Bessel Functions Summary

2
 Bessel functions and Legendre polynomials Bessel’s equation of order  p x 2 y + xy + (x 2  p 2 )y  = 0 Solution:  y(x) =  aJ  p (x) + bY  p (x) If  p  is not an integer,  Y  p (x) =  J  p (x). 0 10 20 x 0.5 0 0.5 1       J     n               (     x               ) J 0 (x) J 1 (x) J 2 (x) 0 10 20 x 1 0.5 0 0.5      Y     n               (     x               ) Y  0 (x) Y  1 (x) Y  2 (x) Behavio r at zero:  J 0 (0) = 1,  J  p (0) = 0 for  p = 1, 2, 3,...,  Y  p (0) = −∞ for all  p Beha vior at inni ty:  J  p (x)   0 and  Y  p (x)   0 as  x Zeros  J  p (σ  pm ) = 0 for all  p  and  m  = 1, 2, 3,... . (Each  J  p ,  Y  p  has innite nu mbe r of zer os labe led σ  pm .) Derivatives  d dx [x  p J  p (x)] =  x  p J  p1 (x),  d dx [x  p J  p (x)] = x  p J  p+1 (x)  d dx [x  p Y  p (x)] = x  p Y  p1 (x),  d dx [x  p Y  p (x)] = x  p Y  p+1 (x) Orthogonality    o xJ  p (σ  pm x/)J  p (σ  pn x/) dx = 0  n = m 2 2  J 2  p+1 (σ  pm ) n = m Idea:  Besse l functio ns are like sine and cos ine. Modied Bessel’s equation of order  p x 2 y + xy (x 2 + p 2 )y  = 0 Solution:  y(x) =  aI  p (x) + bK  p (x) If  p  is not an integer,  K  p (x) =  I  p (x). 0 2 4 x 0 1 2        I     n               (      x I 0 (x) I 1 (x) I 2 (x) 0 2 4 x 0 1 2     K     n               (    x K 0 (x) K 1 (x) K 2 (x) Beha vior at zero :  I 0 (0) = 1,  I  p (0) = 0, p  = 1, 2, 3,... K   p (0) =  for all  p Behavio r at innity:  I  p (x)  → ,  K  p (x)  → 0 as x →∞

description

Document summarizing Bessel Functions

Transcript of Bessel Functions Summary

  • Bessel functions and Legendre polynomials

    Bessels equation of order p

    x2y + xy + (x2 p2)y = 0

    Solution: y(x) = aJp(x) + bYp(x)If p is not an integer, Yp(x) = Jp(x).

    0 10 20

    x

    0.5

    0

    0.5

    1

    Jn(x

    )

    J0(x)

    J1(x)

    J2(x)

    0 10 20

    x

    1

    0.5

    0

    0.5

    Yn(x

    )

    Y0(x)

    Y1(x)

    Y2(x)

    Behavior at zero: J0(0) = 1, Jp(0) = 0 forp = 1, 2, 3, . . ., Yp(0) = for all p

    Behavior at infinity: Jp(x) 0 and Yp(x) 0as x

    Zeros Jp(pm) = 0 for all p and m = 1, 2, 3, . . ..(Each Jp, Yp has infinite number of zeros labeledpm.)

    Derivatives

    ddx [xpJp(x)] = xpJp1(x),

    ddx [xpJp(x)] = xpJp+1(x)

    ddx [xpYp(x)] = xpYp1(x),

    ddx [xpYp(x)] = xpYp+1(x)

    Orthogonality

    `o

    xJp(pmx/`)Jp(pnx/`) dx

    =

    {0 n 6= m`2

    2 J2p+1(pm) n = m

    Idea: Bessel functions are like sine and cosine.

    Modified Bessels equation of order p

    x2y + xy (x2 + p2)y = 0

    Solution: y(x) = aIp(x) + bKp(x)If p is not an integer, Kp(x) = Ip(x).

    0 2 4

    x

    0

    1

    2

    3I n

    (x)

    I0(x)

    I1(x)

    I2(x)

    0 2 4

    x

    0

    1

    2

    3

    Kn(x

    )

    K0(x)

    K1(x)

    K2(x)

    Behavior at zero: I0(0) = 1, Ip(0) = 0, p =1, 2, 3, . . . Kp(0) = for all p

    Behavior at infinity: Ip(x) , Kp(x) 0 asx

  • Derivatives

    ddx [xpIp(x)] = xpIp1(x), ddx [xpIp(x)] = xpIp+1(x) ddx [xpKp(x)] = xpKp1(x), ddx [xpKp(x)] = xpKp+1(x)

    Idea: Modified Bessel functions are like epx andepx.

    Legendres equation:

    (1 x2)y 2xy + n(n+ 1)y = 0,where n is an integer.Solution: y(x) = aPn(x) + bQn(x)

    1 0 1x

    1

    0

    1

    Pn(x

    )

    1 0 1x

    2.5

    0

    2.5

    Qn(x

    ) Pn(x) = 12nn! d

    n

    dxn (x2 1)n

    P0 = 1, P1 = x, P2 = 12 (3x2 1), . . .

    Qn(x) = 12Pn(x) ln(1+x1x

    )nm=1 1nPm1Pnm

    for n = 1, 2, 3, . . .

    Q0(x) = 12 ln(1+x1x

    )Note: Qn(x) only finite on 1 < x < 1

    Properties on 1 < x < 1 n even: Pn(1) = 1, Pn(1) = 1 n odd: Pn(1) = 1, Pn(1) = 1 Qn(1) = , Qn(1) =

    Zeros:

    Pn(x) has n zeros. Pn(0) = 0 if n odd. Qn(x) has n+ 1 zeros.

    Orthogonality: 11Pn(x)Pm(x) dx =

    {0 n 6= m

    22n+1 n = m

    pi0

    Pn(cos)Pm(cos) sind

    =

    {0 n 6= m

    22n+1 n = m

    Idea: Pn(x) is a specific polynomial in x of ordern. Qn(x) is a polynomial times a log.