ,thenlistheperpendicularbisectorof 'AA .Thisdefinitionofareflectionprovidesinsightintohowwecansketchtheimageofareflection.Eachpointmusttravelalongalineperpendiculartothelineofreflectionsothatthatlineisthemidpointbetweenofthelinesegmentconnectingcorrespondingpoints.Usethatmethodtosketchtheimageoftheparallelogramabove.

Page 71: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

70

Therearemanyinstancesofreflectioninphysicalphenomena.Commonexamplesincludethereflectionoflight,sound,andwaterwaves.Weareallfamiliarwiththephenomenaoflightreflection–takealookinamirror.Homework

Weallhaveafewfailuresunderourbelt.It’swhatmakesusreadyforthesuccesses. RandyK.Milholland,Webcomicpioneer

1) DoalltheitalicizedthingsintheReadandStudysection.

2) Onthesquaregridbelow,uselinenasthelineofreflectiontoreflectthegivenobjects.Labeleachimageappropriately.

3) Whatrelationshipsdoyouseebetweenoriginalfiguresandtheirreflectedimages?Betweentheobjects,theirimagesandthegivenlineofreflection?Makeasmanyconjecturesasyoucanaboutreflections.

nH

K

J

IF G

AC

D E

B

Page 72: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

71

4) Usethedefinitionofareflectiontoreflectthebelowobjectinline.

5) Decideifeachofthestatementsaboutreflectionsistrueorfalse.Iftrue,giveamathematicalexplanation;iffalse,explainwhyorgiveacounterexample.

a) Correspondingsidesofanobjectanditsreflectedimagearealwaysparallel.b) If DCBA istheimageofABCDunderareflection,thenthelinesegment

joiningvertexAtovertex A isperpendiculartothelineofreflection.c) If DCBA istheimageofABCDunderareflection,thenthelinesegment

joiningvertexAtovertex A isbisectedbythelineofreflection.d) Iftheparallelsidesofatrapezoidarehorizontal,thenitispossibleforthe

parallelsidesofitsimagetobeverticalafterareflection.e) IfAand A andBand B arecorrespondingpointsunderareflection,itispossible

forthelines AA and BB tointersect.f) Everypointintheplanemovestoanewpositionunderareflection,i.e.,there

arenofixedpointsinareflection.g) Thelinesegmentsjoiningcorrespondingverticesarecongruenttoeachother.

Page 73: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

72

ClassActivity10:Zoom

Onecanstate,withoutexaggeration,thattheobservationofandthesearchforsimilaritiesanddifferencesarethebasisofallhumanknowledge.

AlfredNobel

Inthepictureabove,westartedbydrawingthesmallertriangleonacomputerscreen,andthenwezoomedin.Thetrianglegotbiggerandmovedtothenewposition.Onepointonourscreenremainedfixedwhenwedidthiszoom.Findthatpoint.Whatwasthescalefactorofthezoom?Inasmanywaysasyoucan,findevidenceforyouranswer.

Page 74: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

73

ReadandStudy

Wehavedifferentnotionsof“sameness”ingeometry.Inthestrongestsense,ifwesaytwoobjectsarethesame,wemeantheyarecongruent.Butwemightalsorefertotwoobjectshavingthesameshapeeveniftheyaren’tcongruent.Forinstance,thetwotrianglesinourClassActivityhavethesameshape,buttheyarenotthesamesize.Observethattheircorrespondinganglesarecongruent,andthattheircorrespondingsidesareproportional.Makesurethatyouunderstandwhatthismeans.Thesetwotrianglesaren’tcongruent,buttheyarewhatwecall“similar”.Formally,wesaythattwoobjectsintheplanearesimilarifonecanbeobtainedfromtheotherbycomposingarigidmotion(tochangetheobject’spositionifnecessary)witha“dilation”.Adilationisamotionoftheplaneinwhichonepoint,P,remainsfixed,andallotherpointsarepushedradiallyoutwardfromPorpulledradiallyinwardtowardPsothatalldistanceshavebeenmultipliedbysomescalefactor.Itcanbeshownthattwopolygonsaresimilarifandonlyiftheircorrespondingvertexanglesarecongruent,andtheircorrespondingsidesareproportional.Euclidprovedatheoremaboutsimilartriangles:

1) Angle-AngleTriangleSimilarityTheorem(AA):Iftwoanglesofonetriangleare

congruenttotwoanglesofanothertriangle,thenthetrianglesaresimilar.ThistheoremappearedinhisBookVI(aboutsimilargeometricfiguresandproportionalreasoning)ratherthanhisBookIthatwehavestudiedpreviously.Homework

1) Usingyourcompass,drawacircle.PlaceapointCattheexactcenterofyourcircle,andapointPsomewhereoutsideofthecircle.Thenbeginningwiththatcircle,

a) drawthesimilarshapethatistheresultofadilationoftheplanewithfixedpointCand

scalefactor2. b) instead,drawthesimilarshapethatistheresultofadilationoftheplanewithfixed

pointPandscalefactor2. c) Whatcommonalitiesanddifferencesdoyouobserveaboutthethreeshapesyouhave

drawn?

Page 75: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

74

2) Beginningwiththetrianglepicturedbelow,drawthesimilartrianglethatistheresultofadilationoftheplanewithfixedpointPandscalefactor1/2.

3) Onenight,a6-foottallmanstood10feetfromalamppost.Thelightfromthelamppostcasta12footshadowoftheman.Howtallwasthelamppost?

4) Supposetwoobjectsaresimilarandthescalefactorofthedilationis1.Whatelsecanyousayabouttherelationshipbetweenthosetwoobjects?

5) LookagainatEuclid’strianglesimilaritytheorem(AA).Giventheotherthingsyouhavealreadylearnedabouttriangles,itisequivalenttosaying:ifallthreeanglesofonetrianglearecongruenttothecorrespondinganglesofanothertriangle,thenthetrianglesaresimilar.Considerthefollowingconjectureaboutquadrilaterals:ifallfouranglesofonequadrilateralarecongruenttothecorrespondinganglesofanotherquadrilateral,thenthequadrilateralsaresimilar.Isthisconjecturetrueorfalse?Giveanargumenttosupportyouranswer.

P

Page 76: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

75

ClassActivity11:SearchingforSymmetry

Themathematicalsciencesparticularlyexhibitorder,symmetry,andlimitation;andthesearethegreatestformsofthebeautiful.

AristotleAsymmetryofanobjectisarigidmotionoftheplaneinwhichtheimagecoincideswiththeoriginalobject.Therearetwoprimarytypesofsymmetry.Intuitively,anobjecthasreflectionsymmetryifitcanbecutbyalineofreflectionintotwopartsthataremirrorimagesofeachother.Thisbutterflyhasreflectionsymmetryandsodoesthisarrow.Sketchthelineofreflectionineachcase.

Anobjecthasrotationsymmetryifitcanberotatedaroundacenterpointthroughacertainangleandendupwiththeimagecoincidingwiththeoriginal.Wewouldsaythattherecyclingsignbelowhas120,240and360degreerotationalsymmetry.

1) Findallthesymmetriesofthecapitallettersinthefollowingtypeface:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

2) Ineachcase,sketchapolygonwiththegivensymmetries,orexplainwhysuchapolygoncannotexist.

a) nolinesofreflectionsymmetry,but180°(and360°)rotationsymmetriesb) 90°(and360°)rotationsymmetriesandnoothersymmetries.c) 2linesofreflectionsymmetry,360°rotationsymmetry,andnoother

symmetriesd) 6linesofreflectionsymmetrye) nolinesofreflectionsymmetry,but90°,180°,270°(and360°)rotational

symmetryf) anytranslationsymmetry

Page 77: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

76

ReadandStudy

Mathematicsisthesciencewhichuseseasywordsforhardideas. E.KasnerandJ.Newman

Afigure,picture,orpatternissaidtobesymmetricifthereisatleastonerigidmotionoftheplanethatleavesthefigureunchanged.Forexample,thisleafis(prettymuch)symmetricbecausethereisalineofreflectionsymmetry.

Manyobjectsinnaturedisplaythiskindofbilateralsymmetry.ThelettersinATOYOTAalsoformasymmetricpattern:ifyoudrawaverticallinethroughthecenterofthe“Y”andthenreflecttheentirephraseacrosstheline,theleftsidebecomestherightsideandviceversa.Thepicturedoesn’tchange.Theorderofarotationsymmetryisdeterminedbycountingthenumberofturnstheobjectcanmakeandcoincidewithitselfbeforereturningtoitsoriginalposition.Theanglemeasureofthesmallestturnisdeterminedbydividing360°bythatnumberofturns.Whydoesthismakesense?Forexample,anequilateraltrianglehas“order3rotationsymmetry.”B A CTheturnof120°takesvertexAtovertexB;theturnof240°takesvertexAtovertexC;andtheturnof360°takesvertexAbacktovertexA.Whataretherotationsymmetriesofthesquare?Oftheregularhexagon?Oftheregularoctagon?Oftheregularn-gon?

Page 78: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

77

Onlyrepeatinginfinitepatternshavetranslationsymmetry.Theyaretheonlytypeofobjectthatcanbeslidandstillfallbackonthemselves.Imaginethatthispatternstripcontinuesforeverinbothdirectionssoifyouslideitonepatterntotheright(ortwoorthree…)itlooksjustthesame.

… …

ConnectionstotheElementaryGrades

Itouchthefuture.Iteach. ChristaMcAuliffeTheCommonCoreStateStandardsformathematicsmakeinformalideasofsymmetryatopicforgrade4.Whiletheymentiononlyreflectionsymmetry,childrenatthisage(andevenyounger)arecapableofexploringandrecognizing“turn”symmetryaswell.Readthisstandard.

Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade4TeachersGuide.Spend10-15minuteslookingthroughUnit5Module2.CarefullyexaminetheMosaicGame.Playthegameonetimeandrecordyourresult.Explainhowyouknowthatyourarrangementproducesthemostlinesofsymmetry.Whatmightstudentslearnaboutsymmetryfromcompletingthisactivity?

Playthegameagain,butthistime,trytoproduceafigurewiththelargestorderofrotationalsymmetry.Again,explainyourreasoning.

CCSSGrade4:

1. Recognizealineofsymmetryforatwo-dimensionalfigureasalineacrossthefiguresuchthatthefigurecanbefoldedalongthelineintomatchingparts.Identifyline-symmetricfiguresanddrawlinesofsymmetry.

Page 79: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

78

Homework Byperseverancethesnailreachedtheark. CharlesHaddonSpurgeon

1) DoalltheitalicizedthingsintheReadandStudyandConnectionssections.

2) Classifythesymmetriesforthefollowingtrafficsigns–(considertheentiresign–notjusttheinteriordesign).

3) Isitpossibleforanobjecttohaverotationsymmetrieswithouthavingreflectionsymmetries?Ifitis,giveanexampleofsuchanobject.Ifitisnot,giveanargumenttosupportthatconclusion.

4) Isitpossibleforanobjecttohavetworeflectionsymmetrieswithouthaving180degreerotationsymmetry?Ifitis,giveanexampleofsuchanobject.Ifitisnot,giveanargumenttosupportthatconclusion.

5) Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade1TeachersGuide.Spend10-15minuteslookingthroughUnit5Module3Sessions1and2.Whatideasaboutrotationalsymmetryareemphasizedinthesesections?

Page 80: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

79

ClassActivity12:Tessellations Themathematician’spatterns,likethepainter’sorthepoet’smustbebeautiful;theideas,likethecolorsorthewordsmustfittogetherinaharmoniousway.Beautyisthefirsttest:thereisnopermanentplaceinthisworldforuglymathematics.

GodfreyH.HardyTherearemanynewdefinitionsinvolvedinthisactivity.Takealittletimetostudyeachofthem.Atilingisanarrangementofpolygonsthatcanbeextendedinalldirectionstocovertheplanewithnogapsandnooverlaps.Atessellationisatilinginwhichallverticesmeetonlyothervertices.Aregulartessellationisatessellationthatusesonlyoneregularpolygon.Findallthepossibleregulartessellations,makeasketchofeachone,andthenmakeanargumentthatyouhavefoundthemall.

Page 81: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

80

Traceablecopiesofmanyregularpolygons.Allofthemhavebeenscaledsothattheyhavethesamesidelength.

Page 82: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

81

ReadandStudy

Everythinghasbeauty,butnoteveryoneseesit.Confucius

Atilingisanarrangementofpolygonsthatcanbeextendedinalldirectionstocovertheplanewithnogapsandnooverlaps.Anexampleusinga“T”shapepolygonisshownbelow.

Atessellationisatilinginwhichallverticesonlymeetothervertices.Istheabovetilingatessellation?Explain.Somecurriculummaterialsusethewordstilingandtessellationinterchangeably.Wewillnotdoso,butwewantyoutobeawareofthatfact.Mathematically,weareinterestedininterpretingthedefinitionofatessellation.Howcanweknowitwillhavenogapsandnooverlaps?Howcanwedeterminethatagivenarrangementwillextendindefinitelyinalldirections?Firstwewillexaminewhathappensatasinglevertexpointwithinatessellation.TakeacloselookatverticesAandBinthefollowingarrangementcomposedofregularhexagonsandequilateraltriangles.

TherearetwohexagonsandtwotrianglesmeetingatvertexAandsixtrianglesmeetingatvertexB.Sinceweknowthatthehexagonsandthetrianglesareregular,weknowthatthevertexanglesofthehexagonare120°each.(HavealookbackatClassActivity4,ifyouhave

D

B C

E

A

Page 83: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

82

forgottenhowtothinkaboutthis.)Likewise,weknowthatthevertexanglesoftheequilateraltriangleare60°each.Thismeansthatthereare2*120°+2*60°=360°atvertexAandthereare6*60°=360°atvertexB.(Checkthis.)Now,sincethesumoftheanglesateachvertexisexactly360°,wehaveprovedthattherearenogapsornooverlapsinthisarrangement.Nowwewillnotethatifwemadeinfinitelymanycopiesofthisarrangement,wecouldslide(translate)themaroundontheplane(e.g.,slideonesothatAgoestoC)tocovertheentireplane.Wewilltellyouthattherearemanytessellationsofregularpolygonsthatarenotregular.Forexample,havealookbackatthetessellationmadeofhexagonsandtrianglesthatwewerejustdiscussingabove.Whyisthistessellationnotregular?Therearemanywebsitesthatpresenttessellations-ortiling-typeactivities.IntheHomeworksectionyouwillbeaskedtoexploreseveralthatblurthelinebetweengeometryandart.ConnectionstotheElementaryGrades Learningisnotcompulsory...neitherissurvival. W.EdwardsDemingCreatingtessellationsisanactivitythatcanbeadaptedtoeverygradelevel–veryyoungchildrencancreatepatchworkquiltsfromconstructionpaperusingonlyrectanglesorsquaresorisoscelesrighttriangles.Olderstudentscanmakemorecomplexartworkusingthemathematicalconceptsofcongruencyandtransformations.Onlineresourcescanallowstudentstocreateavarietyofmorecomplicateddesignsquicklyandaccurately.Spend15minutesatthewebsiteathttp://www.mathcats.com/explore/tessellations/tesspeople.htmltoseeanexampleofaninteractiveweb-basedexplorationoftessellationsusedinthefifthgradeTrailblazerscurriculuminNorthCarolina.

Page 84: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

83

Homework

Creativityisallowingyourselftomakemistakes.Artisknowingwhichonestokeep. ScottAdams,‘TheDilbertPrinciple’1) DoalltheitalicizedthingsintheReadandStudyandConnectionssections.Makesureto

spendsometimeatthewebsite.

2) Anytriangle(ifyouhaveenoughcopiesofit)canbeusedtotessellatetheplane.Toexplorethis,foldapaperupsoyoucancutout8congruentscalenetrianglesallatonce.Thenhavealook.Payparticularattentiontothetransformationsyouareusingtomovethetriangleintonewpositions.

a. Makeamathematicalargumentthatyourtrianglewould,infact,tessellatetheplane.

b. Whereinyourproofdidyouusetransformationsoftheplane?

3) Trueorfalse?Anyquadrilateral(ifyouhaveenoughcopiesofit)canbeusedtotessellatetheplane.Toexplorethis,foldapaperupsoyoucancutout8congruentquadrilateralsallatonce.Thenhavealook.Whataboutconcavequadrilaterals?Makeanargumenttosupportyourchoice.

4) Trueorfalse?It’spossibletofindapentagonthatcanbeusedtotessellatetheplane(ifyouhaveenoughcopiesofit).Makeanargumenttosupportyourchoice.

5) Makeamathematicalargumentthatthenumberofregulartessellationsyoufoundin

theclassactivityistheexactnumberpossible.

6) Apolygonwithmorethansixsideswillnottileifitisconvex.Explainwhynot.Thefollowingpolygonshavemorethansixsides,buttheyareconcave.Sketchaportionofatilingforeachpolygon.

a) b)

Page 85: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

84

7) Describesomereflectional,rotationalandtranslationalsymmetriesforthetessellationbelow.

Page 86: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

85

SummaryofBigIdeasfromChapterTwo

Ifanidea’sworthhavingonce,it’sworthhavingtwice. TomStoppard

• Therearethreedistinctwaysto“move”theplanewithoutchangingtheshapeorsizeofobjects:thetranslation,therotation,andthereflection.

• Atranslationslidestheplaneagivendistanceinagivendirection.

• Arotationturnstheplanearoundagivenpointthroughagivenamountofrotation

(usuallygivenindegrees).• Areflectionflipsanobjecttoitsmirrorimageacrossalineofreflection.

• Oneofthegoalsofelementaryschoolgeometryinstructionisthatstudentslearnto

visualizeandapplytransformations.

• Twoobjectsaresimilarifonecanbeobtainedfromtheotherbyarigidmotionandadilation.

• Symmetryisaphenomenonofthenaturalandartisticworldsthatcanbeexplained

withthelanguageofrigidmotions.

• Mathematiciansmostoftentalkabouttwotypesofsymmetry:reflectionsymmetry,inwhichanobjectisdividedbyalineofreflectionintotwopartsthataremirrorimagesofeachother,androtationsymmetry,whereanobjectisrotatedaroundacenterpointthroughacertainangleandendsupoccupyingthesamepositionintheplane.

• Creatingtilingsandtessellationsisanactivitythatcanbeadaptedtoeverygradelevel–

veryyoungchildrencancreatepatchworkquiltsfromconstructionpaperusingonlyrectanglesorsquaresorisoscelesrighttriangles.Olderstudentscanmakemorecomplexartworkusingthemathematicalconceptsofcongruencyandtransformations.

Page 87: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

86

ChapterThreeMeasurementinthePlane

Page 88: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

87

ClassActivity13:MeasureforMeasure

AndtherewentoutachampionoutofthecampofthePhilistines,namedGoliathofGath,whoseheightwassixcubitsandaspan.

ISamuel17:4

1) Usingyourcubit(lengthfromelbowtofingertips)andhandspan,determinehowtallGoliathwasbycuttingastringthatisaslongasGoliathwastall.Compareyourstringlengthwiththestringsofothersinyourgroup.Whatarethedifficultiesthatmightarisefromchoosingandusingunitsdeterminedbyeachperson’sownbody?Whydoyouthinkweusethe“foot”asacommonunitoflength?

2) Onthenextpage,arefourcopiesofthesamelinesegment.Usingeachoftherulersprovided,carefullymeasurethelinesegment.

Page 89: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

88

Page 90: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

89

ReadandStudy

Itisnotenoughtohaveagoodmind.Themainthingistouseitwell. ReneDescartes Thebigideaofmeasurementisthatofcomparinganattributeofanobjecttoanappropriateunit.Forexample,wemightcomparethelengthofourdesktoafoot-longrulerorwemightcomparetheareaofsheetofpapertotheareaofagreentriangle.Sothekeyquestionregardingmeasurementisthis:Howmanyoftheunitfitintotheobject?Whatmakesaunitappropriate?Well,firstitmusthaveadimensionthatmatchestheattributetobemeasured.Forexample,wemeasurelength(orwidthorheight)usingone-dimensionalunits.Hereisanexampleofaone-dimensionalunit:Wemeasureareausingtwo-dimensionalunitslikethis:Wemeasurevolumeusingthree-dimensionalunitslikethis:Wewilltalkmoreaboutvolumemeasurementinlatersections.Second,ifyouwanttobeabletocommunicatewithothers,ithelpsthattheunitbea‘standard’one.Astandardunitisonethattheculturehasagreedupon.Eachpersonhasamentalmodeloftheunitsoheorshecanpicturehowbigitis.Forexample,inourcultureafootisastandardunitformeasuringlength.InEurope(andmostoftherestoftheworld)ameterisastandardunitformeasuringlength.Ifwewanttotalkamongcultures,weneedtobeabletoconvertfromoneunittoanother.Thereareabout3.28feetinameter.Ifaroomis15feetlong,approximatelyhowmanymetersisthat?Third,itisusefulthattheunitbeofreasonablesizeinrelationtotheattributetobemeasured.Itwouldbeinconvenienttomeasurethelengthoffootballfieldusingmicrons(areallysmallone-dimensionalunit).Inthemetricsystemsizeisindicatedbytheprefix.Forexample,theprefixkilomeans1000times.Soakilometeris1000meters.Inthecurriculummaterialselementarystudentsareexpectedtousetheprefixesmilli(onethousandth),centi(onehundredth),andkilo.Youshouldmemorizetheseandbeabletomakeconversions.Approximatelyhowmanycentimetersarethereinafoot?Becausemeasurementalwaysinvolvescomparison,itisnecessarilyalwaysanapproximation.Weoftenindicateourdegreeofcertaintyaboutameasurementbasedonthewaywereportit.Forexample,ifIclaimadeskis1.23meterslong,thissuggeststhatIamconfidentinthe

j ''

Page 91: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

90

accuracytothehundredthofameter(tothecentimeter).Whenworkingwithchildrenyoushouldexplicitlydiscussthesefacetsofmeasurementandyoushouldbesuretoalwaysreporttheunitwithanyactualmeasurement.Sayingthatadeskis1.23longmeansnothing.Sayingthatitis1.23meterslongmakessense.Acommonmeasurementwemakeforaplaneobjectistomeasurethedistancearounditsboundary.Wecallthismeasurementtheperimeteroftheobject.(Whentheobjectisacircle,wecallthislengththecircumference.)Theperimeterofaplaneobjectisaone-dimensionalmeasurement–soweuselinearunitslikeinchesorcentimeters.Wecalculateaperimeterbysimplyaddingupthelengthsofthecurvesthatmakeuptheobject.Wecanmeasurethelengthsoflinesegmentswitharuler.Wewillfindaformulaforthecircumferenceofacircleinafutureactivity.ConnectionstotheElementaryGrades

Onlythecuriouswilllearnandonlytheresoluteovercometheobstaclestolearning.Thequestquotienthasalwaysexcitedmemorethantheintelligencequotient.

EugeneS.WilsonTheCommonCoreStateStandardsformathematicsrequirethatchildrenbegintostudystandardmeasurementoflengthbeginningingrade2.ReadtheexcerptfromtheCCSSbelow.

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

NoticethatchildrenaretobelearningbothmetricandEnglishunits.Comeupwithabenchmark(somethingtoimaginethatistherightlength)foreachoftheseunits:inches,feet,centimeters,andmeters.

CCSSGrade2:Measureandestimatelengthsinstandardunits.

1. Measurethelengthofanobjectbyselectingandusingappropriatetoolssuchasrulers,yardsticks,metersticks,andmeasuringtapes.

2. Measurethelengthofanobjecttwice,usinglengthunitsofdifferentlengthsforthetwomeasurements;describehowthetwomeasurementsrelatetothesizeoftheunitchosen.

3. Estimatelengthsusingunitsofinches,feet,centimeters,andmeters.

4. Measuretodeterminehowmuchlongeroneobjectisthananother,expressingthe

lengthdifferenceintermsofastandardlengthunit.

Page 92: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

91

TheCommonCoreStateStandardsformeasurementingrade1areshownbelow.Comparethemtothegrade2standards.Howdotheydiffer?

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade2TeachersGuide.Spend10-15minuteslookingthroughUnit4Module1Session1TeacherFeet.Inwhatwaysdothechildrenneedtoanalyzetheprocessofmeasurementinthissession?

Homework

Manyoflife'sfailuresarepeoplewhodidnotrealizehowclosetheyweretosuccesswhentheygaveup.

ThomasA.Edison

1) DoalltheitalicizedthingsintheReadandStudysection.

2) DotheConnectionsproblems.

3) Whataregoodbenchmarksforthemillimeter,centimeter,decimeter,andkilometer?Findsomethingthatisaboutthelengthofeach.

4) UseanappropriateEnglishunittoestimatea)thelengthofyourtable,b)thedistancefromChicagotoDenver,andc)thewidthofapencil.

5) Useanappropriatemetricunittoestimatea)thelengthofyourtable,b)thedistancefromChicagotoDenver,andc)thewidthofapencil.

CCSSGrade1:Measurelengthsindirectlyandbyiteratinglengthunits.

1. Orderthreeobjectsbylength;comparethelengthsoftwoobjectsindirectlybyusingathirdobject.

2. Expressthelengthofanobjectasawholenumberoflengthunits,bylayingmultiplecopiesofashorterobject(thelengthunit)endtoend;understandthatthelengthmeasurementofanobjectisthenumberofsame-sizelengthunitsthatspanitwithnogapsoroverlaps.Limittocontextswheretheobjectbeingmeasuredisspannedbyawholenumberoflengthunitswithnogapsoroverlaps.

Page 93: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

92

6) Findtheperimetersoftheplanefiguresshownbelowbymeasuringthema) UsinganappropriateEnglishunit.b) Usinganappropriatemetricunit.c) NowconvertyourmetricunitstoEnglishunitstocheckthatyourmeasurementsin

b)matchyoumeasurementsina).

7) Explainwhyitmakessensethattheperimeterofarectanglecanbefoundbycomputing2l+2wwherelisitslengthandwisitswidth.

8) Iwanttorunaroundthebelowlake.Iplantohugtheshoreline.HowfardoIhavetorun?Thinkaboutvariouswaysyoucoulduseamaptoanswerthisquestion.Howaccurateisyourestimate?Howcanyouimproveitsaccuracy?LakeJen

Scale1cm=3miles

9) Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade2TeachersGuide.Spend10-15minuteslookingthroughUnit4Module1.Then,carefullyexaminetheworksheet4AEstimate&MeasureInchesRecordSheet.Whatconversationscouldyouhavewithyourstudentsaboutthebigideasoflinearmeasurementbasedonthisactivity?

Page 94: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

93

ClassActivity14A:Triangulating

Godowndeepenoughintoanythingandyouwillfindmathematics.DeanSchlicter

Defineonetriangleunittobetheareaofthegreentrianglepatternblock.Usingthisunit,determinetheareaofthissheetofpaper.Thenusethetriangleunittoestimatetheareaofeachofthepatternblockshapespicturesbelow.

Page 95: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

94

ClassActivity14B:AreaEstimation HereisamapofthegreatstateofWisconsin.Withoutlookinganythinguponline,yourgroupneedstomakeareasonableestimateofitsareainsquaremiles.Firstdiscussacoupleofdifferentwaysofdoingthisusingthemap.Thengoaheadandcarefullycomputeyourestimate.

http://www.nationsonline.org/oneworld/map/USA/wisconsin_map.htm

Wouldyouguaranteeyourestimatetothenearsest10squaremiles?Thenearest100squaremiles?Thenearest1000squaremiles?Somethingelse?Howdidyoudecide?

Page 96: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

95

ReadandStudy

Themanignorantofmathematicswillbeincreasinglylimitedinhisgraspofthemainforcesofcivilization.

JohnKemenyMathematiciansdefineareaasthequantityoftwo-dimensionalspaceenclosedbyaclosedplanefigure.Wecommonlymeasurethisareaintermsofsquareunitssuchassquareinchesorsquarecentimeters.Sotofindtheareaofafigureyouneedtofindthenumberofsquareunitsitwouldtaketocoverthefigure.Wewantyoutoliterallydothisnow.Hereisaunitofarea(thesquarecentimeter):Traceitandthenseehowmanyofthoseunits(includingpartsofunits)ittakestocovertheshapebelow: Iftheshapeisarepresentationofalake,andacentimeteroflengthcorrespondsto3miles,thenwhatistheareaoftheactuallake?Explain.Weoftenmeasuretheareaofirregularlyshapedobjectsjustbycounting(andestimating)thenumberofsquareunitswithintheboundaryoftheobject.Sometimeswesuperimposeagridtohelpwiththatestimate.Estimatetheareaofthisobjectnowassumingthateachsmallsquareisaunitofarea.Whenwemeasuretheareaofanobjectinsquareunits,noticethatwearetakingadvantageofthefactthatsquarestessellatetheplane–therearenogapsbetweenthesquares.Wehavealreadydiscoveredthatthereareothershapesthattessellatetheplaneaswell;twoofthem

Page 97: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

96

are,likethesquare,alsoregularpolygons.Whichones?Whydoyouthinkpeoplechosetousesquareunitsinsteadofsomeothershapethattessellatestheplane?ConnectionstotheElementaryGrades

Teachingcreatesallotherprofessions.AuthorUnknown

ChildrenneedtohaveexperiencesfindingareasbycoveringfigureswithsquareunitslikeyoudidintheReadandStudysection.Ifyoushowthemformulastooearly,theywillsimplytrytorememberthoseformulasandtheymaynotfocusontheideaofarea.Besides,formulasworkonlywithalimitednumberofshapes,andsoestimatingareasusingthedefinitionisausefulskillinitsownright.Wesuggestthatchildreningrades2and3spendmanyweeksestimatingareasusingsquarestickersorsquaregridstocoverfigures.Someofthosefiguresshouldhavecurvedboundariesandsomeshouldhavespecialpolygonshapes.Childrenwillquicklybegintoproposeshortcutsontheirownthatwillleadnaturallytotheareaformulas.Forexample,ifchildrencomputeareasofthebelowrectangleshapesusingstickersoragrid,someofthemwillnoticethatashortcutforfindingareasofrectangleshapesistosimplymultiplythelengthoftherectanglebyitswidth.Thenyoucantalkwiththemaboutwhythisisso.Practicethatnowbydoingthebelowtasks.Firstuseagridtoestimatehowmanyareaunitsittakestofilleachrectangleshape.Thenexplainwhyitmakessensethattheareaofarectanglecanbefoundbymultiplyingitslengthbyitswidth.Hereisaunitoflength:_____ Hereisaunitofarea:

Page 98: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

97

TheCommonCoreStateStandardsdescribethefollowingstandardsforchildreningrade3.Readthemtoseethatthethingschildrenshouldlearnaremanyofthethingswehavedescribedinthissection.

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

Wehavenottalkedexplicitlyabout2.c.and2.d.above.Sketchpicturestohelpyoutomakesenseofwhattheymeanbythose.

CCSSGrade3:Geometricmeasurement:understandconceptsofareaandrelateareatomultiplicationandtoaddition.

1. Recognizeareaasanattributeofplanefiguresandunderstandconceptsofareameasurement.a. Asquarewithsidelength1unit,called“aunitsquare,”issaidtohave“one

squareunit”ofarea,andcanbeusedtomeasurearea.

b. Aplanefigurewhichcanbecoveredwithoutgapsoroverlapsbynunitsquaresissaidtohaveanareaofnsquareunits.

c. Measureareasbycountingunitsquares(squarecm,squarem,squarein,square

ft,andimprovisedunits).

2. Relateareatotheoperationsofmultiplicationandaddition.a. Findtheareaofarectanglewithwhole-numbersidelengthsbytilingit,and

showthattheareaisthesameaswouldbefoundbymultiplyingthesidelengths.

b. Multiplysidelengthstofindareasofrectangleswithwholenumbersidelengthsinthecontextofsolvingrealworldandmathematicalproblems,andrepresentwhole-numberproductsasrectangularareasinmathematicalreasoning.

c. Usetilingtoshowinaconcretecasethattheareaofarectanglewithwhole-

numbersidelengthsaandb+cisthesumofa×banda×c.Useareamodelstorepresentthedistributivepropertyinmathematicalreasoning.

d. Recognizeareaasadditive.Findareasofrectilinearfiguresbydecomposing

themintonon-overlappingrectanglesandaddingtheareasofthenon-overlappingparts,applyingthistechniquetosolverealworldproblems.

Page 99: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

98

Homework

ThemoreIpractice,theluckierIget.JerryBarber

1) DoalltheitalicizedthingsintheReadandStudysection.

2) DoalltheitalicizedthingsintheConnectionssection.

3) Useagridtoestimatecarefullytheareaofthebelowcircularfigureinsquare

centimeters.

4) Astudentcomestoyouandasks,"Whydoweusesquarecentimeterstomeasuretheareaofthecircle?Acircleisroundandnotsquare."Explaintoherwhywestillusesquarecentimeterstomeasuretheareaofacircle.

5) WewouldliketohavetheabovelakeclassifiedasoneoftheGreatLakes.AspartoftheapplicationtotheDepartmentoftheInterior,wehavetoreportitsarea.Estimatetheareaofthelakeinsquaremiles.

Scale1cm=3miles

Page 100: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

99

6) Hereisafloorplanforthefirstlevelofahouse.a) Whatisitsareainsquarefeetincludingthegarage?Assumethat1cm

represents6feetoflength.b) Howgoodisyourestimate?Areyouconfidenttothenearestsquarefoot?c) WhatCommonCoreStateStandardismetbythisproblem?Explain.

7) Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade3TeachersGuide.Spend10-15minuteslookingthroughUnit6Module3.

a. Howareareaandperimeterintroduced?b. PrintoutandthencarefullyworkthroughtheworksheetBayardOwl’sBorrowed

Tables.Whatconversationscouldyouhavewithyourstudentsaboutthebigideasofperimeterandareabasedonthisactivity?

8) AnNBAbasketballcourtmeasures50feetby96feet.Usethisinformationbelowtodeterminehowmanyacresitcovers.

1foot=12inches1yard=3feet1mile=1760yards1acre=4840squareyards1squaremile=640acres

Page 101: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

100

ClassActivity15:FindingFormulas

Onecannotescapethefeelingthatthesemathematicalformulashaveanindependentexistenceandanintelligenceoftheirown,thattheyarewiserthanweare,wisereventhantheirdiscoverers.

HeinrichHertzWecommonlycomputeareasofsomespecialpolygonshapeswiththeuseofformulas.Theseformulascanbeexplained–theyarebasedongeometricdefinitionsandtheorems–andwewantyoutounderstandwhytheymakesense.Thatisthegoalofthisactivity.

1) Rectangle:Usetheideaofareaasthenumberofsquareunitsittakestocoveranobjecttoexplainwhyitmakessensethattheareaofarectangleissimplytheproductofitslengthandwidth.

2) Parallelogram:Showhowtocutandrearrangeaparallelogramtomakearectanglewiththesamearea.Arguethattheresultingfigureisinfactarectangle.UsetheformulafortheareaofarectangletofindaformulafortheareaAofaparallelogramusingthebasebandtheheighthoftheparallelogram.

3) Triangle:Showhowtorearrangetwocopiesofthesametriangletomakeaparallelogram.Arguethattheresultingfigureisinfactaparallelogram.UsetheformulafortheareaofaparallelogramtofindaformulafortheareaAofatriangleusingthebasebandtheheighthofthetriangle.

Page 102: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

101

ReadandStudy

Theessenceofmathematicsisitsfreedom. GeorgCantorManyofyourstudents(andmanyoftheirparents)willthinkthatformulastellthewholestoryaboutarea.Infact,somepeoplemistakenlydefineareaas“lengthtimeswidth.”Everyclosedtwo-dimensionalshapehasarea,butaswehaveseeninanearliersection,onlyaveryfewoftheseshapeshaveformulaswecanusetocalculatethearea.Theareaofsomegeometricobjectsismoreeasilydeterminedthroughtheuseofareaformulas.IntheClassActivityyoudevelopedseveralusefulandwell-knownformulasthatarereadilyfoundintheelementaryschoolcurriculum.Themostfundamentalareaformulaisfortheareaofarectangle:length´width.Alloftheotherformulasforareaarebuiltonthat.Asyouhaveseen,theseformulasarereallytheoremsthathavebeenproventowork.And,thesetheoremsareonlytruewhenweusetheunitsquareasourunit.Explaincarefullywhythatpreviousstatementissoimportant.Whathappensifwedonotusesquaresasourunit?YoushouldhaveyourupperelementarystudentsdoactivitieslikethoseintheClassActivitysothattheycanseethisforthemselves.IntheBridgesinMathematicscurriculumforgrade4,studentsdiscovertheformulasfortheareaandperimeterofrectangles.Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade4TeachersGuide.Spend10-15minuteslookingthroughUnit5Module3Session3.Inwhatwaysdoesthisactivityhelpstudentstodevelopformulasfortheperimeterandareaofarectangle?ConnectionstotheElementaryGrades

Knowingisnotenough;wemustapply.Willingisnotenough;wemustdo.

JohannWolfgangvonGoethe

Oncechildrenunderstandtheideasofperimeterandarea,theycansolvesomepracticalproblems.Wewillposesomenowthatspecificallyaddressthestandardsdiscussedbelow.

Page 103: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

102

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

Dotheseproblemsandthenreadtoseewhichofthestandardswe’veaddressedwiththem.

a) Ifarectangularroomhasalengthof5feetandanareaof60squarefeet,whatisitswidth?

b) Ifarectanglehasalengthof10feetandaperimeterof36feet,whatisitswidth?c) Isittruethatrectangleswithbiggerperimetersalwayshavebiggerareastoo?Explain.d) Isittruethatrectangleswithbiggerareasalwayshavebiggerperimeterstoo?Explain.

CCSSGrade3:Geometricmeasurement:recognizeperimeterasanattributeofplanefiguresanddistinguishbetweenlinearandareameasures.Solverealworldandmathematicalproblemsinvolvingperimetersofpolygons,includingfindingtheperimetergiventhesidelengths,findinganunknownsidelength,andexhibitingrectangleswiththesameperimeteranddifferentareasorwiththesameareaanddifferentperimeters.

CCSSGrade4:Solveproblemsinvolvingmeasurementandconversionofmeasurementsfromalargerunittoasmallerunit.

1. Knowrelativesizesofmeasurementunitswithinonesystemofunitsincludingkm,m,cm;kg,g;lb,oz.;l,ml;hr,min,sec.Withinasinglesystemofmeasurement,expressmeasurementsinalargerunitintermsofasmallerunit.Recordmeasurementequivalentsinatwocolumntable.Forexample,knowthat1ftis12timesaslongas1in.Expressthelengthofa4ftsnakeas48in.Generateaconversiontableforfeetandincheslistingthenumberpairs(1,12),(2,24),(3,36),...

2. Usethefouroperationstosolvewordproblemsinvolvingdistances,intervalsoftime,liquidvolumes,massesofobjects,andmoney,includingproblemsinvolvingsimplefractionsordecimals,andproblemsthatrequireexpressingmeasurementsgiveninalargerunitintermsofasmallerunit.Representmeasurementquantitiesusingdiagramssuchasnumberlinediagramsthatfeatureameasurementscale.

3. Applytheareaandperimeterformulasforrectanglesinrealworldandmathematicalproblems.Forexample,findthewidthofarectangularroomgiventheareaoftheflooringandthelength,byviewingtheareaformulaasamultiplicationequationwithanunknownfactor.

Page 104: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

103

Homework Toliveacreativelife,wemustloseourfearofbeingwrong. JosephChiltonPearce

1) DotheproblemsandthendotheitalicizedstatementintheConnectionssection.

2) PracticeexplainingwhyeachoftheformulasfromtheClassActivitymakessense.

3) Oneofyourstudentsisconfusedaboutareacalculations.Adamwonderswhy,ifyoutakearectangleandmultiplythelengthofeachsideby2,theareaofthenewrectangleisn'ttwiceasbigastheareaoftheoldrectangle.Drawsomepicturestohelpyouseewhatisgoingonhere.Whatwillyousaytohim?

4) Explainwhyitmakessensethattheareaofatrapezoidisalways½h(b1+b2)whereb1andb2arethelengthsoftheparallelbasesandhistheheight.Youcandothisbypartitioningthetrapezoidregionintopieces,orbycuttingitapartandrearrangingit,orbyaddingonstructure.Youmayusewhatyouknowaboutfindingareasofrectangles,parallelograms,andtriangles.Seeifyoucanfindmorethanonewaytodothis.

5) Findtheareaofthetrapezoidshownbelowinasmanydifferentwaysasyoucan.

Assumethateachgridsquarerepresentsoneunitofarea.

* * * * * *

* * * * * *

* * * * * *

* * * * * *

Page 105: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

104

6) Supposearectanglehasaperimeterof36units.Whatareallthepossiblewholenumberdimensionsoftherectangle?Makeagraphofwidthvs.area.Whichwidthgivesthegreatestarea?

7) Supposeyouhave100metersofflexiblefencingtomarkapastureoutontheplains.

Howwouldyousetitup(whatshape)toenclosethemostgrazingareaforyourcattle?Whatdimensionswouldyouuseifthepasturehadtobearectangle?

8) Thetrianglebelowisconstructedona1cmgrid.Findtheareaofthetriangleusingatleastthreedifferentmethods.

9) Assumethatthetriangleareaaboverepresentspartofasignthatneedstobepainted.

Thescaleofthedrawingisthat1cmrepresents10feet.Theinstructionsonthepaintcansaythat1gallonofpaintwillcover100squarefeet.Howmanygallonsofpaintwillyouneedtobuyinordertopaintthetriangle?

1 cm

Page 106: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

105

ClassActivity16:TheRoundUp

Donotdisturbmycircles!Archimedes’finalwords

1) Acircleisdefinedasthesetofallpointsintheplanethatareequidistantfromagiven

pointcalledthecenter.Studythisdefinition.Iftheword“all”wasmissing,howwouldthatchangethings?Whatifthewords“intheplane”weremissing?

2) Howmanytimesdoesthediameterofacirclefitintoitscircumference?Gathersomedatatosee.

3) Exploretheideaoftheareaformulaforacircularregionbyrearrangingitintoaparallelogram-shapedfigure.Findtheareaofthe“parallelogram”intermsoftheradiusofthecircle.Whyisthisjusttheideaoftheargument?

Page 107: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

106

ReadandStudy

Itisnotoncenortwice,buttimeswithoutnumberthatthesameideasmaketheirappearanceintheworld. Aristotle

CirclesareasfundamentaltoEuclideangeometryasarepointsandlines.RecallthatEuclid’sthirdaxiomassuresusthatwecanalwaysmakeacircleofanysize(radius)wewant.Ofcourse,thecircleswedrawarestillonlyapproximationsofatruemathematicalcircle,justasthelinesegmentswemakearejustapproximationsofatruelinesegment.

Acircleisthesetofallpointsintheplanethatareequidistantfromagivenpoint,calledthecenter(Ointhediagrambelow).Thediagramshowssomeoftheotherimportanttermsassociatedwithacircle.Becertainyouunderstandeachtermandcanexplainitsmathematicaldefinition,whichyouwillfindintheglossary.

Central Angle Ð AOC

Tangent

Secant

Chord DE Diameter AB

Arc DE

Radius CO

Sector O

C

A

B

D

E

Page 108: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

107

Itisanamazingfactthat,foranysizecircle,theratioofthecircumferencetothediameteristhesamenumber.Thiswasknowninallearlycivilizations.Wecallthatratio“pi.”Soπ(pi)isthesymbolforthenumberoftimesthediameterofacirclefitsintoitscircumference.Readthatagain;itisimportant.Thisnumberpisanirrationalnumber.Thatmeansithasadecimalrepresentationthatneitherendsnorrepeats.Thiswasprovedin1761byamathematiciannamedJohannHeinrichLambert.Evenwhenweusethepkeyonacalculator,weareusinganapproximatevalue.Elementarystudentscommonlyuseeither3.14or

722 asanapproximatevalueforpwhen

carryingoutcalculationsinvolvingcircles.Alwaysbesuretomakethepointthatthisisjustanapproximation.ConnectionstotheElementaryGrades

Attheageofeleven,IbeganEuclid,withmybrotherasmytutor.Thiswasoneofthegreateventsofmylife,asdazzlingasfirstlove.

BertrandRussellIntheBridgesinMathematicscurriculumforgrade4,studentsareintroducedtobasiccircleterminology.Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade4TeachersGuide.Spend10-15minuteslookingthroughUnit5Module1Session5.Howarethepartsofacircleintroducedtothestudents?Withinthelesson,thestudentsareaskedtowritetheirowndefinitionofacircle.IssaandSuzigavethefollowingdefinitions.Aretheirdefinitionscorrect?Howasateacherdoyourespondtoeachofthesestudents? Issa’sdefinition:Acircleisashapethat’sroundandhas360°. Suzi’sdefinition:Acircleisashapethathasthesamewidthallthewayaround.

Page 109: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

108

Homework

Eureka!I’vegotit! Archimedes1) DoalltheitalicizedthingsintheReadandStudysection.

2) SolvetheproblemsintheConnectionssection.

3) Studyeachboldandunderlinedtermusedinthissection.Thismeansyoushouldbeabletoexplainthedefinitionusinggoodmathematicallanguageandthatyoushouldbeablesketchexamplesandnon-examplesofeachterm.

4) HowdoesthedefinitionofπleadtotheformulaC=2πr(whereCisthecircumferenceofacircleandrisitsradius)?

5) Ifacirclehasameasuredradiusof5inches,then,usingtheformulaforfindingtheareaofacircle,wewouldsaythattheareaofthecircleisapproximately78.5squareinches.Giveatleasttwodistinctreasonswhythecalculationisapproximate.

6) Explaintherelationshipbetweenasecantandachordofacircle,betweenaradiusandadiameter,andbetweenasecantandatangentofacircle.

7) Hereisanothersetofpicturesdesignedtogiveanintuitiveargumentthattheareaofacircularregionisπr2.Imaginethatthecircleshownismadeofcircularstringssittingoneinsidethenext.Thenyoutakeascissors,sniparadius,andflattenthestringstomakethetriangularshape.Whatistheareaofthetriangleintermsofr(theradiusofthecircle)?

8) IfIdoublethediameterofacircularregion,whathappenstoitscircumference?

9) IfIdoublethediameterofacircularregion,whathappenstoitsarea?

Page 110: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

109

10) Ifan8-inch(diameter)pizzacosts$5,howmuchshoulda16-inchpizzacost?Justifyyourresult.

11) Havealookatthecirclesbelow.

a) Carefullymeasuretheperimeterofthesquarethatisinscribedinsidethefirst

circle.b) Carefullymeasuretheperimeteroftheregularpentagoninscribedinsidethe

secondcircle.c) Carefullymeasuretheperimeteroftheregularhexagoninscribedinsidethe

thirdcircle.d) TrueorFalse?Asthenumberofsidesoftheinscribedpolygongrows,sodoes

theperimeterofthepolygon.e) TrueorFalse?Ifweinscribeapolygonwithinfinitymanysides,thenthe

perimeterofthatpolygonwillbeinfinitelylong.Explainyourthinking.f) Howcouldyouusethesemeasurementstogetanestimateforπ?Explain.

Morethan2000yearsagoArchimedesfoundapproximateboundsforπusinginscribedandcircumscribed(outside)polygonswith,getthis,120sides.WestilluseArchimedesboundstoday( 7

2271223

<< ).Theaverageofthesetwovaluesis

roughly3.1419whichiscorrecttothreedecimalplaces.Notbadfor350BC.

Page 111: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

110

ClassActivity17:PlayingPythagoras

Ihavehadmyresultsforalongtime,butIdonotknowyethowIamtoarriveat

them. CarlFriedrichGauss

ThePythagoreanTheoremisthoughttobealmost4000yearsold.TheBabylonians,theEgyptians,andtheChineseallknewit.Thatis,theyknewthatthesumoftheareaofthesquaresonthelegsofarighttriangleequalstheareaofthesquareonthehypotenuse,andtheyusedthisfactnumericallyinconstructionandcommerceandsurveying.

1) Carefullymeasuretheareasofthesquaresinthebelowexampletoseeifthistheoremseemstrue.

2) Whathappensifthetriangleisn’tarighttriangle?Isthesumofthesquaresonthe“legs”(shortersides)ofanobtusetrianglemoreorlessthanthesquareonthelongestside?Whathappensinanacutetriangle?Drawsomediagramstosee.

(Thisactivityiscontinuedonthenextpage.)

Page 112: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

111

ThefirstproofofthetheoremisattributedtoPythagorasofSamos(it’sinGreece)around600B.C.Sincethen,hundredsofdifferentproofshavebeencreated.Youaregoingtoexploreoneofthem.a) Theproofbeginswithanyrighttriangle.Carefullydrawyourownandlabelthe

lengthofthehypotenusec,thelengthofthelongerlegb,andthelengthoftheshorterlega.

b) Nowmakefourcongruentcopiesofyourtriangle,cutthemout,andarrangethem

intoaquadrilateralasshownbelow.

c) Justifythattheboundaryoftheouterquadrilateralisasquare.

d) Justifythattheinnerquadrilateralisasquare.

e) Nowgiveanalgebraicproofthatc2=a2+b2byusingthefactthatthefivepolygonsformthelargefigure(sotheareaformulasforthefivemustsumtotheareaformulaofthelargesquare).

f) Whatthingsgowrongifthetrianglesarenotrighttriangles?

Page 113: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

112

ReadandStudy

I’mverywellacquaintedtoowithmattersmathematical,Iunderstandequations,boththesimpleandquadratical,AboutbinomialtheoremI’mteemingwithalotofnews--Withmanycheerfulfactsaboutthesquareofthehypotenuse.

Gilbert&Sullivan,“ThePiratesofPenzance”

ThePythagoreanTheoremisoneofthemostwell-knownandmostimportanttheoremsofallofelementarymathematics.ItisnamedaftertheGreekmathematician,Pythagoras,andEuclidincludeditasthefittingendtovolumeoneofTheElements.InEuclid’swordsthetheoremsaysthis:

Inright-angledtrianglesthesquareonthesideoppositetherightangleequalsthesumofthesquaresonthesidescontainingtherightangle.

Euclidintendedtheword“square”tomeanthephysicalsquaredrawnonthehypotenuseorlegoftherighttriangle.Sohistheoremsaysthattheareaoftheyellowsquare(inthefigureabove)isequaltothesumoftheareasoftheredandbluesquareswhenABCisarighttriangle.Todaywemorecommonlyuseanalgebraicstatement:

Ifarighttrianglehaslegsoflengthsaandbandahypotenuseoflengthc,thenc2=a2+b2.

Noticethathere,a,b,andcarenumbersrepresentingthelengthsofthevarioussidesofthetriangle.Sonowtheword“square”carriesthealgebraicmeaningdenotedbytheexponenttwo.Therearemany(atonecount,atleast367)proofsofthePythagoreanTheorem.YourecreatedoneoftheproofsintheClassActivity.YouwillbeaskedtoexploretwoothersaspartoftheHomeworkforthissection.

C B

A

Page 114: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

113

ThePythagoreanTheoremisanexampleofatheoremwhoseconverseisalsoatheorem.StatetheconverseofthePythagoreanTheorem.Ifyouhavetolookup“converse,”visittheglossaryanddoso.TheconverseofthePythagoreanTheoremgivesusawaytodiscoverwhetherornotatriangleisarighttriangleevenwhenweknownothingabouttheanglemeasuresofthetriangle.Forexample,supposeweknowthatthesidesofatriangleareexactly3,4,and5incheslong.Isthisarighttriangle?Let’ssubstitutethevalues3fora,4forb,and5forc(Howdoweknowthatthehypotenusemustbethesideoflength5?)andcheckoutthePythagoreanrelationshipc2=a2+b2.Does52=32+42?Iftheansweris“yes,”thenthetriangleisarighttriangle.ConnectionstotheElementaryGrades

Instructionalprogramsfromprekindergartenthroughgrade12shouldenableallstudentstocreateanduserepresentationstoorganize,record,andcommunicatemathematicalideas;toselect,apply,andtranslateamongmathematicalrepresentationstosolveproblems;andtouserepresentationstomodelandinterpretphysical,social,andmathematicalphenomena.

NCTMPrinciplesandStandardsforSchoolMathematics,2000Havingtwo(ormore)waystointerpretorrepresentamathematicalideaisanimportantcharacteristicofmathematicsforteaching.TheNCTMStandardsrecognizethisandcallforallelementarystudentsto“select,apply,andtranslateamongmathematicalrepresentationstosolveproblems.”Andso,asteachers,itisalsoimportantthatweunderstandamathematicalconceptfrommorethanonepointofviewinordertoassistourstudentstousedifferentrepresentationsofthatconcepttosolveproblems.ThePythagoreanTheoremisonesuchideathatcanbeunderstoodfrommanyviewpoints:geometric,numeric,andalgebraic.Someofourstudentswillmoreeasilygraspthealgebraicapproachwhileotherswillpreferthemoreconcretegeometricornumericrepresentation.Asteachers,wemustmasterallrepresentationsinordertocarryoutourresponsibilitiestosupporteachstudent’slearning.

Page 115: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

114

Homework

Thedifferencebetweenasuccessfulpersonandothersisnotalackofstrength,notalackofknowledge,butratheralackinwill.

VinceLombardi

1) DoalltheitalicizedthingsintheReadandStudysection.

2) JamesAbramGarfield(1831-1881),thecountry’stwentiethpresident,createdthisproofofthePythagoreanTheoremin1876,whilehewasamemberoftheHouseofRepresentatives.FindGarfield’sproofbyusingthediagrambelowbyfindingformulasfortheareaofthetrapezoidintwodifferentways.Howdoeshisargumentfailifthetrianglesarenotrighttriangles?

3) Whenthelengthsofthesidesofarighttriangleareallintegersthethreenumbers(a,b,c)areknownasaPythagoreanTriple.Explainwhy(3,4,5)isaPythagoreanTriple.WhichofthefollowingtriplesofnumbersarePythagoreanTriples?

a)(4,5,6) b)(4,6,8) c)(6,8,10)

4) Supposeatrianglehassidesoflength8,15,and17.Isitarighttriangle?

5) Whatistheexactheightofanequilateraltriangleifallsidesareoflength10?Oflength3?Oflength4?Oflengths?

6) Aclosetis3feetdeep4feetwideand12feethigh.Findthedistancefromonecorneratthefloortothediagonallyoppositecornerattheceiling.Youmightwanttohavealookataboxtohelpyouseewhattodohere.

a

b

c

c b

a

Page 116: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

115

ClassActivity18:Coordination

Thoughtisonlyaflashbetweentwolongnights,butthisflashiseverything. HenriPoincare

Whichofthetrianglespicturedabovearesimilartoeachother?Justifyyouranswerinasmanywaysasyoucan.(Youmayassumethatthedotsareequallyspacedonthegridinboththehorizontalandverticaldirections,andthattheverticesofthetriangleslieexactlyonthedotsastheyappearto.)

Page 117: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

116

ReadandStudy

Teachersopenthedoor.Youenterbyyourself.ChineseProverb

Wearegoingtousethissectiontodiscusstheideaof“coordinategeometry.”Inthe1700’sRenéDescartes(pronouncedDay-cart)hadtheideathathecouldsolvesomegeometricproblemsmoreeasilybytranslatingthemintoalgebraicproblems.Hisideawastoplaceastructure(agrid)ontopoftheplaneandtogivenames(like(-3,-1))tothepoints.Thecoordinateplanefeaturestwoperpendicularaxes,thehorizontalx-axisandtheverticaly-axis,thatintersectatapointcalledtheorigin.Welabeleachpointontheplanewithanorderedpairofcoordinates(x,y).Thex-coordinatetellsushowfarthepointisfromtheorigin(0,0)inthehorizontaldirectionandthey-coordinategivesthedistancefromtheoriginintheverticaldirection.Forexample,thepoint(-3,-1)islocated3unitsleftand1unitdownfromtheorigin.

UsingthePythagoreanTheoremwecanfindthedistancebetweenanytwopointsonthecoordinateplane.Forexample,let’sfindthedistancebetweenpointsAandDinthepictureabove.ThelinesegmentADisthehypotenuseofarighttriangle(sketchitonthepictureabove)withahorizontallegoflength5=(2–(-3))andaverticallegoflength2=((-1)–(-3)).Sothe

8

6

4

2

-2

-4

-6

-8

-10 -5 5 10

D: (2, - 3)

C: (4, 0)

B (-2, 5)

A (- 3, -1)

origin

y-axis

x-axis

Page 118: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

117

squareofthedistancebetweenAandDis52+22=25+4=29andthedistancebetweenAandDis 29 .Findthedistancebetween(2,-3)and(4,0).

Therearetwofactsaboutlinesonthecoordinateplanethatareusefultorecall.Oneisthateverylinehasaslope,whichisameasureofitsinclinationwiththex-axis.Slopeistheamountyouneedtomoveinthey-directiontostayonthelineforaoneunitchangeinthex-direction.Sothinkaboutthis.Whatdoesaslopeof3mean?Sketchalinewiththatslope.Whatdoesaslopeof-¼mean?Sketchalinewiththatslopeontheaxisabove.Wecancalculatetheslope(m)ofalinebyusingthecoordinatesoftwopointsthatlieonthelinewiththeformula:

12

12

xxyym = where ),( 11 yx and ),( 22 yx arethecoordinatesofthetwopoints.

Howdoestheformularelatetothedefinitionofslopeasstatedabove?Explain.Computetheslopeofthelinecontainingthepoints(4,0)and(-2,5).Iftwolinesareparallel,thentheywillmakethesameanglewiththex-axisandsowillhavethesameslope–andviceversa,iftwolineshavethesameslope,thentheyareparallel.Thinkabouthowyoucouldmakeanargumentforthisfact.Thisturnsouttobeaveryusefulobservation.Ifweneedtoshowthattwolinesareparallel,wecansimplycalculatetheirslopesandshowthattheyareequal.Whatiftwolinesareperpendicular?Howaretheirslopesrelated?Itturnsoutthattheslopesofperpendicularlinesalsohaveanumericalrelationship.Theproductoftheslopesofperpendicularlinesisalways-1.Makeanargumentforthisfact.Whatistheslopeofthelinethatisperpendiculartothelinecontainingthepoints(4,0)and(-2,5)?

Page 119: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

118

IntheClassActivity,didyoutryusingthePythagoreanTheoremtogetherwithatrianglecongruencetheorem?DidyoutryusingslopesoflinestocompareanglesandapplyEuclid’strianglesimilaritytheoremfromoursectiononsimilarity?Ifnot,youshouldgobackanddothosethingsnow!ConnectionstotheElementaryGrades

Often,whenIamreadingagoodbook,Istopandthankmyteacher.Thatis,Iusedto,untilshegotanunlistednumber. AuthorUnknown

Coordinategeometryisatopictobeintroducedingrade5accordingtotheCommonCoreStateStandardsformathematics.Readthedescriptionbelowtobesurethatitfitswithwhatwehavediscussedinthissection.

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade5TeachersGuide.Spend10-15minuteslookingthroughUnit6Module1.Payparticularattentiontohowthecoordinateplaneisutilizedinthesessions.PrintoutRita’sRobotanddotheactivity.

CCSSGrade5:Graphpointsonthecoordinateplanetosolvereal-worldandmathematicalproblems.

1. Useapairofperpendicularnumberlines,calledaxes,todefineacoordinatesystem,withtheintersectionofthelines(theorigin)arrangedtocoincidewiththe0oneachlineandagivenpointintheplanelocatedbyusinganorderedpairofnumbers,calleditscoordinates.Understandthatthefirstnumberindicateshowfartotravelfromtheorigininthedirectionofoneaxis,andthesecondnumberindicateshowfartotravelinthedirectionofthesecondaxis,withtheconventionthatthenamesofthetwoaxesandthecoordinatescorrespond(e.g.,x-axisandx-coordinate,y-axisandy-coordinate).

2. Representrealworldandmathematicalproblemsbygraphingpointsinthefirstquadrantofthecoordinateplane,andinterpretcoordinatevaluesofpointsinthecontextofthesituation.

Page 120: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

119

Homework

Energyandpersistenceconquerallthings.

BenjaminFranklin

1) DoalltheitalicizedthingsintheReadandStudyandConnectionssections.

2) Ageoboardisaboardcontainingalatticeofpoints,thatis,thepointsarearrangedinageometricpattern.Themostcommonarrangementistohavepointsevenlyspacedinhorizontalandverticalcolumns,formingasquaregriddesignlikethedotpaperyouusedintheClassActivityorthecoordinategriddiscussedintheReadandStudysection.Childrencanformpolygonsonageoboardbyplacingrubberbandsaroundthepegs.Ageoboardpolygon(oradot-paperpolygon)islikeanyotherpolygoninthatitisasimpleclosedcurvemadeupoflinesegments.However,werequirethattheverticesofageoboardpolygoncoincidewithpointsonthegeoboard.

http://www.artfulparent.com/2012/07/kids-art-activities-with-geoboards.html

Whichregularpolygonscanbemadeonthegeoboard?Ifitisnotpossibletomakeaparticularregularpolygon,explainwhyitisnotpossible.

Page 121: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

120

3) Findtheperimetersandareasofthefiguresonthegeoboardsquaregridsbelow.YoumightfindthePythagoreanTheoremhelpful.

4) Thereare14differentsegmentlengthsthatarepossibletomakeona5by5geoboard.Findthemall.

Page 122: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

121

SummaryofBigIdeasfromChapterThree

Althoughthismayseemaparadox,allexactscienceisdominatedbytheideaof approximation. BertrandRussell

• Measurementisthecomparisonofanattributeofanobjecttoaunit.Tomeasuremeanstoseehowmanyoftheunitfitintotheobjectyouaremeasuring.

• Lengthisaone-dimensionalmeasurement;areaistwo-dimensional;andvolumeisthree-dimensional.

• Allmeasurementisapproximate.• Thechoiceofaunitisafundamentalpartofthemeasuringprocess.

• Areaisthenumberofsquareunitsittakestocoveranobject.Itisnotdefinedas“length

timeswidth,”and,infact,thatformulaworksonlyinafewlimitedcases.

• Formulasforthecalculationofareacanbeexplainedbythegeometryoftheobjectsbeingmeasured.Asateacher,youwillneedtohelpyourstudentstoseewhereformulascomefromandwhytheymakesense.

• πisdefinedasthenumberoftimesthediameterofacirclefitsintoitscircumference.Itisanirrationalnumber.

• Sometimesitisusefultoplaceastructure(agrid)ontopoftheplaneandtogivenamestothepoints.Wecallthiscoordinategeometry.

Page 123: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

122

ChapterFour

TheThirdDimension

Page 124: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

123

ClassActivity19:StrictlyPlatonic(Solids) IfIhaveevermadeanyvaluablediscoveries,ithasbeenowingmoretopatient attention,thantoanyothertalent. SirIssacNewtonHereisadefinitionforyoutostudy:Apolyhedronisafinitesetofpolygon-shapesjoinedpairwisealongtheedgesofthepolygonstoencloseafiniteregionofspacewithinonechamber.Thepolygon-shapedsurfacesarecalledfaces.Itisrequiredthatthesurfacebesimple(notmorethanonechamberisenclosed)andclosed(youcan’tgetinfromtheoutsidewithouttearingit).Thesegmentswherethepolygonsmeetarecallededges.Thepointswhereedgesintersectarecalledvertices.

1) Usethedefinitiontodecidewhichofthebelowimagesof3-dimensionalobjectsrepresentpolyhedra(“polyhedra”isthepluralformofpolyhedron)

Apolyhedronisregularifallofthefacesarethesamecongruent,regularpolygonandalloftheverticeshaveexactlythesamenumberofpolygons.

2) UsethepiecesofaFrameworksÔset(manufacturedbyPolydron)tobuildalloftheregularpolyhedra.Besystematicsoyoucangiveanargumentthatyouhavefoundthemall.(Polyhedraarenamedforthenumberoffacestheycontain;forexample,apolyhedronwithtenfaceswouldbecalledadecahedron.)

3) Canyoubuildapolyhedronthatusesonlyonetypeofcongruentregularpolygonbutisnotregular?Explain.

4) Seeifyoucanfindshortcutwaysofcountingthenumbersofverticesoredgesofregularpolyhedra.

Page 125: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

124

ReadandStudy Everythingshouldbemadeassimpleaspossible,butnotonebitsimpler. AlbertEinstein

IntheClassActivityyouwereaskedtobuildmodelsoftheregularpolyhedra.Thesespecialobjects,alsocalledthePlatonicsolids,havebeenknownsincebeforethedaysoftheGreekmathematics.Approximationsoftheregularpolyhedraevenoccurinnature.Inparticular,thetetrahedron,cube,andoctahedronshapesallappearascrystalstructures.Wealsofindpolyhedralshapesamonglivingthings,suchastheCircogoniaicosahedrashownbelow,aspeciesofRadiolaria,whichisshapedlikearegularicosahedron.

(http://en.wikipedia.org/wiki/Platonic_solids)

Manyvirusesalsohavetheshapeofaregularicosahedron.Viralstructuresarebuiltofrepeatedidenticalproteinsubunitsandapparentlytheicosahedronistheeasiestshapetoassembleusingthesesubunits.

Netsaretwo-dimensionalfiguresthatcanbefoldedintothree-dimensionalobjects.Belowarenetsfortheregulartetrahedronandforthecube.Imaginehoweachfoldsuptomakethe3-dimensionalobject.

Page 126: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

125

Beforeyoureadfurther,gotothissiteandbuildyourselfoneofeachoftheregularpolyhedra.Youwillneedthemforthehomework.http://www.mathsisfun.com/platonic_solids.htmlConnectionstotheElementaryGrades

Studentsingrades3–5shouldexaminethepropertiesoftwo-andthree-dimensionalshapesandtherelationshipsamongshapes.Theyshouldbeencouragedtoreasonaboutthesepropertiesbyusingspatialrelationships. NCTMPrinciplesandStandards,2000

ThefollowingexcerptfromtheNCTMStandardsforGrades3–5Geometry(p.168)describestheimportanceofvisualizationandspatialreasoningastoolselementarystudentscanusetounderstandthepropertiesofgeometricobjectsandtherelationshipbetweenthesepropertiesandtheshapes.Readtheseparagraphsandstudytheexamples.Thenbuildthebuildingtheydescribe.

Usevisualization,spatialreasoning,andgeometricmodelingtosolveproblemsStudentsingrades3–5shouldexaminethepropertiesoftwo-andthree-dimensionalshapesandtherelationshipsamongshapes.Theyshouldbeencouragedtoreasonaboutthesepropertiesbyusingspatialrelationships.Forinstance,theymightreasonabouttheareaofatrianglebyvisualizingitsrelationshiptoacorrespondingrectangleorothercorrespondingparallelogram.Inadditiontostudyingphysicalmodelsofthesegeometricshapes,theyshouldalsodevelopandusementalimages.Studentsatthisagearereadytomentallymanipulateshapes,andtheycanbenefitfromexperiencesthatchallengethemandthatcanalsobeverifiedphysically.Forexample,“Drawastarintheupperright-handcornerofapieceofpaper.Ifyouflipthepaperhorizontallyandthenturnit180°,wherewillthestarbe?”Muchoftheworkstudentsdowiththree-dimensionalshapesinvolvesvisualization.Byrepresentingthree-dimensionalshapesintwodimensionsandconstructingthree-dimensionalshapesfromtwo-dimensional»representations,studentslearnaboutthecharacteristicsofshapes.Forexample,inordertodetermineifthetwo-dimensionalshapeinfigure5.15isanetthatcanbefoldedintoacube,studentsneedtopayattentiontothenumber,shape,andrelativepositionsofitsfaces.

Page 127: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

126

Fig.5.15.Ataskrelatingatwo-dimensionalshapetoathree-dimensionalshape

Studentsshouldbecomeexperiencedinusingavarietyofrepresentationsforthree-dimensionalshapes,forexample,makingafreehanddrawingofacylinderorconeorconstructingabuildingoutofcubesfromasetofviews(i.e.,front,top,andside)likethoseshowninfigure5.16.

Fig.5.16.Viewsofathree-dimensionalobject(AdaptedfromBattistaandClements1995,p.61)

Page 128: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

127

Homework

Gettingaheadinadifficultprofessionrequiresavidfaithinyourself.Thatiswhysomepeoplewithmediocretalent,butwithgreatinnerdrive,gomuchfurtherthanpeoplewithvastlysuperiortalent.

SophiaLoren

1) DoalltheitalicizedthingsintheReadandStudyandConnectionssections.

2) Writeoutthedetailsofamathematicalargumentthatthereareexactlyfiveregularpolyhedra.

3) Thefollowingpictureisoftengivenasanexampleofaregularicosahedron.Examinethepicturecarefullyanddeterminewhythispictureisclaimingtobesomethingthatitisnot.

4) Isitpossibletobuildapolyhedronwhereallofthefacesarecongruentregularpolygonsbutthepolyhedronisnotregular?Explain.

5) Usethefivemodelsyoubuilttofindaformulathatrelatesnumbersofvertices,edges,andfacesinregularpolyhedra.

6) Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade1TeachersGuide.Spend10-15minuteslookingthroughUnit5Module2Session2MysteryBagSorting.Makeupyourownmysteryforyourstudentstosolvesimilartothosegiveninthelesson.

Page 129: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

128

ClassActivity20:PyramidsandPrisms Itisbettertoknowsomeofthequestionsthanalloftheanswers. JamesThurberTherearetwospecialcategoriesofpolyhedrawewillexploreinthisactivity:pyramidsandprisms.Apyramidisapolyhedroninwhichallbutoneofthefacesaretrianglesthatshareacommonvertex(calledtheapex).Theremainingfacemaybeanypolygonandiscalledthebase.Apyramidisnamedfortheshapeofitsbase.Forexample,asquarepyramidisonewhosebaseisasquare.(Noticethatthebaseofapyramidneednothavetheshapeofaregularpolygon.Itcouldlooklikethefigurebelow,forexample.)

1) Youhavealreadybuiltapyramidwithanequilateraltrianglebase(thetetrahedron).In

yourgroup,sketchapyramidwithasquarebaseandanotherwithahexagonalbase.

2) Useyourpicturestohelpyoufindformulasforthenumberoffaces,thenumberofvertices,andthenumberofedgesinapyramidwhosebaseisann-gon.Thenprovethatyourformulaswillworkforallpyramids.

Aprismisapolyhedroninwhichtwoofthefaces(calledthebases)arecongruentandlie on parallel (non-intersecting) planes andtheremainingfacesareparallelograms.Theprismisalsonamedafteritsbase.Iftheparallelogramfacesarerectangular,theprismisarightprism.Iftheparallelogramfacesarenon-rectangular,theprismisanobliqueprism.

3) Which(ifany)oftheregularpolyhedraareprisms?Explain.

4) Sketchanobliqueprism.

5) Sketchaprismwithatriangularbaseandonewithahexagonalbase.Thenuseyourpicturestofindformulasforthenumberoffaces,thenumberofvertices,andthenumberofedgesinaprismwhosebasesarecongruentn-gons.Provethatyourformulaworksinthecaseofallprisms.

Page 130: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

129

ReadandStudy

Themediocreteachertells.Thegoodteacherexplains.Thesuperiorteacherdemonstrates.Thegreatteacherinspires.

WilliamArthurWardThemostfamouspyramidsaretheEgyptianpyramids.Thesehugestonestructuresareamongthelargestman-madeconstructions.InAncientEgypt,apyramidwasreferredtoasthe"placeofascendance."TheGreatPyramidofGizaisthelargestinEgyptandoneofthelargestintheworldwithabasethatisover13acresinarea.ItisoneoftheSevenWondersoftheWorld,andtheonlyoneoftheseventosurviveintomoderntimes.TheMesopotamiansalsobuiltpyramids,calledziggurats.Inancienttimesthesewerebrightlypainted.Sincetheywereconstructedofmud-brick,littleremainsofthem.TheBiblicalTowerofBabelisbelievedtohavebeenaBabylonianziggurat.AnumberofMesoamericanculturesalsobuiltpyramid-shapedstructures.Mesoamericanpyramidswereusuallystepped,withtemplesontop,moresimilartotheMesopotamianzigguratthantheEgyptianpyramid.ThelargestpyramidbyvolumeistheGreatPyramidofCholula,intheMexicanstateofPuebla.Thispyramidisconsideredthelargestmonumenteverconstructedanywhereintheworld,andisstillbeingexcavated.Modernarchitectsalsousethepyramidshapeforbuilding.AnexampleistheLouvrePyramidinParis,France,inthecourtoftheLouvreMuseum.DesignedbytheAmericanarchitectI.M.Peiandcompletedin1989,itisa20.6meter(about70foot)glassstructurewhichactsasanentrancetothemuseum.Themostcommonexampleofaprisminthe“realworld”isitsoccurrenceinoptics,whereaprismisatransparentopticalelementwithflat,polishedsurfacesthatrefractlight.Theexactanglesbetweenthesurfacesdependontheapplication.Thetraditionalgeometricalshapeisthatofatriangularprismwithatriangularbaseandrectangularsides,andincolloquialuse"prism"usuallyreferstothistype.Prismsaretypicallymadeoutofglass,butcanbemadefromanymaterialthatistransparenttothewavelengthsforwhichtheyaredesigned.Aprismcanbeusedtobreaklightupintoitsconstituentspectralcolors(thecolorsoftherainbow).Theycanalsobeusedtoreflectlight,ortosplitlightintocomponentswithdifferentpolarizations.

Page 131: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

130

ConnectionstotheElementaryGrades Itisthesupremeartoftheteachertoawakenjoyincreativeexpressionandknowledge. AlbertEinsteinElementarystudentsbegintheirstudyof3-dimensionalshapesinthefirstandsecondgrades.Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade1TeachersGuide.Spend10-15minuteslookingthroughUnit5Module2Sessions4and5.Whatideasaboutprismsandpyramidsareemphasizedinthesesections?

NowlookattheHomelinksectionfromSession5.Examinequestions4and5carefully.Determineseveralreasonswhyyourchosenfiguredoesnotbelong.Inquestion5,determineatleasttwodifferentfiguresonwhichtoplacethe“X”.

Homework

Iattributemysuccesstothis:Inevergaveortookanyexcuse. FlorenceNightingale

1) DotheproblemintheConnectionssection.

2) Makeamathematicalargumentfortheformulasyoufoundforthenumberoffaces,thenumberofvertices,andthenumberofedgesinapyramidwhosebaseisann-gon.

3) Makeamathematicalargumentfortheformulasyoufoundforthenumberoffaces,thenumberofverticesandthenumberofedgesinaprismwhosebasesarecongruentn-gons.

4) Provethattheformulayoufoundrelatingthevertices,edges,andfacesofaregularpolyhedraalsoholdsforthen-gonalpyramidandforthen-gonalprism.

5) Thefollowingaredescriptionsofpyramidsandprisms.Identifytheprismorpyramidandsketchanet.

a) Apolyhedronwith5facesand9edges.b) Apolyhedronwithtwohexagonalfacesandtheremainingfacesarerectangles.c) Apolyhedronwith12edgesand8verticies.d) Apolyhedronwith7facesand7verticies.

Page 132: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

131

ClassActivity21:SurfaceArea

Mathematicsmaybedefinedastheeconomyofcounting.Thereisnoprobleminthewholeofmathematicswhichcannotbesolvedbydirectcounting.

ErnstMach

1) Use14interlockingunitcubestobuildthe3-dimensionalfigurepictured.

a) Whatisthesurfaceareaofthisobject?

b) Whatisitsvolume?

c) Isthisapolyhedron?Explain.

2) Whatareallthepossiblevaluesforthesurfaceareaoffiguresmadewith14interlocked

cubes?Explain.

Page 133: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

132

ReadandStudy

Numberrulestheuniverse. Pythagoras

Surfaceareaisthemeasureoftheboundaryofathree-dimensionalobjectinthesamewaythatperimeteristhemeasureoftheboundaryofatwo-dimensionalobject.Andjustlikewemeasureperimeterbyaddingupthelengthsofeachsectionoftheboundaryoftheobject,wemeasuresurfaceareabyaddinguptheareasofeachfaceoftheboundaryoftheobject.Forexample,supposewehavearectangularprismthatis3cmlongby5cmwideby8cmtall.Takeaminutetosketchthatfigure.Thismeansthatwehavetwofacesthatarerectanglesthatare3cmby5cm(andsohaveanareaof15squarecmor15cm2),twofacesthatarerectanglesthatare5cmby8cm(andsohaveanareaof40squarecmeach),andtwofacesthatare3cmby8cm(andsohaveanareaof24squarecmeach).Thenthesurfaceareaoftheprismis15+15+40+40+24+24=158squarecm.(Checkourwork.)Noticethatweusesquareunitstomeasuresurfaceareasinceitisameasureoftwo-dimensional(flat)space.Thereisnoneedtodevelopcompletelynewformulasforsurfacearea.Wecanusewhicheverareaformulasareappropriategiventheshapesthatmakeupthefacesoftheobject.

Page 134: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

133

ConnectionstotheElementaryGrades

Theimportantthingisnottostopquestioning.Curiosityhasitsownreasonforexisting.

AlbertEinsteinElementarystudentscanuseinterlockingcubes(suchastheonesweusedintheClassActivity)tocreate“buildings”andthenusethosebuildingstobuildanunderstandingofsurfaceareathroughdrawingthebuildingsfromvariousview-points.Forexamplethebuildingbelowcanbeviewedfromthetop,front,andside.

Buildyourownbuildingoutof5cubes.Thensketchthefigureanditscorrespondingtop,front,andsideviews.Herearethetop,front,andsideviewsofanotherbuilding.Sketchapossiblebuildingwiththeseviews.

Howdotheseactivitiesrelatetothesurfaceareaofthebuilding?Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade5TeachersGuide.Spend10-15minuteslookingthroughUnit1Module2Session4.Theendofthelessonlistsseveralquestionsforyoutoaskyourstudents.Thinkuptwomorequestionsyoucouldaskyourstudentsabouttheactivity.

top front right side

top front right side

Page 135: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

134

Homework

Courageandperseverancehaveamagicaltalisman,beforewhichdifficultiesdisappearandobstaclesvanishintoair.

JohnQuincyAdams

1) DoalltheitalicizedthingsintheReadandStudyandConnectionssections.

2) Supposeyouareaskedtobuildanobjectusinginterlockingunitcubesthathasasurfaceareaof36squareunits.a) Howmanyunitcubesataminimumwouldyouneed?b) Whatisthemaximumnumberofunitcubesyoucoulduse?c) Forwhatthree-dimensionalshapewillthevolumebegreatestforafixedsurface

area?Makeaconjecture.

3) Belowisanetforatetrahedron.Ifeachequilateraltrianglehassidesoflength5cm,whatisthesurfaceareaofthetetrahedron?(Thoselittleextrapartsaretabsthathelpyoutotapeittogether–don’tincludethose.)

4) Whatamountofpaper(area)wouldyouneedtomakeanetforthecubewithanedgelengthof7cm?(Ignoreanypaperneededfortabs.)

5) Sketchanetforarectangularprismthatis4cmby5cmby7cm.Whatisthesurfaceareaofthatprism?

Page 136: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

135

ClassActivity22:NothingButNet Puremathematicsis,initsway,thepoetryoflogicalideas. AlbertEinstein

1) Figureouthowtobuildapapermodelofarightcylinderwitharadiusof3cmandaheightof10cm.Useyourmodeltohelpyoufindaformulaforthesurfaceareaofacylinder.

2) Buildapapermodelofapyramidthathasa6cmby6cmsquarebaseandaheightof4cm.Whatisitssurfacearea?

Page 137: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

136

ClassActivity23:BuildingBlocks

Measurewhatismeasurable,andmakemeasurablewhatisnotso. GalileoVolumeisameasureoftheamountofspaceenclosedbyathree-dimensionalobject.Onewaytodefinevolumeisasthenumberofcubes(cubicunits)thatittakestofilltheenclosedspace.Usingthisdefinition,wecanmeasurevolumebycarefullyestimatingthenumberofcubesthatfitwithintheobject.Someobjectshaveformulasthatwillhelpustocomputevolume.Whatisaformulaforthevolumeofarectangularprismwithlengthl,widthw,andheighth?Whydoesitmakesense?Next, you are going to build three objects out of small wooden cubes (with half-inch edges) and large wooden cubes (with one-inch edges). Follow the steps below. StepA:Buildsomethingoutof10smallwoodencubes.We’llcallthisfigure,“ObjectA.”StepB:Using10largewoodencubes,buildalargerversionofObjectA.We’llcallthisfigure,“ObjectB.”StepC:Usingasmanysmallcubesasnecessary,reproduceObjectB.(ItshouldbethesamesizeandshapeasObjectB,butbuildoutofsmallcubesinsteadoflargeones.)We’llcallthisfigure,“ObjectC.”

1) HowmuchtallerisObjectBthanObjectA?

2) HowmuchbiggeristhesurfaceareaofObjectBcomparedtoObjectA?

(Thisproblemcontinuesonthenextpage.)

Page 138: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

137

3) HowmuchbiggeristhevolumeofObjectBcomparedtoObjectA?

4) WhatistherelevanceofObjectCtoansweringthesequestions?

5) WhatifIgaveyoualargerblockthatis3timesthelengthofthesmallcube;howwouldyouranswersto1-3change?Whatabout4timesthelength?

6) WhatifIgaveyouasmallerblockthatis½timesthelengthofthesmallcube;howwouldyouranswersto1-3change?

Page 139: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

138

ReadandStudy

Mathematicsisnotacarefulmarchdownawell-clearedhighway,butajourneyintoastrangewilderness,wheretheexplorersoftengetlost.

W.S.AnglinIntheClassActivityyoutalkedaboutwhyitmadesensetocalculatethevolumeofarectangularprismbymultiplyingthelengthloftheprismbythewidthwoftheprismbytheheighthoftheprism(V=l´w´h).Theideahereisthatwecanthinkofaprismaslayersofthebasestackedoneuponthenext.Sovolumeistheareaofthebasemultipliedbytheheight(V=AreaofBase×h).Havealookatthepicturebelowtoseewhatwemean.

Willthatsameideaworkforacylinder?Isitsvolumetheareaofitsbasemultipliedbyitsheight?Makeasketchofacylinderanduseittohelpyoutoexplainyourthinking.ConnectionstotheElementaryGrades:

Thecureforboredomiscuriosity.Thereisnocureforcuriosity. DorothyParker

Childrenoftenbegintheirexplorationsofvolumebydeterminingthevolumeofvariousrectangularboxes.Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade5TeachersGuide.Spend10-15minuteslookingthroughUnit1Module1Sessions4and5.Howdoesthisactivityhelpstudentstounderstandvolume?

Page 140: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

139

Homework

Whentheworldsays,"Giveup,"Hopewhispers,"Tryitonemoretime."

AuthorUnknown

1) DoalltheitalicizedthingsintheReadandStudysection.

2) DoallthoseproblemsintheConnectionssection.

3) Whenyoudoublethelengthofallthesidesofacube,whathappenstoitsvolume?Whydoesthishappen?Whathappenswhenyoutriplethelength?

4) Belowwehavesketchedanetforacube.a) Buildapapermodelofacubethatistwiceaslongineachlineardimension.b) Buildapapermodelofacubethathastwicethesurfaceareaofthecubesuggested

bythenet.c) Buildapapermodelofacubethathastwicethevolumeofthecubesuggestedby

thenet.

Page 141: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

140

ClassActivity24:VolumeDiscount ThelawsofnaturearebutthemathematicalthoughtsofGod.

Euclid1)Reasonwithunitcubestocreatevolumeformulasforthefollowingobjects:

a) arectangularprism

b) atriangularprism

c) acylinder2) Userice--notformulas--toanswerthenextfourquestions:

a) Howdoesthevolumeofthesquarepyramidcomparetothevolumeofthesquareprism?Usethisinformationtocreateavolumeformulaforasquarepyramid.

(Thisactivitycontinuesonthenextpage.)

Page 142: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

141

b) Howdoesthevolumeofthetriangularpyramidcomparetothevolumeofthetriangularprism?Usethisinformationtocreateavolumeformulaforatriangularpyramid.

c) Howdoesthevolumeoftheconecomparewiththevolumeofthecylinder? Usethisinformationtocreateavolumeformulaforacone.

d) Howdoesthevolumeoftheconecomparewiththevolumeofthesphere?Usethisinformationtocreateavolumeformulaforasphere.

Page 143: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

142

ReadandStudy

Ifyouwouldbearealseekeraftertruth,itisnecessarythatatleastonceinyourlifeyoudoubt,asfaraspossible,allthings.

ReneDescartesIntheClassActivityyouobservedthatthevolumeofaprismisaboutthreetimesthevolumeofapyramidwiththesameheightandbase,andthatthevolumeofacylinderisthreetimesthevolumeofaconewiththesameheightandradius.Itturnsoutthatfortheidealobjects,thefactorofthreeisexactlycorrect.Thesenicerelationshipsmakeformulasforvolumerelativelystraightforwardifwebuildonformulaswealreadyknow.InanearlierClassActivityyouexplainedwhyitmakessensethatthevolumeofarectangularprismisV=(l´w´h).Now,sinceyouhaveseenthatthisvolumeisthreetimesthevolumeofthepyramidwiththesameheightandrectangularbase,thevolumeofthepyramidshouldbegivenbytheformulaV= 13 (l´w´h).

Wecangeneralizethesetwoformulassothattheyapplytoallprismsandallpyramids(andtoallcylindersandallcones).Noticeinthevolumeformulafortherectangularprismthatl´wisjusttheareaoftherectangularbase.Ifthebasehasadifferentshape,wejustneedtousetheappropriateareaformulatofindtheareaofthebaseandthenmultiplybytheheighttofindthevolumeoftheprism:V=(AreaofBase)´hforallprismsandcylinders.

FigurefromG.S.Rehill’sInteractiveMathsSeries.

Page 144: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

143

Likewise,wecanuseV= 13(Areaofbase´h)forallpyramidsandcones.

Thesphereisanotherthree-dimensionalshapethathasawell-knownvolumeformula, 34

3V r=

,whereristheradiusofthesphere.Thisformulacomesfromcalculus–sowedon’thavethemachinerytoproveitworks–howeveryou(andyourstudents)canobservethattheformulaseemsplausibleusingthewaterexperiment.Here’stheidea.Sinceacylinderhasvolumeπr2×h,andthecylinderyouusedintheClassActivityhasaheightof2r,thismeansthatthecylinderyouusedtopourwaterhasavolumeof2πr3.Takeaminutetocarefullythinkthisthrough.Now,sinceaconehasonethirdthevolumeofacylinderwiththesamebase,theconeyouusedmusthaveavolumeof1/3×(2πr3).Soifittakestwoconestofillasphereitthewaterpouringexperiment,thenitmakessensetoconjecturethatthevolumeofaspheremustbegivenbytheformula, 34

3V r= .Makesurethat

youunderstandwhatwe’resayinghere.Thecorrespondingformulaforthesurfaceareaofasphereis 24SA r= .

Ofcourse,therearemanythree-dimensionalobjectsforwhichwedonothaveformulastocalculatetheirvolume.Forallofthese,wecanusethe“capacity”definitionthatwasdiscussedintheClassActivity.Whenwemeasurevolumeusingcapacitywecommonlyuseunitslikethecup,thequart,thegallon,theliter,etc.Whenwefindvolumeusingaformulawecommonlyuseunitslikecubicinches,cubicyards,andcubiccentimeters.Volumeisathree-dimensionalmeasuresotheunitsusedwillallbecubicunits.

Page 145: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

144

ConnectionstotheElementaryGrades

Puremathematicsis,initsway,thepoetryoflogicalideas.AlbertEinstein

Childreningradethreeshouldhaveexperiencesmeasuringvolumesusingwaterandweighingphysicalobjects.HerearetherelevantCommonCoreStateStandards.Readthem.

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

Ingrade5,studentsshouldlearntodomanyofthethingswehavetalkedaboutinthelasttwosections.Theyshouldthinkofvolumemeasurementasboththenumberofcubicunitsrequiredtofilla3-dimensionalobject,andasthecapacityoftheobject.Theyshouldunderstandhowtothinkaboutthevolumeofaprismandmakesenseofsomevolumeformulas.YouwillfindtherelevantCommonCoreStateStandardsforgrade5below.Readthem.Whatdotheymeanwhentheysaythatstudentsshouldrecognizevolumeas“additive?”

CCSSGrade3:Solveproblemsinvolvingmeasurementandestimationofintervalsoftime,liquidvolumes,andmassesofobjects.

1. Tellandwritetimetothenearestminuteandmeasuretimeintervalsinminutes.Solvewordproblemsinvolvingadditionandsubtractionoftimeintervalsinminutes,e.g.,byrepresentingtheproblemonanumberlinediagram.

2. Measureandestimateliquidvolumesandmassesofobjectsusingstandardunitsofgrams(g),kilograms(kg),andliters(l).Add,subtract,multiply,ordividetosolveone-stepwordproblemsinvolvingmassesorvolumesthataregiveninthesameunits,e.g.,byusingdrawings(suchasabeakerwithameasurementscale)torepresenttheproblem.

Page 146: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

145

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

CCSSGrade5:Geometricmeasurement:understandconceptsofvolumeandrelatevolumetomultiplicationandtoaddition.

1. Recognizevolumeasanattributeofsolidfiguresandunderstandconceptsofvolumemeasurement.

a. Acubewithsidelength1unit,calleda“unitcube,”issaidtohave“onecubic

unit”ofvolume,andcanbeusedtomeasurevolume.

b. Asolidfigurewhichcanbepackedwithoutgapsoroverlapsusingnunitcubesissaidtohaveavolumeofncubicunits.

2. Measurevolumesbycountingunitcubes,usingcubiccm,cubicin,cubicft,and

improvisedunits.

3. Relatevolumetotheoperationsofmultiplicationandadditionandsolverealworldandmathematicalproblemsinvolvingvolume.

a. Findthevolumeofarightrectangularprismwithwhole-numbersidelengths

bypackingitwithunitcubes,andshowthatthevolumeisthesameaswouldbefoundbymultiplyingtheedgelengths,equivalentlybymultiplyingtheheightbytheareaofthebase.Representthreefoldwhole-numberproductsasvolumes,e.g.,torepresenttheassociativepropertyofmultiplication.

b. ApplytheformulasV=l×w×handV=b×hforrectangularprismstofind

volumesofrightrectangularprismswithwholenumberedgelengthsinthecontextofsolvingrealworldandmathematicalproblems.

c. Recognizevolumeasadditive.Findvolumesofsolidfigurescomposedoftwo

non-overlappingrightrectangularprismsbyaddingthevolumesofthenon-overlappingparts,applyingthistechniquetosolverealworldproblems.

Page 147: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

146

Homework

Toclimbsteephillsrequiresaslowpaceatfirst. WilliamShakespeare

1) DoalltheitalicizedthingsintheReadandStudysection.

2) DotheitalicizedthingsintheConnectionssection.

3) Supposeyouhavearightcircularcylinderwithheighthandradiusrandanoblique

circularcylinderwithheighthandradiusr.Dothesetwocylindershavethesamevolume?Compareastraightstackofpenniestoa“slanted”stacktosee.(Reallydoit.)Ineachcase,howisheightmeasured?

4) Theclosetinmylivingroomhasanoddshapebecausemyapartmentisonthetopfloorofahousewithaslantedroof.Theclosetis6feettallinfrontbutonly4feettallinback.Itis3feetdeepand12feetwide.

a) Buildascaleddownpapermodelofmycloset.Reallydothis.Itwillhelpyouwiththerestofthisproblem.

b) Howmanycubicfeetofstoragedoesithold?c) Iwanttopainttheinsidewallsandceilingofmycloset.Howmanysquarefeet

willIneedtopaint?

5) Howmanycubicfeetofwaterdoesasemi-cylindrical(halfacylinder)troughholdthatis10feetlongby1footdeep?Howmanycubicinchesisthat?

6) Iused1500cubicinchesofheliumtofillmyballoon.Assumingmyballoonisasphere,tothenearesttenthofaninch,whatisitsdiameter?Whatisitssurfacearea?

7) Amovietheatersellspopcorninaboxfor$2.75andpopcorninaconefor$2.00.Thedimensionsoftheboxandtheconearegiven.Whichisthebetterbuy?Explain.

8) Goonlinetobridges.mathlearningcenter.organdfindtheBridgesinMathematicsGrade5TeachersGuide.Spend10-15minuteslookingthroughUnit6Module3Session4.Howdoesthisactivityfurtherstudents’understandingofvolume?

Page 148: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

147

ClassActivity25:VolumeChallenge

Ifpeopledonotbelievethatmathematicsissimple,itisonlybecausetheydonotrealizehowcomplicatedlifeis.

JohnLouisvonNeumann

1) Yourgroupshouldworktogethertobuildpapermodelsofeachofthefollowingobjectsinsuchawaythatthevolumeofeachis60cm3.(Otherthanthat,youmayuseanydimensionsyoulike.)

a) Cylinderb) Rectangularprismthatisnotacubec) Pyramidwithasquarebased) Prismwithanequilateraltrianglebase

2) Findthesurfaceareaofeachoftheobjectsyoubuiltin1)above.

Page 149: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

148

ReadandStudyandConnections It'snotthatI'msosmart;it'sjustthatIstaywithproblemslonger. AlbertEinsteinBythetimetheyreachupperelementaryschool,studentscansolvemanypracticalproblemsingeometry.Howeverthesestudentsarenotreadytosimplyapplyformulastosolveproblems;insteadtheyneedtousemodelsinordertomakesenseofproblems.Astheirteacher,yourjobwillbetomakesurethatchildreninyourclassesbuildandhandleappropriatemodels.NoticethattheCommonCoreStateStandardsforgrade6explicitlyrequirethatstudentsusehands-onmodelstoexploreideas.Studentsareaskedtocuttrianglesandothershapesapart,todrawpictures,topackspaceswithunitcubes,tousethecoordinateplane,andtobuildandusenets.Readthesestandards.Havewedoneofthesethingsinthisbooksofarthisterm?

http://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

CCSSGrade6:Solvereal-worldandmathematicalproblemsinvolvingarea,surfacearea,andvolume.

1. Findtheareaofrighttriangles,othertriangles,specialquadrilaterals,andpolygonsbycomposingintorectanglesordecomposingintotrianglesandothershapes;applythesetechniquesinthecontextofsolvingreal-worldandmathematicalproblems.

2. Findthevolumeofarightrectangularprismwithfractionaledgelengthsbypackingitwithunitcubesoftheappropriateunitfractionedgelengths,andshowthatthevolumeisthesameaswouldbefoundbymultiplyingtheedgelengthsoftheprism.ApplytheformulasV=lwhandV=bhtofindvolumesofrightrectangularprismswithfractionaledgelengthsinthecontextofsolvingreal-worldandmathematicalproblems.

3. Drawpolygonsinthecoordinateplanegivencoordinatesforthevertices;usecoordinatestofindthelengthofasidejoiningpointswiththesamefirstcoordinateorthesamesecondcoordinate.Applythesetechniquesinthecontextofsolvingreal-worldandmathematicalproblems.

4. Representthree-dimensionalfiguresusingnetsmadeupofrectanglesandtriangles,andusethenetstofindthesurfaceareaofthesefigures.Applythesetechniquesinthecontextofsolvingreal-worldandmathematicalproblems.

Page 150: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

149

Homework

Theelevatortosuccessisnotrunning;youmustclimbthestairs.ZigZiglar

1) DoalltheitalicizedthingsintheReadandStudyandConnectionssections.

2) Atriangleonacoordinateplanehasverticesat(2,0),(7,0)and(7,8).a) Sketchthepolygononacoordinateplane.b) Whatisthelengthofthehypotenuse?c) Whatistheareaofthepolygon?d) WhatCommonCoreStateStandardisaddressedbythisproblem?

3) AreplicaoftheGreatPyramidstands2feettallandis3.15feetlongonaside(ithasasquarebase).

a) Approximatelyhowmuchvolumedoesthisreplicatakeup?UsethemodelyoubuiltintheClassActivitytohelpyoutothinkaboutthisproblem.

b) Whatisthesurfaceareaofthereplica?c) Supposethescaleofthereplicatotherealthingisinis1footto240feet.Whatis

thevolumeofGreatPyramid?Whatisitssurfacearea?d) WhichoftheCommonCoreStateStandardsaremetbythisseriesofproblems?

Page 151: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

150

SummaryofBigIdeasfromChapterFour

Man’smind,oncestretchedbyanewidea,neverregainsitsoriginaldimensions. OliverWendellHolmes

• Thereareexactlyfiveregularpolyhedra–andchildrencanunderstandwhythisisso.

• Surfaceareaisameasureofthesumofareasofthefacesofathree-dimensionobject.Itisthenumberofsquareunitsittakestocoverthefacesoftheobject.Aunitofsurfaceareaisflatlikethis:

• Volumeisameasureofthenumberofcubicunitsittakestofillathreedimensionalobject.Aunitofvolumeisthree-dimensionalandlookslikethis:

• Volumecanalsobemeasuredbytheamountofliquid(orsand)ittakestofillathreedimensionalobject.

• Thevolumeofaprismorcylindercanbefoundbycomputingtheareaofthebaseandmultiplyingthatbyitsheight(thenumberoflayersofthebase).Thisideaworksforbothrightandobliqueobjects.

• Ittakesthevolumeofthreepyramidstofillaprismwiththesamebaseandheight,andittakesthevolumeofthreeconestofillacylinderwiththesamebaseandheight.

• Childrenneedtohavemanyyearsofexperiencesbuildingandusingavarietyofmodels.

Page 152: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

151

APPENDICES

Page 153: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

152

Euclid’sPostulatesandPropositions

Euclid'sElementsThispresentationofElementsistheworkofJ.T.Poole,

DepartmentofMathematics,FurmanUniversity,Greenville,SC.©2002J.T.Poole.Allrightsreserved.

BookI

POSTULATES

Letthefollowingbepostulated:1.Todrawastraightlinefromanypointtoanypoint.2.Toproduceafinitestraightlinecontinuouslyinastraightline.3.Todescribeacirclewithanycenteranddistance.4.Thatallrightanglesareequaltooneanother.5.That,ifastraightlinefallingontwostraightlinesmaketheinterioranglesonthesamesidelessthantworightangles,thetwostraightlines,ifproducedindefinitely,meetonthatsideonwhicharetheangleslessthanthetworightangles.

COMMONNOTIONS1.Thingswhichareequaltothesamethingarealsoequaltooneanother.2.Ifequalsbeaddedtoequals,thewholesareequal.3.Ifequalsbesubtractedfromequals,theremaindersareequal.4.Thingswhichcoincidewithoneanotherareequaltooneanother.5.Thewholeisgreaterthanthepart.

Page 154: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

153

BOOKIPROPOSITIONSProposition1.

Onagivenfinitestraightlinetoconstructanequilateraltriangle.

Proposition2.Toplaceatagivenpoint(asanextremity)astraightlineequaltoagivenstraightline.

Proposition3.Giventwounequalstraightlines,tocutofffromthegreaterastraightlineequaltotheless.

Proposition4.Iftwotriangleshavethetwosidesequaltotwosidesrespectively,andhaveanglescontainedbytheequalstraightlinesequal,theywillalsohavethebaseequaltothebase,thetrianglewillbeequaltothetriangle,andtheremainingangleswillbeequaltotheremaininganglesrespectively,namelythosewhichtheequalsidessubtend.

Proposition5.Inisoscelestrianglestheanglesatthebaseareequaltooneanother,and,iftheequalstraightlinesbeproducedfurther,theanglesunderthebasewillbeequaltooneanother.

Proposition6.Ifinatriangletwoanglesbeequaltooneanother,thesideswhichsubtendtheequalangleswillalsobeequaltooneanother.

Proposition7.Giventwostraightlinesconstructedonastraightline(fromitsextremities)andmeetinginapoint,therecannotbeconstructedonthesamestraightline(fromitsextremities),andonthesamesideofit,twootherstraightlinesmeetinginanotherpointandequaltotheformertworespectively,namelyeachtothatwhichhasthesameextremitywithit.

Proposition8.Iftwotriangleshavethetwosidesequaltotwosidesrespectively,andhavealsothebaseequaltothebase,theywillalsohavetheanglesequalwhicharecontainedbytheequalstraightlines.

Proposition9.Tobisectagivenrectilinealangle.

Proposition10.Tobisectagivenfinitestraightline.

Proposition11.Todrawastraightlineatrightanglestoagivenstraightlinefromagivenpointonit.

Page 155: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

154

Proposition12.Toagiveninfinitestraightline,fromagivenpointwhichisnotonit,todrawaperpendicularstraightline.

Proposition13.Ifastraightlinesetuponastraightlinemakeangles,itwillmakeeithertworightanglesoranglesequaltotworightangles.

Proposition14.Ifwithanystraightline,andatapointonit,twostraightlinesnotlyingonthesamesidemaketheadjacentanglesequaltotworightangles,thetwostraightlineswillbeinastraightlinewithoneanother.

Proposition15.Iftwostraightlinescutoneanother,theymaketheverticalanglesequaltooneanother.

Proposition16.Inanytriangle,ifoneofthesidesbeproduced,theexteriorangleisgreaterthaneitheroftheinteriorandoppositeangles.

Proposition17.Inatriangletwoanglestakentogetherinanymannerarelessthantworightangles.

Proposition18.Inanytrianglethegreatersidesubtendsthegreaterangle.

Proposition19.Inanytrianglethegreaterangleissubtendedbythegreaterside.

Proposition20.Inanytriangletwosidestakentogetherinanymanneraregreaterthantheremainingone.

Proposition21.Ifononeofthesidesofatriangle,fromitsextremities,therebeconstructedtwostraightlinesmeetingwithinthetriangle,thestraightlinessoconstructedwillbelessthantheremainingtwosidesofthetriangle,butwillcontainagreaterangle.

Proposition22.Outofthreestraightlines,whichareequaltothreegivenstraightlines,toconstructatriangle:thusitisnecessarythattwoofthestraightlinestakentogetherinanymannershouldbegreaterthantheremainingone.[I.20]

Proposition23.Onagivenstraightlineandatapointonittoconstructarectilinealangleequaltoagivenrectilinealangle.

Page 156: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

155

Proposition24.Iftwotriangleshavethetwosidesequaltotwosidesrespectively,buthavetheoneoftheanglescontainedbytheequalstraightlinesgreaterthantheother,theywillalsohavethebasegreaterthanthebase.

Proposition25.Iftwotriangleshavethetwosidesequaltotwosidesrespectively,buthavethebasegreaterthanthebase,theywillalsohavetheoneoftheanglescontainedbytheequalstraightlinesgreaterthattheother.

Proposition26.Iftwotriangleshavethetwoanglesequaltotwoanglesrespectively,andonesideequaltooneside,namely,eitherthesideadjoiningtheequalangles,ofthatsubtendingoneoftheequalangles,theywillalsohavetheremainingsidesequaltotheremainingsidesandtheremainingangletotheremainingangle.

Proposition27.Ifastraightlinefallingontwostraightlinesmakethealternateanglesequaltooneanother,thestraightlineswillbeparalleltooneanother.

Proposition28.Ifastraightlinefallingontwostraightlinesmaketheexteriorangleequaltotheinteriorandoppositeangleonthesameside,ortheinterioranglesonthesamesideequaltotworightangles,thestraightlineswillbeparalleltooneanother.

Proposition29.Astraightlinefallingonparallelstraightlinesmakesthealternateanglesequaltooneanother,theexteriorangleequaltotheinteriorandoppositeangle,andtheinterioranglesonthesamesideequaltotworightangles.

Proposition30.Straightlinesparalleltothesamestraightlinearealsoparalleltooneanother.

Proposition31.Throughagivenpointtodrawastraightlineparalleltoagivenstraightline.

Proposition32.Inanytriangle,ifoneofthesidesbeproduced,theexteriorangleisequaltothetwointeriorandoppositeangles,andthethreeinterioranglesofthetriangleareequaltotworightangles.

Proposition33.Thestraightlinesjoiningequalandparallelstraightlines(attheextremitieswhichare)inthesamedirections(respectively)arethemselvesalsoequalandparallel.

Page 157: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

156

Proposition34.Inparallelogrammicareastheoppositesidesandanglesareequaltooneanother,andthediameterbisectstheareas.

Proposition35.Parallelogramswhichareonthesamebaseandinthesameparallelsareequaltooneanother.

Proposition36.Parallelogramswhichareonequalbasesandinthesameparallelsareequaltooneanother.

Proposition37.Triangleswhichareonthesamebaseandinthesameparallelsareequaltooneanother.

Proposition38.Triangleswhichareonequalbasesandinthesameparallelsareequaltooneanother.

Proposition39.Equaltriangleswhichareonthesamebaseandonthesamesidearealsointhesameparallels.

Proposition40.Equaltriangleswhichareonequalbasesandonthesamesidearealsointhesameparallels.

Proposition41.Ifaparallelogramhavethesamebasewithatriangleandbeinthesameparallels,theparallelogramisdoubleofthetriangle.

Proposition42.Toconstruct,inagivenrectilinealangle,aparallelogramequaltoagiventriangle.

Proposition43.Inanyparallelogramthecomplementsoftheparallelogramsaboutthediameterareequaltooneanother.

Proposition44.Toagivenstraightlinetoapply,inagivenrectilinealangle,aparallelogramequaltoagiventriangle.

Page 158: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

157

Proposition45.Toconstruct,inagivenrectilinealangle,aparallelogramequaltoagivenrectilinealfigure.

Proposition46.Onagivenstraightlinetodescribeasquare.

Proposition47.Inright-angledtrianglesthesquareonthesidesubtendingtherightangleisequaltothesquaresonthesidescontainingtherightangle.

Proposition48.Ifinatrianglethesquareononeofthesidesbeequaltothesquaresontheremainingtwosidesofthetriangle,theanglecontainedbytheremainingtwosidesofthetriangleisright.

Page 159: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

158

Glossary

"WhenIuseaword,"HumptyDumptysaid,inaratherscornfultone,"itmeansjustwhatIchooseittomean-neithermorenorless.""Thequestionis,"saidAlice,"whetheryoucanmakewordsmeansomanydifferentthings.""Thequestionis,"saidHumptyDumpty,"whichistobemaster-that'sall." LewisCarroll,ThroughtheLookingGlass

Acuteangle–ananglethatmeasureslessthan90degrees

Acutetriangle–atrianglewiththreeacuteangles

Adjacentangles–twonon-overlappinganglesthatshareavertexandacommonray

Alternateexteriorangles–twonon-adjacentanglesformedbyatransversalofapairoflines

thatlieoutsidethelinesandonoppositesidesofthetransversal

Alternateinteriorangles–twonon-adjacentanglesformedbyatransversalofapairoflines

thatliebetweenthelinesandonoppositesidesofthetransversal

Angle–thefigureformedbytworayswithacommonendpoint

Anglebisector–thelinethroughthevertexofananglethatdividestheangleintotwo

congruentangles

Apex(ofapyramid)–thecommonpointofthenon-basefacesofapyramid

Apex(ofacone)–thecommonpointofthelinesegmentsthatcreateacone

Arc–thesetofpointsonacirclebetweentwogivenpointsofthecircle(Thereareactuallytwo

arcsbetweenanytwogivenpoints;theshorteroneiscalledtheminorarcandthe

longeroneiscalledthemajorarc.)

Area–thequantityoftwo-dimensionalspaceenclosedbyaclosedplanefigure

Attribute–apropertyofageometricobjectthatcanbemeasured(suchaslength)or

categorized(suchascolor)

Axiom–astatementthatweagreetoacceptastruewithoutproof

Axiomaticsystem–asetofundefinedterms,definitions,axioms,andtheoremsthatcreatea

mathematicalstructure

Axis(ofacone)–thelinejoiningtheapextothecenterofthe(circle)base

Axisofsymmetry–alineinspacearoundwhichathree-dimensionalobjectisrotated

Page 160: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

159

Baseangles(ofanisoscelestriangle)–theanglesthatareoppositethecongruentsidesofan

isoscelestriangle

Bilateralsymmetry–anobjecthasbilateralsymmetrywhenithasexactlyonelineof

reflectionalsymmetry

Bisect–todivideageometricobjectsuchasalinesegmentoranangleintotwocongruent

pieces

Boundary–thesetofpointsthatseparatetheinsideofaclosedplanarobjectfromtheoutside

Center(ofacircle)–thepointthatisequidistantfromallpointsonthecircle

Centralangle–ananglewhosevertexisacenterofageometricobject

Chord–alinesegmentwhoseendpointsaredistinctpointsonagivencircle

Circle–thesetofallpointsintheplanethatarethesamedistancefromagivenpoint,called

thecenter

Circumcenter–thepointofintersectionofthethreeperpendicularbisectorsofatriangle

Circumference–thecircumferenceofacircleisitperimeter

Circumscribedcircle–thecirclethatcontainsalltheverticesofapolygon

Closedcurve–acurvethatstartsandstopsatthesamepoint

Coincide–twoobjectsaresaidtocoincideiftheycorrespondexactly(areidentical)

Collinearpoints–pointsthatlieonthesameline

Compass–aninstrumentusedtoconstructacircle

Complementaryangles–twoangleswhosemeasuressumto90degrees

Concavepolygon–apolygonforwhichatleastonediagonalliesoutsidethepolygon

Concurrentlines–threeormorelinesthatintersectinthesamepoint

Cone(circular)-athree-dimensionalgeometricobjectconsistingofalllinesegmentsjoininga

singlepoint(calledtheapex)toeverypointofacircle(calledthebase)

Congruentobjects–twogeometricobjectsthatcoincidewhensuperimposed

Conjecture–aguessorahypothesis

Contrapositive(of“IfA,thenB.”)–“IfnotB,thennotA,”whereAandBarestatements

Converse(of“IfA,thenB.”)–“IfB,thenA,”whereAandBarestatements

Convexpolygon–apolygonallofwhosediagonalslieinsidethepolygon

Page 161: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

160

Coordinateplane–aplaneonwhichpointsaredescribedbasedontheirhorizontalandvertical

distancesfromapointcalledtheorigin

Coplanarlines–linesthatlieinthesameplane

Correspondingangles-twoanglesformedbyatransversalofapairoflinesthatlieonthe

samesideofthetransversalandalsolieonthesamesideofthepairoflines

Correspondingpoints–apairofpoints,oneofwhichistheoriginalpointandtheotherof

whichistheimageofthatpointunderatransformation

Counterexample–anexamplethatdemonstratesthatastatement(conjecture)isfalse

Curve–asetofpointsdrawnwithasinglecontinuousmotion

Cylinder(circular)–athree-dimensionalgeometricobjectconsistingoftwoparalleland

congruentcircles(andtheirinteriors)andtheparallellinesegmentsthatjoin

correspondingpointsonthecircles

Decagon–apolygonwithexactlytensides

Deductivereasoning–theprocessofcomingtoaconclusionbasedonlogic

Degree–aunitofanglemeasureforwhichafullturnaboutapointequals360degrees

Diagonal–thelinesegmentjoiningtwonon-adjacentverticesofapolygon

Diameter–alinesegmentthroughthecenterofacirclewhoseendpointslieonthecircle

Dilation–amotionoftheplaneinwhichonepointPremainsfixedandallotherpointsare

pushedradiallyoutwardfromPorpulledradiallyinwardtowardPsothatalldistances

havebeenmultipliedbysomescalefactor

Dimension(ofarealspace)–thenumberofmutuallyperpendiculardirectionsneededto

describethelocationofthesetofpointsinthatspace

Distance(onacoordinateplane)–thesizeoftheportionofastraightlinethatliesbetweenthe

twopointsonthecoordinateplaneasmeasuredbythedistanceformula: 22 bad +=

,whereaisthehorizontaldistancebetweenthepoints(asmeasuredonthex-axis)and

bistheverticaldistance(asmeasuredonthey-axis)

Distinct(geometricobjects)-twoobjectsthatdonotsharealltheirpointsincommon

Dodecagon–apolygonwithexactlytwelvesides

Page 162: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

161

Dual(ofaregularpolyhedron)–thepolyhedronwhoseverticesareexactlythemidpointsofthe

facesoftheregularpolyhedron

Edge–thelinesegment(side)thatissharedbytwofacesofapolyhedron

Endpoint(ofalinesegment)–oneoftwopointsthatdeterminesalinesegment

Equiangularpolygon–apolygonallofwhosevertexanglesarecongruent

Equilateralpolygon–apolygonallofwhosesidesarecongruent

Example(ofadefinition)–ageometricobjectthatsatisfiestheconditionsofthedefinition

Exteriorangle–theangleformedbyasideofapolygonandtheextensionofanadjacentside

Face–apolygon(withinterior)thatformsaportionofthetwo-dimensionalsurfaceofa

polyhedron

Fixedpoint–apointwhoselocationremainsthesameunderatransformation

Generalization–theextensionofastatement(aboutapattern)thatistrueforspecificvalues

ofn(anaturalnumber)toastatement(aboutthatpattern)thatistrueforallvaluesofn

Geoboard–amanipulativetypicallycomposedofaboardwith25pegsarrangedina5x5

squarearray

Geoboardpolygon–apolygonwhoseverticesareallpoints(pegs)onageoboard

Height(ofatriangle)–lengthofthelinesegmentfromavertexperpendiculartotheopposite

side.Thislinesegmentisoftencalledthealtitudeofthetriangle

Heptagon–apolygonwithexactlysevensides

Hexagon–apolygonwithexactlysixsides

Homogeneous(verticesinatessellation)–verticesthathaveexactlythesamepolygons

meetinginexactlythesamearrangement

Homogeneous(verticesinapolyhedron)–verticesthathaveexactlythesamepolygonfaces

meetinginexactlythesamearrangement

Hypotenuse–thesideofarighttriangleoppositetherightangle

Image(ofatransformation)–thesetofpointsthatresultfromthemotionofanobjectbya

translation,arotation,orareflection

Inductivereasoning–theinformalprocessofcomingtoaconclusionbasedonexamples

Inscribedpolygon–thepolygoninsideacirclewhoseverticesalllieonthecircle

Page 163: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

162

Interiorangle–anyoneofthealternateinterioranglesformedbyatransversaltotwolines

Intersection(oftwolines)–thepointthelineshaveincommon

Intersection(oftwosets)–thesetofelementsthatarecommontobothsets

Isosceles–havingatleastonepairofcongruentsides

Justification–anargumentbasedonaxioms,definitions,andpreviouslyprovenresultstoshow

thataconjectureistrue

Leg–asideofarighttriangleoppositeanacuteangle

Length–thedistancebetweentwopointsonaone-dimensionalcurve

Line–anundefinedone-dimensionalsetofpointsunderstoodcovertheshortestdistanceand

toextendinoppositedirectionsindefinitely

Lineofreflection–thelineaboutwhichanobjectisreflectedtoformitsmirrorimage

Linesegment–thesetofallpointsonalinebetweentwogivenpointscalledtheendpoints

Mass–aconceptofphysicsthatcorrespondstotheintuitiveideaof“howmuchmatterthereis

inanobject;”unlikeweight,themassofanobjectdoesnotdependupontheobject’s

locationintheuniverse

Measure–todeterminethequantityofanattribute(orofafundamentalconceptsuchastime)

usingagivenunit

Metricsystemofmeasurement–thesystemofmeasurementunitsinwhichthereisone

fundamentalunitdefinedforeachquantity(attribute)withmultiplesandfractionsof

theseunitsestablishedbyprefixesbasedonpowersoften

Midpoint–thepointonalinesegmentthatdividesitintotwocongruentlinesegments

Model–arepresentationofanaxiomsysteminwhicheachundefinedtermisgivenaconcrete

interpretationinsuchawaythattheaxiomsallhold

Net–atwo-dimensionalfigurethatcanbefoldedintoathree-dimensionalobject

Nonagon–apolygonwithexactlyninesides

Noncollinear(points)–asetofpointsnotallofwhichlieonthesameline

Non-example(ofadefinition)–anexamplethatdemonstratemostoftheconditionsofa

definitionbutthatfailstosatisfyatleastonecondition

Page 164: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

163

Non-standardunitofmeasure–aunitofmeasurewhosevalueisnotestablishedbyreference

toanacceptedstandard;forexample,ablock

Obliqueprism(pyramid,cylinder)–aprism(pyramid,cylinder)thatisnotright

Obtuseangle–ananglewithmeasuregreaterthan90degrees

Obtusetriangle–atrianglewithoneobtuseangle

Octagon–apolygonwithexactlyeightsides

Order(ofarotationalsymmetry)–thenumberofdifferentrotationsthatareasymmetryofan

object

Orientation–thedirection,clockwiseorcounterclockwise,ofthereadingoftheverticesofa

polygoninalphabeticalorder

Parallellines–coplanarlineswithnopointsincommon

Parallelogram–aquadrilateralinwhichbothpairsofoppositesidesareparallel

Partition–adivisionofageometricobjectintoasetofnon-overlappingobjectswhoseunionis

theoriginalobject

Pentagon–apolygonwithexactlyfivesides

Perimeter(ofaplaneobject)–thelengthoftheboundaryoftheobject

Perpendicularbisector–thelinethroughthemidpointofalinesegmentthatisalso

perpendiculartothelinesegment

Perpendicularlines–twolinesthatintersecttoformfourrightangles

Pi(p)–theexactnumberoftimesthediameterofacirclefitsintoitscircumference(orthe

ratioofthecircumferenceofacircletoitsdiameter);thisratioisanirrationalnumber

thatisconstantforallsizecirclesandisapproximatelyequalto3.14159

Planarcurve–acurvethatliesentirelywithinaplane

Plane–anundefinedtwo-dimensionalsetofpointsunderstoodtobe“flat”andtoextendinall

directionsindefinitely

Planeofsymmetry–aplaneinspaceaboutwhichathree-dimensionalobjectisreflected

Platonicsolid–aregularpolyhedronplusitsinterior

Point–anundefinedzero-dimensionalobject;alocationwithnosize

Polygon–afinitesetoflinesegmentsthatformasimpleclosedplanarcurve

Page 165: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

164

Polyhedron(plural:polyhedra)–afinitesetofpolygon-shapedfacesjoinedpairwisealongthe

edgesofthepolygonstoencloseafiniteregionofspacewithinonechamber

Prism–apolyhedroninwhichtwoofthefaces(calledthebases)arecongruentandlie on parallel

(non-intersecting) planes andtheremainingfacesareparallelograms.

Proof–adeductiveargumentthatestablishesthetruthofaclaim

Protractor–aninstrumentusedtomeasureangles

Pyramid–apolyhedroninwhichallbutoneofthefacesaretrianglesthatshareacommon

vertex(calledtheapex);theremainingfacemaybeanypolygonandiscalledthebase

Pythagoreantriple–threepositiveintegersthatsatisfythePythagoreantheorem

Quadrilateral–apolygonwithexactlyfoursides

Quantifier(inlogic)–awordorphrase(suchas“all”or“atleastone”)thatindicatesthesizeof

thesettowhichthestatementapplies

Radius(plural:radii)–thelinesegmentjoiningapointonacircletothecenterofthecircle

Ray–thesetofpointsonalinebeginningatagivenpoint(calledtheendpoint)andextending

inonedirectiononthelinefromthatpoint

Rectangle–aquadrilateralwithfourrightangles

Reflection–(inalinel)isatransformationoftheplaneinwhichtheimageofapointPonlisP,

andifAisapointnotonlandiftheimageofAis 'A ,thenlistheperpendicularbisector

of 'AA

Reflectionsymmetry(2-dimensional)–areflectioninwhichanobjectisdividedbythelineof

reflectionintotwopartsthataremirrorimagesofeachother

Reflectionsymmetry(3-dimensional)–areflectioninwhichanobjectisdividedbytheplaneof

reflectionintotwopartsthataremirrorimagesofeachother

Regularpolygon–apolygonwithallsidescongruentandallvertexanglescongruent

Regularpolyhedron–apolyhedronwhosefacesareeachthesameregularpolygonwiththe

samenumberoffacesmeetingateachvertex

Regulartessellation–atessellationthatcontainsonlyoneregularpolygon

Rhombus(plural:rhombi)–aquadrilateralwithfourcongruentsides

Rightangle–ananglethatisexactlyonefourthofacompleteturnaboutapoint

Page 166: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

165

Rightprism(pyramid,cylinder)–aprism(pyramid,cylinder)inwhichthelinejoiningthe

centersofthebases(theapexofthepyramidtothecenterofitsbase)isperpendicular

tothebase

Righttriangle–atrianglewithonerightangle

Rigidmotions-transformationsoftheplanethatpreservedistancesbetweenpoints(theydo

notdistorttheshapeorsizeofobjects)

Rotation(aboutapointPthroughanangleq)–atransformationoftheplaneinwhichthe

imageofPisPand,iftheimageofAis 'A ,then PA@ 'PA and 'm APA =q.PointPis

calledthecenteroftherotation

Rotationsymmetry(2-dimensional)–arotationaboutapointinwhichtheimagecoincides

withtheoriginalobject

Rotationsymmetry(3-dimensional)–arotationaboutanaxisofsymmetryinwhichtheimage

coincideswiththeoriginalobject

Scalenetriangle–atrianglenoneofwhosesidesarecongruent

Scaling–atransformationoftheplanethatcauseseitheramagnificationorashrinkingofan

objectinwhichtheimageremainssimilartotheoriginalobject

Secant–alinethatintersectsacircleintwodistinctpoints

Sector–theportionofacircleanditsinteriorbetweentworadii

Semiregularpolyhedron–apolyhedronthatcontainstwoormoreregularpolygonsasfaces

whicharearrangedsothatallverticesarehomogeneous

Semiregulartessellation–atessellationthatcontainstwoormoreregularpolygonsarranged

sothattheverticesarehomogeneous

Shearing–atransformationoftheplanethatchangestheshapeofanobject

Side–oneofthelinesegmentsthatmakeupapolygon

Similarobjects–objectswhereonecanbeobtainedfromtheotherbycomposingarigid

motionwithadilation

Simplecurve–acurvethatdoesnotintersectitself

Slope(ofaline)–theverticaldistancerequiredtostayonalineforaoneunitchangein

horizontaldistance

Page 167: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

166

Space–anundefinedtermthatdenotesthesetofpointsthatextendsindefinitelyinthree

dimensions

Sphere–thesetofpointsin(three-dimensional)spacethatareequidistantfromagivenpoint,

calledthecenter

Square–aquadrilateralwithfourrightanglesandfourcongruentsides

Standardunitofmeasure–aunitofmeasurewhosevalueisestablishedbyreferencetoan

acceptedstandard;forexample,themeterisdefinedtobeoneten-millionthofthe

distancefromtheequatortothenorthpole

Straightangle–ananglethatmeasureshalfaturn(ortworightangles)

Straightedge–aninstrumentusedtoconstructlinesegments

Supplementaryangles–twoangleswhosemeasuressumto180degrees

Surface–thesetofpointsthatformtheboundaryofasolidthree-dimensionalobject

Surfacearea–thesumoftheareasofthefacesofaclosed3-dimensionalobject

Symmetry(ofanobject)–atransformationoftheobjectinwhichtheimagecoincideswiththe

original

Tangent(toacircle)–alinethatintersectsacircleinexactlyonepoint

Tessellation–anarrangementofpolygonsthatcanbeextendedinalldirectionstocoverthe

planewithnogapsandnooverlapsinsuchawaythatverticesonlymeetothervertices

Theorem–astatementthathasbeenproventrue

Tiling–anarrangementofpolygonsthatcanbeextendedinalldirectionstocovertheplane

withnogapsandnooverlaps

Time–ameasurablepartofthefundamentalstructureoftheuniverse,adimensioninwhich

eventsoccurinsequence

Transformation–amovementofthepointsofaplanethatmaychangethepositionorthesize

andshapeofobjects

Translation(byavectorAA’)–arigidmotionoftheplanethattakesAtoA’,andforallother

pointsPontheplane,PgoestoP’wherevectorPP’andvectorAA’havethesame

lengthanddirection

Page 168: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

167

Translationsymmetry–atranslationoftheplanesuchthattheimagecorrespondstothe

originalobject

Translationvector–anarrowthatgivesthedirectionanddistance(itslength)thatapointis

movedduringatranslation

Transversal–alinewhichintersectstwoormorelines

Trapezoid–aquadrilateralwithexactlyonepairofparallelsides

Triangle–apolygonwiththreesides

Trivialrotation–therotationof360°;itisarotationalsymmetryofeveryobject

Undefinedterm–atermwhichhasanintuitivemeaning,butnoformaldefinition

Union(ofsets)–thesetcontainingeveryelementofeachset

Unitofmeasure–anobjectisusedforcomparisonwithanattribute

Unitsquare–asquarethatisoneunitbyoneunitandthushasanareaofonesquareunit

Unitcube–acubethatisoneunitbyoneunitbyoneunitandhasavolumeofonecubicunit

Venndiagram–apictureinwhichtheobjectsbeingstudiedarerepresentedaspointsona

planeandsimpleclosedcurvesaredrawntogroupthepointsintodifferent

classifications.Venndiagramsareusedtovisualizerelationshipsamongsetsofobjects.

Vertex(plural:vertices)–thecommonendpointoftwoadjacentsidesofapolygon

Vertexangle–theangleformedbyadjacentsidesofapolygon

Vertex(ofapolyhedron)–theintersectionoftwoormoreedgesofapolyhedron

Verticalangles–anonadjacentpairofanglesformedbytwointersectinglines

Volume–ameasureofthecapacityofa3-dimensionalobjector,alternatively,thequantityof

spaceenclosedbya3-dimensionalobject

Weight–ameasureoftheforceofgravityonanobject;oftenusedinterchangeablywithmass;

differencesinthemeasuresofweightandmassarenegligibleatsealevelonearth

Page 169: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

168

GridPaper

Page 170: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

169

Page 171: Big Ideas in Geometry and Measurement · 2018-06-19 · triangle or a circle, but it won’t have the precise and perfect properties that the ideal mathematical triangle or circle

170

References

Givecreditwherecreditisdue. Authorunknown

• Bauersfeld,H.(1995).Thestructuringofstructures:Developmentandfunctionofmathematizingasasocialpractice.InL.Steffe&J.Gale(Eds.),ConstructivisminEducation(pp.137-158).Hillsdale,NJ:Erlbaum.

• BridgesinMathematicsusedthroughoutwithpermissionfromtheMathLearningCenter,http://www.mathlearningcenter.org/

• CommonCoreStateStandardsformathematicsasfoundin2012athttp://www.corestandards.org/assets/CCSSI_Math%20Standards.pdf

• EducationalDevelopmentCenter.(2007)ThinkMath!Orlando,FL.HarcourtSchool

Publishers.

• Halmos,P.(1985).IWanttobeaMathematician,Washington:MAASpectrum,1985.

• Gottfried,W.L.,NewEssaysConcerningHumanUnderstanding,IV,XII.

• Ma,L.(1999).KnowingandTeachingElementaryMathematics:Teachers’UnderstandingofFundamentalMathematicsinChinaandtheUnitedStates.Mahwah,N.J.:LawrenceErlbaum.

• MathematicalQuotationsServer(MQS)atmath.furman.edu.

• NationalCouncilofTeachersofMathematics.(2000).PrinciplesandStandardsfor

SchoolMathematics.Reston,VA:NCTM.

• Shulman,L.S.(1985).Onteachingproblemsolvingandsolvingtheproblemsofteaching.InE.A.Silver(Ed.),TeachingandLearningMathematicalProblemSolving:multipleresearchperspectives(pp.439-450).Hillsdale,NJ:Erlbaum.

• Steen,L.A.andD.J.Albers(eds.).(1981).TeachingTeachers,TeachingStudents,Boston:

Birkhïser.