bfm-3A978-4-431-54237-7-2F1

download bfm-3A978-4-431-54237-7-2F1

of 10

Transcript of bfm-3A978-4-431-54237-7-2F1

  • 7/27/2019 bfm-3A978-4-431-54237-7-2F1

    1/10

    Introduction to Metal Matrix Composites

  • 7/27/2019 bfm-3A978-4-431-54237-7-2F1

    2/10

  • 7/27/2019 bfm-3A978-4-431-54237-7-2F1

    3/10

    Yoshinori Nishida

    Introduction to Metal MatrixComposites

    Fabrication and Recycling

  • 7/27/2019 bfm-3A978-4-431-54237-7-2F1

    4/10

    Yoshinori NishidaNational Institute of Advanced Industrial Science

    and Technology (AIST)Nagoya, Japan (retired in 2002)

    Original Japanese edition published by CORONA PUBLISHING CO., LTD.KINZOKUKI FUKUGOZAIRYO NYUMONCopyright# 2001 Yoshinori Nishida

    ISBN 978-4-431-54236-0 ISBN 978-4-431-54237-7 (eBook)DOI 10.1007/978-4-431-54237-7Springer Tokyo Heidelberg New York Dordrecht London

    Library of Congress Control Number: 2012954005

    # Springer Japan 2013This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or partof the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformation storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar

    methodology now known or hereafter developed. Exempted from this legal reservation are brief excerptsin connection with reviews or scholarly analysis or material supplied specifically for the purpose of beingentered and executed on a computer system, for exclusive use by the purchaser of the work. Duplicationof this publication or parts thereof is permitted only under the provisions of the Copyright Law of thePublishers location, in its current version, and permission for use must always be obtained fromSpringer. Permissions for use may be obtained through RightsLink at the Copyright Clearance Center.Violations are liable to prosecution under the respective Copyright Law.The use of general descriptive names, registered names, trademarks, service marks, etc. in thispublication does not imply, even in the absence of a specific statement, that such names are exemptfrom the relevant protective laws and regulations and therefore free for general use.While the advice and information in this book are believed to be true and accurate at the date ofpublication, neither the authors nor the editors nor the publisher can accept any legal responsibility for

    any errors or omissions that may be made. The publisher makes no warranty, express or implied, withrespect to the material contained herein.

    Printed on acid-free paper

    Springer is part of Springer Science+Business Media (www.springer.com)

  • 7/27/2019 bfm-3A978-4-431-54237-7-2F1

    5/10

    Preface

    All materials for aerospace, energy conversion systems, and preservation of the

    environment are being assessed, and the demand for light materials is increasing.

    Light metals have some drawbacks, however, and to improve these weak areas,

    light and strong composites have been developed by strengthening light metals by

    ceramic fibers or particles.

    Most studies of metal matrix composites (MMCs) are related to the evaluation

    of composite properties, and few are related to fabrication processes. Once a

    new composite was developed, research on the evaluation of the composite became

    very active. Some research on fabrication processes has been carried out, but it wasvery difficult to discuss many fabrication processes fundamentally and systemati-

    cally. At an early stage, MMCs such as sintered aluminum products (SAP) and

    second-phase reinforced eutectic alloys obtained by unidirectional solidification

    were developed without mixing reinforcements into matrix metals by mechanical

    means. After the development of mixing techniques, by which ceramic fibers or

    particles were dispersed in matrix metals, the research on evaluation of those

    composites became very active and many papers about it have been published.

    Many of those have been concerned with continuous fibers in particular.

    The bonding strength at the fiber/matrix interface and properties of compositesare closely related to fabrication conditions. Therefore, the history of constituent

    materials during fabrication should be taken into account to enhance the reliability

    of property data of composites. Nevertheless, when the property of composites was

    discussed, the fabrication process was made light of. In one case, when a composite

    is commercialized, first a composite billet is fabricated and from the billet a

    composite product is formed by a mechanical process such as machining, a plastic

    deformation process, or casting. In another case, composite fabrication and shaping

    of the product are performed at the same time by one operation. The latter will be

    better than the former from the point of view of production efficiency and energyefficiency. The fabrication process is very important for industrial application.

    In addition, we can achieve high productivity and reliability of composite products

    by determining the optimum production condition and by controlling that

    v

  • 7/27/2019 bfm-3A978-4-431-54237-7-2F1

    6/10

    condition. However, the fabrication process has been treated as only a technique

    and has not been investigated scientifically.

    To date, most monographs on MMCs have been edited for graduate students and

    professional researchers. These monographs deal mainly with mechanics, which is

    not easy for other students to understand. Now it is time to promote the commer-

    cialization of MMCs. A book that will serve as a useful introduction to MMCs is

    needed for researchers and industrial engineers who are engaged in developing new

    materials.

    Therefore, this book was written to systematically discuss in an easy-to-understand

    manner the research work that has been carried out until now and to help

    researchers in industry to develop composite products in expectation of further

    advances in MMCs. The discussion is plainly written to engage the interest of many

    people in MMCs and is not difficult even for undergraduate students to understand.

    This book includes not only processing but also the properties of composites as anintroduction to MMCs for readers who want to explore the subject further.

    The fundamental knowledge necessary to understand MMCs is explained in

    Chap. 1. Major fabrication processes, except the pressure infiltration process by

    squeeze casting and centrifugal casting, are described in Chap. 2. The fabrication

    process by squeeze casting is explained in Chap. 3, because the process is very

    important to understand the wetting phenomenon between reinforcement and

    molten metal. The theory of pressure infiltration by squeeze casting is discussed

    in Chap. 4. The centrifugal casting of metal matrix composites is discussed

    in Chap. 5, and the properties of composites are discussed in Chap. 6.The superplasticity of composites as a recent topic is introduced in Chap. 7. The

    production processes of reinforcement materials for composites are briefly

    explained in Chap. 8, and fundamental ideas of recycling of composites are

    discussed in Chap. 9 to meet the demands of the times.

    Thanks are due to Dr. Toshio Yamauchi, who was my co-worker on the pressure

    infiltration process which occupies the most important part of Chap. 4. I am grateful

    to Professors Shojiro Ochiai of Kyoto University (Fig. 6.15) and Sumio Nagata of

    Fukuoka University (Figs. 3.3, 3.4 and 3.5) for permission to reproduce figures.

    Finally, I would like to express my thanks to Professor Yutaka Kagawa of TheUniversity of Tokyo, Professor Karl U. Kainer of the GKSS Research Centre

    Geesthacht, and Professor Chitoshi Masuda and Professor Makoto Yoshida of

    Waseda University for their very constructive discussions.

    This book is based on the Japanese edition of my book Kinzokuki Fukugozairyo

    Nyumon, published by Corona Publishing Co., Ltd., Tokyo. Most of the digital files

    of the original figures were provided by the publisher.

    Aichi, Japan Yoshinori Nishida

    vi Preface

  • 7/27/2019 bfm-3A978-4-431-54237-7-2F1

    7/10

    Contents

    1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

    1.1 Classification and Characteristics of Composites . . . . . . . . . . . . . 2

    1.1.1 Classification of Composites . . . . . . . . . . . . . . . . . . . . . . 2

    1.1.2 Characteristics of Metal Matrix Composites . . . . . . . . . . . 3

    1.1.3 Examples of Metal Matrix Composite

    Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

    1.2 Rule of Mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

    1.3 Surface Energy and Interface Energy . . . . . . . . . . . . . . . . . . . . . . 11

    1.4 Thermodynamics on Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 161.5 Wettability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

    1.6 Darcys Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

    2 Fabrication Processes for Composites . . . . . . . . . . . . . . . . . . . . . . . . 27

    2.1 Aspects of Fabrication of Composites . . . . . . . . . . . . . . . . . . . . . 27

    2.1.1 Energy of Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

    2.1.2 Fabrication of Composites by Mechanical

    Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

    2.1.3 Mechanical Work and Wetting . . . . . . . . . . . . . . . . . . . . . 32

    2.2 Classification of Fabrication Methods . . . . . . . . . . . . . . . . . . . . . 34

    2.3 Comparison of Fabrication Techniques . . . . . . . . . . . . . . . . . . . . 34

    2.4 Solid State Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

    2.4.1 Powder Metallurgical Methods . . . . . . . . . . . . . . . . . . . . . 35

    2.4.2 Mechanical Alloying . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

    2.4.3 Diffusion Bonding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

    2.4.4 Spark Plasma Sintering (SPS) . . . . . . . . . . . . . . . . . . . . . 40

    2.5 Liquid State Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

    2.5.1 Vortex Addition Technique . . . . . . . . . . . . . . . . . . . . . . . 412.5.2 Compo-Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

    2.5.3 Pressureless Infiltration Process . . . . . . . . . . . . . . . . . . . . 44

    2.5.4 Ultrasonic Infiltration . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

    vii

  • 7/27/2019 bfm-3A978-4-431-54237-7-2F1

    8/10

    2.6 Gaseous State Fabrication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    2.6.1 CVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

    2.6.2 PVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

    2.7 In Situ Fabrication Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

    2.7.1 Internal Oxidation Process . . . . . . . . . . . . . . . . . . . . . . . . 48

    2.7.2 Unidirectional Solidification Process . . . . . . . . . . . . . . . . 49

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

    3 Fabrication by Squeeze Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

    3.1 Application of Pressure and Fabrication Energy . . . . . . . . . . . . . . 54

    3.2 Threshold Pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

    3.2.1 Case of Random Reinforcement Distribution . . . . . . . . . . 56

    3.2.2 Case of Unidirectional Fiber Distribution . . . . . . . . . . . . . 57

    3.2.3 Measurement of Threshold Pressure . . . . . . . . . . . . . . . . . 583.3 Influence of Preheating of Preform . . . . . . . . . . . . . . . . . . . . . . . 58

    3.4 Microscopic Analysis of Fluid Flow in Preforms . . . . . . . . . . . . . 61

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

    4 Theory of Pressure Infiltration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

    4.1 Macroscopic Analysis of Fluid Flow in Preforms . . . . . . . . . . . . . 67

    4.1.1 Analysis on the Assumption of Constant

    Preform Surface Pressure . . . . . . . . . . . . . . . . . . . . . . . . . 68

    4.1.2 Infiltration Velocity Model . . . . . . . . . . . . . . . . . . . . . . . . 72

    4.2 Infiltration Stop Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 884.3 Characteristics of Pressure Infiltration Method

    and Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

    5 Centrifugal Casting of Metal Matrix Composites . . . . . . . . . . . . . . . 91

    5.1 Infiltration of Molten Metal Using Centrifugal Force . . . . . . . . . . 91

    5.1.1 Pressure Generated at the Surface of Preform . . . . . . . . . . 92

    5.1.2 Infiltration Start Pressure . . . . . . . . . . . . . . . . . . . . . . . . . 95

    5.1.3 Infiltration of Molten Metal into the Preform . . . . . . . . . . 95

    5.1.4 Example Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

    5.1.5 Examples of Composites Fabricated

    Using Centrifugal Force . . . . . . . . . . . . . . . . . . . . . . . . . . 105

    5.2 Centrifugal Casting of Particle Dispersed

    Molten Metal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

    6 Properties of Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

    6.1 Mechanical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

    6.1.1 Elastic Modulus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1146.1.2 Strength of Composites . . . . . . . . . . . . . . . . . . . . . . . . . . 120

    6.1.3 Fracture of Composites . . . . . . . . . . . . . . . . . . . . . . . . . . 130

    viii Contents

  • 7/27/2019 bfm-3A978-4-431-54237-7-2F1

    9/10

    6.2 Physical Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    6.2.1 Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

    6.2.2 Specific Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

    6.2.3 Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

    6.2.4 Thermal Expansion Coefficient . . . . . . . . . . . . . . . . . . . . 142

    6.3 Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

    6.4 New Trends in MMCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    6.4.1 Carbon/Metal Composites with High

    Thermal Conductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

    6.4.2 Smart Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

    7 Superplasticity of Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

    7.1 Background for Superplasticity . . . . . . . . . . . . . . . . . . . . . . . . . . 1557.2 Mechanism of Superplastic Forming . . . . . . . . . . . . . . . . . . . . . . 156

    7.2.1 Superplastic Deformation Mechanism

    of Alloys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

    7.2.2 Superplastic Deformation Mechanism

    of Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

    7.3 Production Methods of Superplastic Materials . . . . . . . . . . . . . . . 159

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

    8 Materials for the Fabrication of Composites . . . . . . . . . . . . . . . . . . . 165

    8.1 Characteristics of Reinforcementsand Matrix Metals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

    8.2 Production Processes for Reinforcements . . . . . . . . . . . . . . . . . . . 168

    8.2.1 Ceramic Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

    8.2.2 Ceramic Fibers and Carbon Fibers . . . . . . . . . . . . . . . . . . 169

    8.2.3 Ceramic Whiskers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

    9 Recycling of Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

    9.1 Composite Ratio in Products and Re-melting . . . . . . . . . . . . . . . . 182

    9.2 Separation of Fibers or Particles . . . . . . . . . . . . . . . . . . . . . . . . . 183

    9.2.1 State of Composites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

    9.2.2 Mechanical Separation of Reinforcements . . . . . . . . . . . . 186

    9.2.3 Chemical Separation of Reinforcements . . . . . . . . . . . . . . 187

    9.3 Separation of Fiber and Metal from Composites . . . . . . . . . . . . . . 189

    9.3.1 Chemical Method and Ratio of Separation . . . . . . . . . . . . 189

    9.3.2 Phenomena Associated with Separation

    Using Fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

    9.4 Entropy of Mixing by the Addition of Reinforcement

    Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

    Contents ix

  • 7/27/2019 bfm-3A978-4-431-54237-7-2F1

    10/10

    9.4.1 Entropy of Mixing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

    9.4.2 Entropy Increase upon the Addition

    of Particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

    9.5 Assessment of Metal Matrix Composites . . . . . . . . . . . . . . . . . . . 199

    References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

    Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

    x Contents