Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell...

30
Bifunctional Ceramic Fuel Cell Energy System ( Progress Report 20152016) Prof. Kevin Huang University of South Carolina, Columbia, SC29201 Present to DOE NETL 17 th Solid Oxide Fuel Cell project review meeting, July 1921, 2016, Pittsburgh

Transcript of Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell...

Page 1: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

Bifunctional Ceramic Fuel Cell Energy System

(Progress Report 2015‐2016)

Prof. Kevin HuangUniversity of South Carolina, Columbia, SC29201

Present to DOE NETL 17th Solid Oxide Fuel Cell project review meeting, July 19‐21, 2016, Pittsburgh

Page 2: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

About the Team

• University of South Carolina, Prof. Kevin Huang–energy storage materials, button cell testing, computational modeling 

• University of Texas at Austin, Prof. John B. Goodenough– bifunctional oxygen‐electrode materials

• University of Maryland, Prof. Eric Wachsman–oxygen isotope labeled surface exchange measurement

• Atrex Energy–pilot scale battery demonstration

Page 3: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

Outline

• The concept• Bi‐functional oxygen‐electrode development• Button battery cell testing results• Pilot‐scale cell testing results• Summary

Page 4: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

About the Concept

Energy & Environ. Sci., 2011, 4, 4942–4946

arg2 arg2

Disch exCh e

xMe O MeO Overall Reaction:

H2(g)+O2‐ H2O(g)+2e‐Discharge

Charge

H2(g)+MeOx(s) H2O(g)+MeCharge

Discharge

Charge

Discha

rge

Discha

rge

Charge

Solid Oxide Metal Air Redox Battery (SOMARB) 

Page 5: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

Modeling Predictions at 550oC

• Developing better oxygen electrode materials• Improving Fe3O4‐reduction (charging cycle) kinetics

J. Power Sources, 280 (2015), 195‐204

Page 6: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

The Donor (Ta, Nb, Y)‐doped SrCoO2.5+

Journal of the Electrochemical Society, 163 (5) (2016) F330‐F335

Ta‐doped SrCoO2.5+ is a promising oxygen‐electrode

Page 7: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

Surface Oxygen Exchange Rate Measured by Oxygen Isotopic Exchange Method

Journal of the Electrochemical Society, 10.1149/2.0211609jes 

• B‐site doped SCO has a higher kex‐value than A‐site doped SCO

• For B‐site doping, Nb>Fe• For A‐site doping, La>Y• SCO based cathodes are 2 orders of magnitude 

higher kex value than LSCF

Page 8: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

‐T‐Po2 Data of Nb‐SrCoO2.5+

Page 9: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

‐T‐Po2 Data of Nb‐SrCoO2.5+

• p‐type conductor• Itinerant electron hole behavior• Non‐Arrhenius behavior

Page 10: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

A New Defect Chemistry Model for Donor‐doped SrCoO2.5+

• BM as a reference framework for point defect assignments

• Oxygen interstitials as ionic point defect

• Itinerant d‐orbital electron holes as electronic point defect

Page 11: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

Defect Reactions and Equilibria

12 2 ⇄ 2 ·

·

.

2 ⇌ ·· ·

2 ·· · 2

· ·· 1

0.5

· ;

Disproportionation reaction:

Oxygen interstitial incorporation reaction:

Charge neutrality:

Co‐site conservation:

Oxygen‐site conservation:

Electron‐hole conductivity:∗

Page 12: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

Experimental vsModeled

Page 13: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

Equilibrium Constants of Defect Reactions

12 2 ⇌ 2 · 2 ⇌ ·

∆ ∆ ∆ ∆

∆ = ‐57 kJ/mol∆ = ‐95 J/mol/K

∆ = 50 kJ/mol∆ = 15.3 J/mol/K

Page 14: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

Concentration Contours of Nb‐SrCoO2.5+

Page 15: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

Thermodynamic Properties of Nb‐SrCoO2.5+

2∆

Page 16: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

Partial Molar vs Integral Molar Properties

Oh

∆ ∆̅

Os

∆ ∆ ∆ ∆ ∆ ∆

Page 17: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

DFT Calculations Supporting the Formation of Oxygen Interstitials

Page 18: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

Evaluations of Button Cell Performance

• Fe loading : 0.056 g• Discharge/charge current:

– C/5.5: 12.7 mA (10 mA cm‐2)– C/5: 14 mA (11 mA cm‐2)– C/3: 23.4 mA (18.5 mA cm‐2)– 1C: 70. 1 mA (55.3 mA cm‐2)

• Depth of discharge (DoD) at 20%– 1 h @ C/5– 36 min @ C/3– 12 min @ 1C

Page 19: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

The Effect of Fe‐Bed Catalysts on Battery Performance

500 oC; 10 mA cm2 (C/5.5); 10 min discharge/charge; DoD=3%

Page 20: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

Evaluations at Higher DoD (Fe‐Utilization)

• 5wt% Pd‐impregnated Fe2O3‐ZrO2

• Tested at 500oC• Rate: 0.2C (11 mA/cm2 or 250 mA/g)

• DoD=20%• Charge/discharge duration: 1 hour

• Fe‐loading: 0.056 grams

Page 21: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

The Evaluation at Different C‐rates

Page 22: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

Comparison with Li‐O2 Battery

P. Adelhelm, et al. Beilstein J. Nanotechnol., 2015, 6, 1016; G. Girishkumar, et al. J Phys. Chem. Lett., 2010, 1, 2193.

Li-O2 batterySOMARB

Page 23: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

A Fe‐Bed Installed Commercial Scale SOFC

Cathode reaction:  O2 + 4e = 2O2‐

Anode reaction:  2H2 + 2O2‐ 2H2O + 4e

Fe‐bed: H2 + FeO Fe + H2O 

Cathode

Anode

Electrolyte

Iron‐bed solid‐fuel

Page 24: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

Installation of Fe‐bed into Pilot‐scale Cell at Atrex Energy

Page 25: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

Overload Tolerance Capability(Current cycling with constant H2 flow)

Fuel

cha

rgin

g

1.5W

hour

DC

cha

rgin

g(1A

)

Page 26: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

Fast Ramping Power Capability

• Power ramping rate: 2.5 kW/min/cell

• Scaling from single cell to 1 MW system translates to 67 MW/min power ramping capability

Fuel

cha

rgin

g

1.5W

hour

DC

cha

rgin

g(1A

)

Page 27: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

Theoretical FEA Analysis

Page 28: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

Potential Applications of Fe‐bed SOFC Technology

• Fast loading following–to compensate for variable power sources, e.g. wind and solar, as their output fluctuates

• Frequency regulation–to synchronize electricity generation and load

• Demand charge management–to reduce the peak demand

Page 29: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

Summary 

• Donor‐doped SrCoO2.5+ is a good IT bifunctional oxygen electrode

• A new defect chemistry model has been established• Pd is an excellent catalyst for Fe3O4 reduction in H2

• Performance of solid oxide Fe‐air battery is evaluated at different DoD and C‐rates

• Internal Fe‐bed enables SOFCs to be overload‐tolerant and load‐responsive much needed for grid stability management

Page 30: Bifunctional Ceramic Fuel Cell Energy System · 2016. 7. 28. · Bifunctional Ceramic Fuel Cell Energy System (Progress Report 2015‐2016)Prof. Kevin Huang University of South Carolina,

Acknowledgement

• DOE‐ARPA‐e Award number DE‐AR0000492• Program director Paul Albertus, Scott Litzelman and John Tuttle for constructive discussion and guidance