bib_FSI.pdf

10
Finite Elements in Analysis and Design 31 (1999) 231 240 Fluidstructure interaction problems, finite element and boundary element approaches A bibliography (19951998) Jaroslav Mackerle Linko ( ping Institute of Technology, Department of Mechanical Engineering, S-581 83 Linko ( ping, Sweden Abstract This bibliography contains references to papers, conference proceedings and theses/dissertations dealing with finite element and boundary element analyses of fluidstructure interaction problems that were published in 19951998. ( 1999 Elsevier Science B.V. All rights reserved. 1. Introduction This bibliography provides a list of references on finite element and boundary element methods applied to the analysis of fluidstructure interaction problems. General solution techniques as well as problem-specific applications are included. The entries have been retrieved from the author’s database, MAKEBASE. They are grouped into two main sections: finite elements boundary elements The references have been published in scientific journals, conference proceedings, and theses/disserations between 19951998. Some previously published reviews and books on the finite element and boundary element analysis of fluidstructure interaction problems in general can be found in entries [148157] of the Finite element methods section and in [4649] of the Boundary element methods section of this bibliography, respectively. The references are sorted in each category alphabetically according to the first author’s name. The main topics include: 2D and 3D fluidstructure interaction, stationary and transient, linear and nonlinear; solid-fluid interaction; fluidstructure interaction under cavitation condition; far-field fluidstructure interaction; coupled structure-acoustic-fluid problems; soilfluidstructure interaction; fluidparticle interaction; aero-elastic simulations; compressible and incompress- ible fluid-structure vibrations; wave-structure coupling; fluidstructural instability; blast loading 0168-874X/99/$ see front matter ( 1999 Elsevier Science B.V. All rights reserved PII: S 0 1 6 8 - 8 7 4 X ( 9 8 ) 0 0 0 6 5 - 1

description

Bibliography on FSI

Transcript of bib_FSI.pdf

Page 1: bib_FSI.pdf

Finite Elements in Analysis and Design 31 (1999) 231—240

Fluid—structure interaction problems, finite element and boundaryelement approaches

A bibliography (1995—1998)

Jaroslav MackerleLinko( ping Institute of Technology, Department of Mechanical Engineering, S-581 83 Linko( ping, Sweden

Abstract

This bibliography contains references to papers, conference proceedings and theses/dissertations dealing with finiteelement and boundary element analyses of fluid—structure interaction problems that were published in1995—1998. ( 1999 Elsevier Science B.V. All rights reserved.

1. Introduction

This bibliography provides a list of references on finite element and boundary element methodsapplied to the analysis of fluid—structure interaction problems. General solution techniques as wellas problem-specific applications are included. The entries have been retrieved from the author’sdatabase, MAKEBASE. They are grouped into two main sections:

— finite elements— boundary elements

The references have been published in scientific journals, conference proceedings, andtheses/disserations between 1995—1998. Some previously published reviews and books on the finiteelement and boundary element analysis of fluid—structure interaction problems in general can befound in entries [148—157] of the Finite element methods section and in [46—49] of the Boundaryelement methods section of this bibliography, respectively. The references are sorted in eachcategory alphabetically according to the first author’s name.

The main topics include: 2D and 3D fluid—structure interaction, stationary and transient, linearand nonlinear; solid-fluid interaction; fluid—structure interaction under cavitation condition;far-field fluid—structure interaction; coupled structure-acoustic-fluid problems; soil—fluid—structureinteraction; fluid—particle interaction; aero-elastic simulations; compressible and incompress-ible fluid-structure vibrations; wave-structure coupling; fluid—structural instability; blast loading

0168-874X/99/$ — see front matter ( 1999 Elsevier Science B.V. All rights reservedPII: S 0 1 6 8 - 8 7 4 X ( 9 8 ) 0 0 0 6 5 - 1

Page 2: bib_FSI.pdf

conditions; underwater explosion; sloshing problems; earthquake analysis; added masses anddamping; spectral problems; finite element library; mesh generation and updating; parallel ap-proaches.

The main applications to: pipes and tubes; tube bundles; non-rigid pipelines; submarine pipe-lines; rectangular tanks; cylindrical tanks; conical tanks; worm tanks; moving tanks; waste storagetanks; submerged structures; naval applications; offshore structures; tension leg platforms; flexiblecylinders in waves; floating structures; ship—water interaction; orthotropic and anisotropic opencylindrical shells; sandwich plates in contact with water; gravity dams; arch dams; undergroundpower plants; fuel rods in water reactors; submerged turbomachinery wheels; centrifugal impellers;water filled pressure vessels; propeller aircraft cabine; hydraulic power systems; lubricated contacts;bio-fluid mechanics.

2. Bibliography

Finite element methods

Papers in journals/conference proceedings and theses

[1] I. Alobaidi, D.J. Hoare, Development of pore water pressure at the subgrade—subbase interface of a highwaypavement and its effect on pumping of fines, Geotext. Geomemb. 14 (2) (1996) 111—135.

[2] M. Alvelid, Nonlinear fluid-structure interaction in propeller aircraft cabins, J. Vibr. Acoust., ASME 119 (3) (1997)363—373.

[3] A. Anju et al., 2-D fluid-structure interaction problems by an arbitrary Lagrangian—Eulerian finite elementmethod, Int. J. Comput. Fluid Dyn. 8 (1) (1997) 1—10.

[4] K. Baba et al., Simple method for fluid-structure interaction analysis under cavitation condition, J. Press. Vess.Tech., ASME 120 (1) (1998) 29—34.

[5] S.S. Babu, S.K. Bhattacharyya, Finite element analysis of fluid-structure interaction effect on liquid retainingstructures due to sloshing, Comput. Struct. 59 (6) (1996) 1165—1171.

[6] D.D. Barker et al., Analysis of water filled pressure vessels subjected to blast loads, 1997 ASME Press. Vess. PipingConf. PVP 351, ASME, 1997, pp. 87—98.

[7] M.L. Baron, R. Daddazio, Underwater explosions, in: W. Pilkey (Ed.), Shock Vib. Comp. Prog., SAVIAC, 1995,pp. 1—27.

[8] K.J. Bathe et al., A mixed displacement-based finite element formulation for acoustic fluid-structure interaction,Comput. Struct. 56 (2/3) (1995) 225—237.

[9] A. Bayraktar, A.A. Dumanoglu, The effect of the asynchronous ground motion on hydrodynamic pressures, in:B.H.V. Topping (Ed.), Dev. Comp. Tech. Civil Eng., Civil-Comp, 1995, pp. 349—357.

[10] O.O. Bendiksen, Fluid-structure requirements for time-accurate aeroelastic simulations, ASME Int. Mech. Eng.Cong. Expo. AD 53-3, ASME, 1997, pp. 89—104.

[11] A. Bermudez et al., Finite element vibration analysis of fluid—solid systems without spurious modes, SIAM J.Numer. Anal. 32 (4) (1995) 1280—1295.

[12] A. Bermudez et al., Finite element solution of incompressible fluid-structure vibration problems, Int. J. Numer.Meth. Eng. 40 (8) (1997) 1435—1448.

[13] A. Bermudez et al., Finite element analysis of compressible and incompressible fluid—solid systems, Math.Comput. 67 (221) (1998) 111—136.

[14] R. Bhaskaran, G. Berkooz, Optimization of fluid-structure interaction using the sensitivity equation approach,ASME Int. Mech. Eng. Cong. Expo. AD 53-1, ASME, 1997, pp. 49—56.

[15] S.S. Bhattacharjee, P. Leger, Fracture response of gravity dams due to rise of reservoir elevation, J. Struct. Eng.ASCE 121 (9) (1995) 1298—1305.

232 J. Mackerle /Finite Elements in Analysis and Design 31 (1999) 231—240

Page 3: bib_FSI.pdf

[16] D. Brochard et al., 3D analysis of the fluid structure interaction in tube bundles using homogenization methods,1996 ASME Press. Vess. Piping Conf. PVP 337, ASME, 1996, pp. 167—172.

[17] F. Casadei, J.P. Halleux, An algorithm for permanent fluid-structure interaction in explicit transient dynamics,Comput. Meth. Appl. Mech. Eng. 128 (3/4) (1995) 231—289.

[18] M. Cervera et al., On the computational efficiency and implementation of block-iterative algorithms for non-linearcoupled problems, Eng. Comput. 13 (6) (1996) 4—30.

[19] P.C. Chatterjee et al., Hydro-structural analysis program for TLPs, Ocean Eng. 24 (4) (1997) 313—334.[20] F. Chille et al., Containment of blast phenomena in underground electrical power plants, Adv. Eng. Software 29 (1)

(1998) 7—12.[21] Y.S. Choun, C.B. Yun, Sloshing characteristics in rectangular tanks with a submerged block, Comput. Struct. 61

(3) (1996) 401—413.[22] C.L. Chu, Y.H. Lin, Finite element analysis of fluid-conveying Timoshenko pipes, Shock Vib. 2(3) (1995) 247—255.[23] C. Conca, M. Duran, Numerical study of a spectral problem in solid—fluid type structures, Numer. Meth. PDE 11

(4) (1995) 423—444.[24] C. Conca et al., Added mass and damping in fluid-structure interaction, Comput. Meth. Appl. Mech. Eng. 146 (3/4)

(1997) 387—405.[25] J.M. De Araujo, A.M. Awruch, Probabilistic finite element analysis of concrete gravity dams, Adv. Eng. Software

29 (2) (1998) 97—104.[26] A. Dogangun et al., Static and dynamic analysis of rectangular tanks by using the Lagrangian fluid finite element,

Comput. Struct. 59 (3) (1996) 547—552.[27] A. Dogangun et al., Earthquake analysis of flexible rectangular tanks by using the Lagrangian fluid finite element,

European J. Mech., A/Solids 16 (1) (1997) 165—182.[28] X. Du et al., Dynamic response analysis of high arch dam-water-foundation system, 11th Conf. Eng. Mech., Fort

Lauderdale, FL, ASCE, 1996, pp. 987—988.[29] G. Dubini, A. Redaelli, Mesh updating in fluid-structure interactions in biomechanics: an iterative method based

on an uncoupled approach, Ann. Biomed. Eng. 25 (1) (1997) 218—231.[30] G. Dubini et al., Fluid-structure interaction problems in bio-fluid mechanics: a numerical study of the motion of

an isolated particle freely suspended in channel, Med. Eng. Phys. 17 (8) (1995) 609—617.[31] A.S. Duggal, J.M. Niedzwecki, Dynamic response of a single flexible cylinder in waves, J. Offshore Mech. Arctic

Eng., ASME 117 (2) (1995) 99—104.[32] J.H. Duncan et al., On the interaction between a bubble and a submerged compliant structure, J. Sound Vib. 197

(1) (1996) 17—44.[33] C.T. Dyka, R.P. Ingel, Transient fluid-structure interaction in naval applications using the retarded potential

method, Eng. Anal. Boundary Elem. 21 (3) (1998) 245—251.[34] T.A. Eggleston, R.B. Rainsberger, Projection method in mesh generation of structure-fluid interaction, 1997

ASME Press. Vess. Piping Conf. PVP 355, ASME, 1997, pp. 75—79.[35] F.L. Eisinger et al., Numerical simulation of cross-flow-induced fluidelastic vibration of tube arrays and compari-

son with experimental results, J. Press. Vess. Tech., ASME 117 (1) (1995) 31—39.[36] A.A. El Damatty et al., Stability of elevated liquid-filled conical tanks under seismic loading, Part I — Theory,

Earthquake Eng. Struct. Dyn. 26 (12) (1997) 1191—1208.[37] A.A. El Damatty et al., Stability of elevated liquid-filled conical tanks under seismic loading, Part II — Applica-

tions, Earthquake Eng. Struct. Dyn. 26 (12) (1997) 1209—1229.[38] G.C. Everstine, Finite element formulations of structural acoustics problems, Comput. Struc. 65 (3) (1997)

307—321.[39] S. Finnveden, Spectral finite element analysis of the vibration of straight fluid filled pipes with flanges, J. Sound

Vib. 199 (1) (1997) 125—154.[40] S. Finnveden, Formulas for modal density and for input power from mechanical and fluid point sources in fluid

filled pipes, J. Sound Vib. 208 (5) (1997) 705—728.[41] L. Gastaldi, Mixed finite element methods in fluid structure systems, Numer. Math. 74 (2) (1996) 153—176.[42] O. Ghattas, X. Li, Variational finite element method for stationary nonlinear fluid-solid interaction, J. Comput.

Phys. 121 (2) (1995) 347—356.

J. Mackerle /Finite Elements in Analysis and Design 31 (1999) 231—240 233

Page 4: bib_FSI.pdf

[43] J.S. Goo et al., Structural response analysis of tension leg platforms including hydrodynamic interactions in waves,16th Int. Conf. Offshore Mech. Arctic Eng., Yokohama, ASME, 1997, pp. 141—149.

[44] P. Goransson, A 3-D, symmetric, finite element formulation of the Biot equations with application toacoustic wave propagation through an elastic porous medium, Int. J. Numer. Meth. Eng. 41 (1) (1998)167—192.

[45] F. Guan, I.D. Moore, New techniques for modeling reservoir-dam and foundation-dam interaction, Soil Dyn.Earthquake Eng. 16 (4) (1997) 285—293.

[46] D. Guinnes, D. Bonneau, Solid—fluid interaction in lubricated contacts in hard running conditions, Contact Mech.II: Comp. Techniques, CMP, 1995, pp. 353—360.

[47] G. Guruswamy, C. Byun, Direct coupling of Euler flow equations with plate finite element structure, AIAA J. 33(2) (1995) 375—377.

[48] F.H. Hamdan, Modelling of unbounded media for fluid-structure interaction applications — a review, Strain 34 (2)(1998) 51—58.

[49] F.H. Hamdan, P.J. Dowling, Far-field fluid-structure interaction-formulation and validation, Comput. Struct. 56(6) (1995) 949—958.

[50] F.H. Hamdan, P.J. Dowling, Fluid-structure interaction: application to structures in an acoustic fluid medium,Part 1: An introduction to numerical treatment, Eng. Comput. 12 (8) (1995) 749—758.

[51] F.H. Hamdan, P.J. Dowling, Fluid-structure interaction: application to structures in an acoustic fluid medium,Part 2: Literature review on near-field and far-field formulation, Eng. Comput. 12 (8) (1995) 759—772.

[52] R.S. Haxton et al., Further assessment of numerical procedures for the study of fluid-structure interaction, Strain31 (3) (1995) 107—112.

[53] M. Heil, T.J. Pedley, Large axisymmetric deformation of cylindrical shell conveying a viscous flow, J. FluidsStruct. 9 (3) (1995) 237—256.

[54] M. Heil, T.J. Pedley, Large post-buckling deformations of cylindrical shells conveying viscous flow, J. FluidsStruct. 10 (6) (1996) 565—599.

[55] J.C. Heinrich et al., Mesh generation and flow calculations in highly contorted geometries, Comput. Meth. Appl.Mech. Eng. 133 (1/2) (1996) 79—92.

[56] A.G.T.J. Heinsbroek, Fluid-structure interaction in non-rigid pipeline systems, Nucl. Eng. Des. 172 (1/2) (1997)123—135.

[57] D. Hilding et al., Calculation of cross-flow-induced fluidelastic vibration of fuel rods in pressurized water reactors,1996 ASME Press. Vess. Piping Conf. PVP 328, ASME, 1996, pp. 25—37.

[58] J. Horacek et al., Vibration analysis of cylindrical shells in contact with an annular fluid region, Eng. Struct. 17 (10)(1995) 714—724.

[59] J. Horacek et al., Natural vibration of a cylindrical shell containing water in a coaxial annular gap, StrojnickyCasopis 48 (5) (1997) 351—362.

[60] E.T. Huang, Y.L. Hwang, Second order approximation of wave-structure couplings, Ocean Eng. 22 (1) (1995)49—64.

[61] T. Ichikawa, I. Hagiwara, Component mode synthesis method for large-scale coupled structure-acoustic-fluidinteraction problem, Trans. Jpn. Soc. Mech. Eng. Ser. C 61 (587) (1995) 2718—2724.

[62] F. Ihlenburg et al., Reliability of finite element methods for the numerical computation of waves, Adv. Eng.Software 28 (7) (1997) 417—424.

[63] Jacquet-Richardet, C. Dal-Ferro, Reduction method for finite element dynamic analysis of submerged turbo-machinery wheels, Comput. Struct. 61 (6) (1996) 1025—1036.

[64] V.F. Jakubauskas, D.S. Weaver, Axial vibrations of fluid-filled bellows expansion joints, J. Press. Vess. Tech.,ASME Vol 118 (4) (1996) 484—490.

[65] K.H. Jeong, S.C. Lee, Hydroelastic vibration of a liquid-filled circular cylindrical shell, Comput. Struct. 66 (2/3)(1998) 173—185.

[66] T.X. Jing et al., Mixed finite element substructure-subdomain methods for the dynamical analysis of coupledfluid-solid interaction problems, Philos. Trans. Roy. Soc. London A 1705 (1996) 259—295.

[67] A.A. Johnson, T.E. Tezduyar, 3D simulation of fluid-particle interactions with the number of particles reaching100, Comput. Meth. Appl. Mech. Eng. 145 (3/4) (1997) 301—321.

234 J. Mackerle /Finite Elements in Analysis and Design 31 (1999) 231—240

Page 5: bib_FSI.pdf

[68] J.B. Jonker, T.G. Van Essen, A finite element perturbation method for computing fluid-induced forces ona centrifugal impeller rotating and whirling in a volute casing, Int. J. Numer. Meth. Eng. 40 (2) (1997) 269—294.

[69] T. Jordan, Coupling of electromagnetics and structural/fluid dynamics-application to the dual coolant blanketsubjected to plasma disruptions, Fusion Technol. 30 (3) (1996) 363—371.

[70] L.F. Kallivokas et al., A simple impedance-infinite element for the finite element solution of the three-dimensionalwave equation in unbounded domains, Comput. Meth. Appl. Mech. Eng. 146 (3/4) (1997) 235—262.

[71] T. Kerh et al., Responses of viscous fluid interaction with a moving structural system, in: B.H.V. Topping (Ed.),Dev. Comp. Aid. Des. Model. Str. Eng., Civil-Comp, 1995, pp. 343—347.

[72] J. Kim et al., Finite element modeling of scattering problems involving infinite domains using drilling degrees offreedom, Comput. Meth. Appl. Mech. Eng. 134 (1/2) (1996) 57—70.

[73] M.C. Kim et al., Consistent and lumped area formulations in fluid-structure interaction, 38th Str., Str. Dyn. Mater.Conf., Kissimmee, AIAA, 1997, pp. 282—290.

[74] Y.S. Kim, C.B. Yun, Spurious free four-node displacement-based fluid element for fluid-structure interactionanalysis, Eng. Struct. 19 (8) (1997) 665—678.

[75] H.M. Koh et al., Recent research on seismic isolation considering fluid-structure interaction effects in Korea, 1996ASME Press. Vess. Piping Conf. PVP 341, ASME, 1996, pp. 47—54.

[76] J. Kern, A spatial problem of liquid-shell interaction, J. Comput. Appl. Math. 63 (1/3) (1995) 301—306.[77] Y.W. Kwon, R.E. Cunningham, Comparison of USA-DYNA finite element models for a stiffened shell subject to

underwater shock, Comput. Struct. 66 (1) (1998) 127—144.[78] A.A. Lakis, S. Neagu, Free surface effects on the dynamics of cylindrical shells partially filled with liquid, J. Sound

Vib. 207 (2) (1997) 175—205.[79] A.A. Lakis, S. Neagu, Free surface effects on the dynamics of cylindrical shells partially filled with liquid, ASME

Int. Mech. Eng. Cong. Expo. AD 53-2, ASME, 1997, pp. 101—110.[80] M. Langthjem, Finite element analysis and optimization of a fluid-conveying pipe, Mech. Struct. Mach. 23 (3)

(1995)343-376.[81] L. Lewin et al., Simulation of dynamic fuel slosh using an explicit finite element approach, 1997 ASME Press. Vess.

Piping Conf. PVP 355, ASME, 1997, pp. 103—111.[82] S.J. Liang et al., Finite element computations for unsteady fluid and elastic membrane interaction problems, Int. J.

Numer. Meth. Fluids 24 (11) (1997) 1091—1110.[83] L. Lindhorst et al., Influence of the water contact on the welding residual stresses of wet underwater welds, 6th Int.

Offshore Polar Eng. Conf., Los Angeles, 4, 1996, pp. 147—153.[84] M. Liu, D.G. Gorman, Symmetrization of equations of motion for coupled systems subject to fluid-structural

interactions, Commun. Numer. Meth. Eng. 11 (10) (1995) 831—838.[85] D.C. Ma, Sloshing and fluid-structure interaction, 1996 ASME Press. Vess. Piping Conf. PVP 337, ASME, 1996, p.

119.[86] W. Magda, Wave-induced uplift force on a submarine pipeline buried in a compressible seabed, Ocean Eng. 24 (6)

(1997) 551—576.[87] H.U. Mair, Hydrocodes for structure/medium interaction, in: W. Pilkey (Ed.), Shock Vib. Comp. Prog., SAVIAC,

1995, pp. 29—53.[88] D. Maity, S.K. Bhattacharryya, Finite element analysis of fluid-structure system for small fluid displacement, Int.

J. Struct. 17 (1) (1997) 1—18.[89] V.B. Makhijani et al., Three-dimensional coupled fluid-structure simulation of pericardial bioprosthetic aortic

valve function, ASAIO J. 43 (5) (1997) M387—M392.[90] C. Makridakis et al., Analysis and finite element methods for a fluid—solid interaction problem in one dimension,

Math. Models Meth. Appl. Sci. 6 (8) (1996) 1119—1141.[91] N. Maman, C. Farhat, Matching fluid and structure meshes for aeroelastic computations: a parallel approach,

Comput. Struct. 54 (4) (1995) 779—785.[92] T. Mazuch et al., Natural modes and frequencies of a thin clamped-free steel cylindrical storage tank partially

filled with water: FEM and measurement, J. Sound Vib. 193 (3) (1996) 669—690.[93] R.W. McCoy, C.T. Sun, Fluid-structure interaction analysis of a thick-section composite cylinder subjected to

underwater blast loading, Composite Struct. 37 (1) (1997) 45—55.

J. Mackerle /Finite Elements in Analysis and Design 31 (1999) 231—240 235

Page 6: bib_FSI.pdf

[94] J. Mistry, J.C. Menezes, Vibration of cylinders partially-filled with liquids, J. Vib. Acoust., ASME 117 (1) (1995)87—93.

[95] H.J.P. Morand, R. Ohayon, Fluid Structure Interaction: Applied Numerical Methods, Wiley, New York,1995.

[96] S.H. Nguyen, A fast numerical scheme for pivoted gas bearing studies, Comput. Struct. 54 (5) (1995) 945—951.[97] N. Ogawa et al., Experimental study of the fluid-structure interaction behavior of the worm tank, 1997 ASME

Press. Vess. Piping Conf. PVP 355, ASME, 1997, pp. 237—243.[98] T. Okamoto, M. Kawahara, 3-D sloshing analysis by an arbitrary Lagrangian-Eulerian finite element method, Int.

J. Comput. Fluid Dyn. 8 (2) (1997) 129—146.[99] L.G. Olson, D. Jamison, Application of a general purpose finite element method to elastic pipes conveying fluid, J.

Fluids Struct. 11 (2) (1997) 207—222.[100] N. Piccirillo, Analysis of fluid-structural instability in water, 15th Int. Modal Anal. Conf., Orlando, IMAC, 1997,

pp. 343—349.[101] L.S. Ramachandra, H.R. Meyer-Piening, Transient response of sandwich plates in contact with water, Comput.

Struct. 60 (4) (1996) 677—681.[102] Z. Ran, M.H. Kim, Nonlinear coupled responses of a tethered spar platform in waves, 6th Int. Offshore Polar Eng.

Conf., Los Angeles, 1996, pp. 281—288.[103] S.E. Ray et al., Parallel implementations of a finite element formulation for fluid-structure interactions in interior

flows, Parallel Comput. 23 (9) (1997) 1279—1292.[104] A. Redaelli, F.M. Montevecchi, Computational evaluation of intraventricular pressure gradients based on

a fluid-structure approach, J. Biomech. Eng., ASME 118 (4) (1996) 529—537.[105] D.C. Rizos et al., Finite element transient analysis (FETA) of solids and structures including soil—fluid-structure

interaction, Comput. Civil Eng. 1996, New York, 1996, pp. 480—486.[106] R. Rodriguez, J.E. Solomin, Order of convergence of eigenfrequencies in finite element approximations of

fluid-structure interaction problems, Math. Comput. 65 (216) (1996) 1463—1475.[107] C.T.F. Ross et al., Vibration of circular corrugated cylinders containing water, Energy Sources Tech. Conf. Exh.

PD 70, ASME, 1995, pp. 27—35.[108] C.T.F. Ross et al., Vibration of ring-reinforced circular cylinders under water, Energy Sources Tech. Conf. Exh.

PD 70 ASME, 1995, pp. 17—25.[109] C.T.F. Ross et al., Vibration of ring-stiffened circular cylinders under external water pressure, Comput. Struct. 60

(6) (1996) 1013—1019.[110] S.N. Roy et al., Spillway-powerhouse interaction at Chickamauga dam, Int. Conf. Hydropower, Atlanta, ASCE,

1997, pp. 294—303.[111] A. Sakuma, T. Inoue, Coupled solid-liquid analysis for viscoplastic body with moving boundary caused by

melting/solidification (2nd Rep, Simulation of welding process), Trans. Jpn. Soc. Mech. Eng. Ser. A 62 (596) (1996)1032—1037.

[112] A. Sakuma, T. Inoue, Coupled solid—liquid analysis for viscoplastic body with moving boundary caused bymelting/solidification (1st Rep. Modeling and FE equations), Trans. Jpn. Soc. Mech. Eng. Ser. A 62 (596) (1996)1025—1031.

[113] G. Sandberg, A new strategy for solving fluid-structure problems, Int. J. Numer. Meth. Eng. 38 (3) (1995) 357—370.[114] G. Sandberg, A new finite element formulation of shock-induced hull cavitation, Comput. Meth. Appl. Mech. Eng.

120 (1/2) (1995) 33—44.[115] S.A. Sannasiraj et al., Hydrodynamic behavior of long floating structures in directional seas, Appl. Ocean Res. 33

(2) (1996) 429—434.[116] K.I. Sato et al., Ocean wave-induced stress states of seabed beneath a breakwater, 6th Int. Offshore Polar Eng.

Conf., Los Angeles, 1996, pp. 438—443.[117] H. Schoop et al., On the elastic membrane in a potential flow, Int. J. Numer. Meth. Eng. 41 (2) (1998) 271—291.[118] A. Selmane, A.A. Lakis, Non-linear dynamic analysis of orthotropic open cylindrical shells subjected to a flowing

fluid, J. Sound Vib. 202 (1) (1997) 67—93.[119] A. Selmane, A.A. Lakis, Vibration analysis of anisotropic open cylindrical shells subjected to a flowing fluid,

J. Fluids Struct. 11 (1) (1997) 111—134.

236 J. Mackerle /Finite Elements in Analysis and Design 31 (1999) 231—240

Page 7: bib_FSI.pdf

[120] A.P. Shashikala et al., Dynamics of a moored barge under regular and random waves, Ocean Eng. 24 (5) (1997)401—430.

[121] Y.S. Shin, D.T. Hooker, Damage response of submerged imperfect cylindrical structures to underwater explosion,Comput. Struct. 60 (5) (1996) 683—693.

[122] P.W. Smith et al., Structural wave reflection coefficients of cylindrical shell terminations: numerical extraction andreciprocity constraints, J. Acoust. Soc. Am. 101 (2) (1997) 900—908.

[123] A. Soria, F. Casadei, Arbitary Lagrangian—Eulerian multicomponent compressible flow with fluid-structureinteraction, Int. J. Numer. Meth. Fluids 25 (11) (1997) 1263—1284.

[124] A. Srinivasan et al., Solid—liquid interface shape control during crystal growth, 1995 Amer. Contr. Conf., Seattle,IEEE, 1995, pp. 1270—1274.

[125] R. Stuart et al., Dynamic analysis of high-level waste storage tanks, Comput. Struct. 56 (2/3) (1995) 415—424.[126] E. Sutjahjo, C.C. Chamis, Multidisciplinary finite elements for coupled analysis of fluid mechanics, heat transfer,

and solid mechanics, 36th Str., Str. Dyn. Mater. Conf., New Orleans, AIAA, 1995, pp. 1318—1327.[127] J.W. Swegle, S.W. Attaway, On the feasibility of using smoothed particle hydrodynamics for underwater explosion

calculations, Comput. Mech. 17 (3) (1995) 151—168.[128] T. Tanabe et al., Dynamic wave interaction analysis of floating elastic plates, 7th Int. Offshore Polar Eng. Conf.,

Honolulu, 1997, pp. 245—252.[129] J.L. Tassoulas et al., Finite element analysis of tube stability in deep water, Comput. Struct. 64 (1/4) (1997)

791—807.[130] K. Terada et al., Characterization of the mechanical behaviors of solid—fluid mixture by the homogenization

method, Comput. Meth. Appl. Mech. Eng. 153 (3/4) (1998) 223—257.[131] N. Tokuda et al., Sloshing analysis method using existing FEM structural analysis code, J. Press. Vess. Tech.,

ASME 117 (3) (1995) 268—272.[132] T. Touhei, Analysis of layered solid—fluid media using a discrete wavenumber and normal-mode superposition

method, Bull. Seismic Soc. Am. 85 (6) (1995) 1718—1729.[133] D. Tran, J. He, Modal analysis of circular cylindrical tanks containing liquids, 16th Int. Modal Anal. Conf., Santa

Barbara, 1998, pp. 1636—1642.[134] J. Van Kuijk et al., Coupled fluids and mechanics simulations using finite element analysis, 1996 ASME Int. Mech.

Eng. Cong. Expo. DSC 59, ASME, 1996, pp. 281—286.[135] C.P. Vendhan et al., Stability characteristics of slender flexible cylinders in axial flow by the finite element method,

J. Sound Vib. 208 (4) (1997) 587—601.[136] K. Venkataramana, K. Kawano, Nonlinear dynamics of offshore structures under sea wave and earthquake forces,

Sadhana 20 (2/4) (1995) 501—512.[137] J. Wandinger, A symmetric Craig—Bampton method of coupled fluid-structure systems, Eng. Comput. 15 (4) (1998)

450—461.[138] X. Wang, K.J. Bathe, Displacement/pressure based mixed finite element formulations for acoustic fluid-structure

interaction problems, Int. J. Numer. Meth. Eng. 40 (1/2) (1997) 2001—2017.[139] Z.M. Wang, S.K. Tan, Vibration and pressure fluctuation in a flexible hydraulic power system on an air-craft,

Comput. Fluids 27 (1) (1998) 1—9.[140] Z.M. Wang, S.K. Tan, Coupled analysis of fluid transients and structural dynamic responses of a pipeline system,

J. Hydraul. Res. 35 (1) (1997) 119—131.[141] D. Wen, Z. Zheng, Unitive analysis scheme on problems of multiple moving boundaries with 3D liquid—solid

multiple nonlinear coupling for uplift of anchored storage tanks, Appl. Math. Mech. 18 (1) (1997) 69—79.[142] B. Wendlandt, Reflection, refraction, transmission of acoustic waves by a T-junction in piecewise-continuous plate

construction and radiation into fluid loading, J. Sound Vib. 193 (4) (1996) 763—771.[143] G.X. Wu, Q.W. Ma, Finite element analysis of non-linear interactions of transient waves with a cylinder, Proc. Int.

Conf. Offshore Mech. Arctic Eng. OMAE, ASME, 1995, pp. 329—339.[144] J.T. Xing et al., Transient analysis of the ship-water interaction system excited by a pressure water wave, Marine

Struct. 10 (5) (1997) 302—321.[145] C. Zhao et al., Seismic response of concrete gravity dams including water-dam-sediment-foundation interaction,

Comput. Struct. 54 (4) (1995) 705—715.

J. Mackerle /Finite Elements in Analysis and Design 31 (1999) 231—240 237

Page 8: bib_FSI.pdf

[146] M. Zmindak, I. Grajciar, Simulation of the aquaplane problem, Comput. Struct. 64 (5/6) (1997) 1155—1164.[147] I. Zolotarev, Fluid-structural-acoustical interactions of a thin plate in a channel with flowing fluid, ASME Int.

Mech. Eng. Cong. Expo. AD 53-1, ASME, 1997, pp. 403—410.

Other reviews and books

[148] T. Belytschko, Fluid-structure interaction, Comput. Struct. 12 (1980) 459—469.[149] T. Belytschko, W.K. Liu, Computer methods for transient fluid-structure analysis of nuclear reactors, J. Nucl.

Safety 26 (1985) 14—31.[150] S.J. Brown, A survey of studies into the hydrodynamic response of fluid-coupled circular cylinders, J. Press. Vess.

Tech. ASME 104 (1982) 2—19.[151] G.C. Everstine, Finite element formulations of structural acoustics problems, Comput. Struct. 65 (3) (1997)

307—321.[152] G.C. Everstine, M.K. Au-Yang (Eds.), Advances in Fluid-Structure Interaction, AMD 64, ASME, New York,

1984.[153] J.M. Kennedy, T.B. Belytschko, A survey of computational methods for fluid-structure analysis of reactor safety,

Nucl. Eng. Des. 69 (1982) 379—398.[154] H.J.P. Morand, R. Ohayon, Fluid Structure Interaction: Applied Numerical Methods, Wiley, New York, 1995.[155] R. Mullen Numerical methods for the analysis of fluid-structure interaction, Ph.D. Thesis, Northwestern Univ.

Evanston, IL, 1981.[156] M. Papadrakakis, B.H.V. Topping (Eds.), Advances in Simulation and Interaction Techniques, Civil-Comp,

Edinburgh, 1994.[157] O.C. Zienkiewicz, Coupled problems and their numerical solution, in: R.W. Lewis (Ed.), Num. Meth. Coupl. Syst.,

Wiley, New York, 1984, pp. 35—58.

Boundary element methods

Papers in journals/conference proceedings and theses

[1] K. Abe, S. Sakuraba, Boundary element optimization for sloshing analysis, in: R.C. Ertekin et al. (Eds.), BoundaryElem. Tech. XI, CMP, 1996, pp. 247—256.

[2] F. Berot, B. Peseux, Dynamic behavior of submerged shells of revolution: coupling of a ring finite element anda ring boundary element, 1997 ASME Press. Vess. Piping Conf. PVP 355, ASME, 1997, pp. 261—270.

[3] P.C. Chen, I. Jadic, Interfacing of fluid and structural models via innovative structural boundary element method,AIAA J. 36 (2) (1998) 282—287.

[4] J.P. Coyette, A generalized boundary element method model for fluid-structure interaction modelling, in: M.H.Aliabadi (Ed.), Bound. Elem. Tech. X, CMP, 1995, pp. 185—191.

[5] F. De la Iglesia et al., Effects of the surrounding fluid on the dynamic characteristics of rectangular plates, Mach.Vib. 5 (1) (1996) 52—61.

[6] X. Du et al., Dynamic response analysis of high arch dam-water-foundation system, Proc. Eng. Mech., FortLauderdale, FL, ASCE, 1996, pp. 987—988.

[7] C.T. Dyka et al., Stabilizing the retarded potential method for transient fluid-structure interaction problems, Int. J.Numer. Meth. Eng. 40 (20) (1997) 3767—3783.

[8] A.A. El Damatty et al., Stability of elevated liquid-filled conical tanks under seismic loading. Part I: Theory,Earthquake Eng. Struct. Dyn. 26 (12) (1997) 1191—1208.

[9] A.A. El Damatty et al., Stability of elevated liquid-filled conical tanks under seismic loading Part II: Applications,Earthquake Eng. Struct. Dyn. 26 (12) (1997) 1209—1229.

[10] R. Endo et al., Experimental modal analysis by harmonic sweep excitation on unit linked floating models, 6th Int.Offshore Polar Eng. Conf., Los Angeles, 1996, pp. 341—348.

238 J. Mackerle /Finite Elements in Analysis and Design 31 (1999) 231—240

Page 9: bib_FSI.pdf

[11] Z.X. Feng, Z.X. Li, A Lagrangian model for time-dependent sloshing in an arbitary container using boundaryelement methods, Chinese J. Numer. Meth. Appl. 17 (1) (1995) 48—55.

[12] J.A. Giordano, G.H. Koopmann, State space boundary element—finite element coupling for fluid-structure interac-tion analysis, J. Acoust. Soc. Am. 98 (1) (1995) 363—372.

[13] A.G. Gorshkov, N.I. Drobyshevskii, Application of the BEM to the problem of the body penetration into fluid,Mech. Solids 30 (6) (1995) 88—92.

[14] C. Haack, Multiple connected floating structures in free surface flow, ZAMM 76 (S4) (1996) 477—480.[15] A. Hopf et al., Analysis of complex fluid-structure interaction problems using a triangular boundary element for the

fluid dynamics, in: M.H. Aliabadi (Ed.), Bound. Elem. Tech. X, CMP, 1995, pp. 177—184.[16] G.C. Hsiao, Applications of boundary element methods to problems in mechanics, ZAMM 76 (S2) (1996) 265—268.[17] Y. Huang et al., A time domain boundary element method for water—solid impact analysis, Acta. Mech. Solida

Sinica 8 (4) (1995) 337—348.[18] J. Jiang, M.D. Olson, Non-linear transient analysis of submerged circular plates subjected to underwater ex-

plosions, Comput. Meth. Appl. Mech. Eng. 134 (1/2) (1996) 163—179.[19] I. Kaljevic, D.A. Saravanos, Steady-state response of acoustic cavities bounded by piezoelectric composite shell

structures, J. Sound Vib. 204 (3) (1997) 459—476.[20] A. Karafiat, On an error estimation for the boundary element method applied to a fluid-structure interaction

problem, ZAMM 76 (S2) (1996) 567—568.[21] D.J. Kim, M.H. Kim, Wave-current interaction with a large three-dimensional body by THOBEM, J. Ship Res. 41

(4) (1997) 273—285.[22] H.M. Koh et al., Fluid-structure interaction analysis of 3-D rectangular tanks by a variationally coupled

BEM-FEM and comparison with test results, Earthquake Eng. Struct. Dyn. 27 (2) (1998) 109—124.[23] J. Kwan et al., Dynamic response of rectangular flexible fluid containers, J. Eng. Mech. ASCE 122 (9) (1996)

807—817.[24] K. Latz et al., Dynamic interaction analysis of liquid storage tanks, 10th Europ. Conf. Earthq. Eng., Vienna,

Balkema, 1995, pp. 2179—2184.[25] V. Mallardo, M.H. Aliabadi, Acoustic scattering in fluid—solid problems: an inverse boundary element method

formulation, 2nd Int. Conf. Comp. Acoust. Envir. Appl., Acquasparta, CMP, 1997, pp. 3—12.[26] V. Mallardo, M.H. Aliabadi, A BEM sensitivity and shape identification analysis for acoustic scattering in

fluid—solid problems, Int. J. Numer. Meth. Eng. 41 (8) (1998) 1527—1541.[27] M.D. McCollum, C.M. Siders, Modal analysis of a structure in a compressible fluid using a finite element boundary

element approach, J. Acoust. Soc. Am. 99 (4) (1996) 1949—1957.[28] G.V. Mysore et al. Dynamic analysis of single-anchor inflatable dams, J. Sound Vib. 215 (2) (1998) 251—272.[29] T. Nakayama, Boundary element method applied to the analysis of shallow liquid sloshing in moving tanks, JSME

Int. J. Ser. C 39 (4) (1996) 800—807.[30] H. Nelisse et al., Fluid-structure coupling for an unbaffled elastic panel immersed in a diffuse field, J. Sound Vib. 198

(4) (1996) 485—506.[31] J.L. Ortiz, A.A. Barhorst, On modeling fluid-structure interaction, 35th Aerospace Sci. Meet. Exhib., Reno, AIAA,

1997, pap. 0785.[32] J.L. Ortiz, A.A. Barhorst, Large-displacement non-linear sloshing in 2-D circular rigid containers — prescribed

motion of the container, Int. J. Numer. Meth. Eng. 41 (2) (1998) 195—210.[33] J.L. Ortiz et al., Flexible multibody systems — fluid interaction, Int. J. Numer. Meth. Eng. 41 (3) (1998) 409—433.[34] B. Padmanabhan, R.C. Ertekin, Interaction of waves with floating structures with intake/discharge flow, in: R.C.

Ertekin et al. (Eds.), Boundary Elem. Tech. XI, CMP, 1996, pp. 31—40.[35] C. Pozrikidis, Finite deformation of liquid capsules enclosed by elastic membranes in simple shear flow, J. Fluid

Mech. 297 (1995) 123—152.[36] C. Rajakumar, A. Ali, Boundary element-finite element coupled eigenanalysis of fluid-structure systems, Int. J.

Numer. Meth. Eng. 39 (10) (1996) 1625—1634.[37] V.J. Romero, M.S. Ingberg, A numerical model for 2-D sloshing of pseudoviscous liquids in horizon-

tally accelerated rectangular containers, in: C.A. Brebbia et al. (Eds.), Boundary Elem. XVII, CMP, 1995,pp. 567—584.

J. Mackerle /Finite Elements in Analysis and Design 31 (1999) 231—240 239

Page 10: bib_FSI.pdf

[38] S. Shenoy et al., Boundary element solutions to wave scattering by surface irregularities on a fluid—solid interface,in: C.A. Brebbia et al. (Eds.), Boundary Elements XVII, CMP, 1995, pp. 505—512.

[39] H. Tan, A.K. Chopra, Earthquake analysis of arch dams including dam-water-foundation rock interaction,Earthquake Eng. Struct. Dyn. 24 (1995) 1453—1474.

[40] N.A. Taranukha, V.A. Postnov, Combination of boundary element method and module element method to solveproblems of hydroelastic oscillations of complex structures, in: M.H. Aliabadi (Ed.), Boundary Elem. Technol. X,CMP, 1995, pp. 211—218.

[41] H. Utsumi et al., Effect of fluid saturated porosity of the seabed for interaction problems of fluid-structure-seabedsystem, in: S.N. Atluri et al. (Eds.), Comp. Mech. ’95, Springer, Berlin, 1995, pp. 2957—2962.

[42] C. Wu et al., Wave response analysis of a flexible floating structure by a simple beam model, Proc. Jpn. Soc. CivilEng. 30 (5) (1995) 727—740.

[43] C. Wu et al., Application of Galerkin’s method in wave response analysis of flexible floating plates, 6th Int. OffshorePolar Eng. Conf., Los Angeles, 1996, pp. 307—314.

[44] Y. Yokoi et al., Numerical simulation of flow around a circular cylinder in a solid—liquid two-phase flow usinga vortex method, Trans. Jpn. Soc. Mech. Eng. Ser. B 62 (603) (1996) 3824—3831.

[45] X. Zeng, J. Bielak, Stable symmetric finite element—boundary integral coupling methods for fluid-structure interfaceproblems, Eng. Anal. Boundary Elem. 15 (1) (1995) 79—91.

Other reviews and books

[46] S. Amini et al., Coupled Boundary and Finite Element Methods for the Solution of the Dynamic Fluid-StructureInteraction Problem, Lecture Notes in Eng., vol. 77, Springer, Berlin, 1992.

[47] D.E. Beskos, Boundary element methods in dynamic analysis: Part II (1986—1996), Appl. Mech. Rev. 50 (3) (1997)149—197.

[48] L.L. Broderick, J.W. Leonard, Selective review of boundary element modeling for the interaction of deformablestructures with water waves, Eng. Struct. 12 (4) (1990) 269—276.

[49] I.C. Mathews, A review of computational techniques for steady fluid-structure interaction analyses, in: R.W. Lewis(Ed.), Num. Meth. Trans. Coupl. Prob., Pineridge Press, Swansea, 1984, pp. 221—231.

240 J. Mackerle /Finite Elements in Analysis and Design 31 (1999) 231—240