Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim...

47
Beyond the Quantum Hall Effect School on Low Dimensional Nanoscopic Systems Harish-chandra Research Institute January – February 2008 Jim Eisenstein California Institute of Technology

Transcript of Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim...

Page 1: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Beyond the Quantum Hall Effect

School on Low Dimensional Nanoscopic Systems

Harish-chandra Research InstituteJanuary – February 2008

Jim EisensteinCalifornia Institute of Technology

Page 2: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Outline of the Lectures

I. Introduction to the Quantum Hall Regimea. Overviewb. QHE Basics: Integer and Fractional, composite fermions. c. Thermal transport in quantum Hall edge channelsd. Beyond the standard paradigm: Excited Landau Levels and Double Layers

II. 2D Electrons in Excited Landau Levelsa. Basic Observations.b. CDW scenarioc. Symmetry Breakersd. Liquid crystal scenarioe. Re-entrant insulating phasesf. N = 1 Landau level

III. Exciton Condensation in Bilayer Electron Systemsa. Overview and history. Discovery of νT = 1/2 and νT = 1 QHE states.b. Quantum Hall ferromagnetism and the νT = 1 QHE state.c. νT = 1 QHE state as an exciton condensate. d. Tunnelinge. Counterflowf. Finite temperature phase transition

Page 3: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Lecture 1

Introduction to the Quantum Hall Regime

Page 4: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Two-Dimensional Electron Gas

Page 5: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

~100 Å

A Semiconductor Sandwich

A ABCB

VB

Page 6: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

~100 Å

subband wave function

Quantum Confinement

CB

VB

Page 7: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Quantum Confinement

CB

VB

donor layers

+ +-

Page 8: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Perfect Registry

Page 9: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Molecular Beam Epitaxy

Page 10: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Ga As

ultra highvacuum

heated cells

high qualityGaAs substrate

hot!

AlAlGaAs

AlGaAs

GaAs100 A

allows for precisionengineering of crystal

layer by layer

Molecular Beam Epitaxy

“spray painting with atoms”

Page 11: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Loren Pfeiffer and Ken West

μ = 36 x 106 cm2/Vs

Mobility of Electrons in GaAs

mean free path ~ ¼ mm

10 nm

*

emτμ =

Page 12: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Hall Effect Measurements

VH

Vxx

B

RH = VH / I = B/ne

VH

VxxI

B

Page 13: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

The Integer Quantum Hall Effect

jh/eR

2

Hall = = 25812.807 Ohms / integer

RH

(h/e2)

Rxx

(kΩ) VH

Vxx

I

B

Page 14: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

DOS

Energy

Landau levels

2D Electrons in a Magnetic Field

Circular orbits + de Broglie waves ⇒discrete radii and energies

Landau levels are massively degenerate: n0 = eB/h.

Precisely fill an integer number of LLs: n = j x n0

RH = B/ne = B/jen0 = h/je2

IQHE associated with fully filled Landau levels.

Page 15: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Energy

DOS

Magnetic Fields Enhance Interactions

Fermi gas

DOS

Energy

Landau levels

Magnetic fields quench the KE and produce a strongly interacting system

Page 16: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Fractional Quantum Hall Effect

FQHE associated with partially filled Landau levels.

1/3

N= 0

Page 17: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Laughlin’s Wavefunction - 1983

3( )i ji j

z z<

−∏Ψ(z1,z2, … ,zn) ~

Page 18: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

A bizarre fluid state of many electrons having fractionally charged excitations.

Laughlin’s Wavefunction

Page 19: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

1/2

No FQHE at half-filling of lowest Landau level.

Odd-Denominator Rule

Page 20: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Landau Levels

( )2

0

0

1 ( )2 2

1 12 2

/// 2

B

c B

c

B

eH g V z

m

N g B E

D eB heB me m

μ

ε ω μ

ωμ

•+

= + +

⎛ ⎞= + ± +⎜ ⎟⎝ ⎠

=

==

p A

Ν

σ Β

gμBB

ωc

N=0

N=1

N=2

B

In GaAs: m*/m0 = 0.067, g = -0.44

ωc = 20K @ B = 1TgμBB ≈ ωc /70

Page 21: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Wavefunctions

Landau gauge:

2 2

, , 0

/ 2

22

( ) ( )

( ) ( )

2

/

ikxN k N k

N N

k kx

e y y z

e H

y k yL

eB

σ σ

ξ

ψ φ ζ χ

φ ξ ξ

π

= −

=

= Δ =

=

Symmetric gauge: A = -½(r x B)

2 / 40, , 0 ( )

( ) /

zjj z e z

z x iyσ σψ ζ χ−=

= +

ˆ= −A xyB

Page 22: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Integer QHE and Edge States

( )2

2

2

. 2x k N

k R L Hocc k x

L dy e eI i Vy L

ehh

ε μ μπ

⎛ ⎞∂= = = − =⎜ ⎟∂⎝ ⎠∑ ∫

Page 23: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

E

y

x

Disorder Determines Plateau Widths

EF

y

B

Rxy

Page 24: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

E

y

x

Disorder Determines Plateau Widths

EF

y

B

Rxy

Page 25: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

E

y

x

Disorder Determines Plateau Widths

EF

y

B

Rxy

Page 26: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

E

y

x

Disorder Determines Plateau Widths

EF

y

B

Rxy

Page 27: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Laughlin’s Wavefunction

Page 28: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Single Electron in Lowest Landau Level

Symmetric gauge: A = -½(r x B)

2 / 40, , 0

2

( )

0

zjj z e z

eBj n Rh

σ σ

φ

ψ ζ χ

π

−=

≤ < =

Page 29: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Single Electron in Lowest Landau Level

2

1

1

1 10 4

( )n

jj

j

zz a z expφ

ψ−

=

−⎛ ⎞⎜ ⎟⎝ ⎠

∑∼

Page 30: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

1 2( , , , ) ( )n i ji j

z z z z z<

Ψ −∏… ∼

Filled Lowest Landau Level

2

1 21 2

11 1 1

1 2

1 1 1

( , , , ) exp4

njn

nj

n n nn

zz z zz z z

z z z=

− − −

⎡ ⎤⎢ ⎥Ψ = × −⎢ ⎥⎣ ⎦∑…

A unique Slater determinant:

1nnφ

ν = =

Page 31: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

1 2 2

1 2 1 3 1

1

1

( , , , ) ( , , )

(

( )

( ( ( )) ) )

n n

n

z z z z z

z z z z z

z

z z

ϕ χ

ϕ

Ψ =

= − − −

… …

Visualizing ν = 1

Page 32: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Uncorrelated ν < 1 State

n nφ<

P(z1) is an undetermined polynomial with nφ-n zeros

1 1 2 1 3 1 1( ) ( )( ) ( ) ( )nz z z z z z z P zϕ − − − ×∼

Page 33: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

31 2( , , , ) ( )n i j

i jz z z z z

<

Ψ −∏… ∼

Laughlin correlated ν = 1/3 State

2 2 21 1 2 1 3 1( ) ( ) ( ) ( )nP z z z z z z z− − −∼

Page 34: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Excitations of the Laughlin Liquid

Add one more flux quantum:

31 2( , , , ) ( ) ( )n k i j

k i jz z z z w z z∗

<

Ψ − −∏ ∏… ∼

Φ0

w

A quasi-hole with charge q = +e/3

Page 35: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Excitations of the Laughlin Liquid

B < B1/3

B > B1/3

quasiholesq = + e/3

quasielectronsq = - e/3

Etot

ν = 1/3

q-eq-h A gap to charged excitations

2

0.1 eε

Δ ≈

Page 36: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Many Fractional Quantum Hall States

Laughlin states:ν = 1/m = 1/3, 1/5, ... ν = 1 - 1/m = 2/3, 4/5, ...

Whence 2/5, 3/7 etc.?

Page 37: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Hierarchy Model

5/135/17

2/52/7

3/73/11

1/3

Interactions amongst quasiparticles produce new condensates

Most hierarchy states are not observed

Page 38: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Composite Fermions

Chern-Simons singular gauge transformation:

Attach an even number of fictitious flux quanta to

each electron

B* = B - 2φ0n1 1 2CFν ν

= −

1, 2, 3,CF jν = = … 1 2 3, , ,2 1 3 5 7

jj

ν = =+

Jain, others

Page 39: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Half-filled Landau Level

CFν = ∞12

ν = B* = 0

Fermi sea of CFs

At ν = 1/2 quasiparticles move in straight lines.

11/ 2cR

ν −∼

02F Fk k=

Halperin, Lee, Read, others

Page 40: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Semi-classical transport of CFs

Dimensional resonances in an anti-dot lattice

Kang, et al. 1993

Page 41: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

High Landau Levels

lowest Landau level

Page 42: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

1987: Even-Denominator FQHE

5/2N=1

N=0

Willett, et al.

Page 43: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Transport Anisotropy in High Landau Levels

ν = 4 is a boundary between different transport regimes.

N = 0 & 1N = 2, 3, ...

Magnetic Field (Tesla)

Rxx

& R

yy(O

hms)

ν = 9/2

7/2

11/2

5/2

13/2

ν=4

T=25mK

<110>

<110>B1200

1000

800

600

400

200

0543210

Page 44: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Electronic Liquid Crystals

1000

800

600

400

200

0Lo

ngitu

dina

l Res

ista

nces

)2001000

Temperature (mK)

A nematic to isotropic transition?

Page 45: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

Double Layer Two-Dimensional Electron Gas

Page 46: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

1086420Magnetic Field (Tesla)

2.5

2.0

1.5

1.0

0.5

0.0

Hal

l Res

ista

nce

(h/

e2 )

150

100

50

0

Diagonal R

esistance (kΩ)

x10

QHE in Double Layer 2D Systems

νT = 1

1/2

νT = 1 = ½ + ½

νT = ½ = ¼ + ¼

Page 47: Beyond the Quantum Hall Effect - hri.res.incmp2008/lecturenotes/Eisenstein_lecture 1.pdf · Jim Eisenstein California Institute of Technology. Outline of the Lectures I. Introduction

A BCS-like superfluid comprised of interlayer excitons.

Add a magnetic field

Start with a double layer 2D electron gas

+_

+_

+_

+_

+_

+_

Quantum Hall Superfluid