Bern, MHD, and shear Axel Brandenburg (Nordita, Copenhagen) Collaborators: Nils Erland Haugen (Univ....

32
Bern, MHD, and Bern, MHD, and shear shear Axel Brandenburg Axel Brandenburg (Nordita, (Nordita, Copenhagen) Copenhagen) Collaborators: Collaborators: Nils Erland Haugen Nils Erland Haugen (Univ. Trondheim) (Univ. Trondheim) Wolfgang Dobler Wolfgang Dobler (Freiburg (Freiburg Calgary) Calgary) Tarek Yousef Tarek Yousef (Univ. Trondheim) (Univ. Trondheim) Antony Mee Antony Mee (Univ. Newcastle) (Univ. Newcastle) Ideal vs non-ideal simulations Pencil code Application to the sun Near-surface shear layer

Transcript of Bern, MHD, and shear Axel Brandenburg (Nordita, Copenhagen) Collaborators: Nils Erland Haugen (Univ....

Bern, MHD, and shearBern, MHD, and shear

Axel BrandenburgAxel Brandenburg (Nordita, Copenhagen) (Nordita, Copenhagen)Collaborators:Collaborators:

Nils Erland HaugenNils Erland Haugen (Univ. Trondheim) (Univ. Trondheim)

Wolfgang DoblerWolfgang Dobler (Freiburg (Freiburg Calgary) Calgary)

Tarek YousefTarek Yousef (Univ. Trondheim) (Univ. Trondheim)

Antony MeeAntony Mee (Univ. Newcastle) (Univ. Newcastle)

• Ideal vs non-ideal simulations• Pencil code• Application to the sun• Near-surface shear layer

2

(i) Can we trust (i) Can we trust idealideal hydro? hydro?

Porter, Pouquet, Woodward(1998, Phys. Fluids, 10, 237)

Majority of public astrophysics codes are “inviscid”

3

Direct vs hyperDirect vs hyper at 512 at 51233

Withhyperdiffusivity

Normaldiffusivity

Biskamp & Müller (2000, Phys Fluids 7, 4889)

u2u4

4

4

Ideal hydroIdeal hydro: should we be worried?: should we be worried?

• Why this k-1 tail in the power spectrum?– Compressibility?– PPM method– Or is real??

• Hyperviscosity destroys entire inertial range?– Can we trust any ideal method?

• Needed to wait for 40963 direct simulations

5

Hyperviscous, Smagorinsky, normalHyperviscous, Smagorinsky, normal

Inertial range unaffected by artificial diffusion

Hau

gen

& B

rand

enbu

rg (

PR

E 7

0, 0

2640

5, a

stro

-ph/

0412

66)

height of bottleneck increased

onset of bottleneck at same position

6

Relation to ‘laboratory’ 1D spectraRelation to ‘laboratory’ 1D spectra2222

3 )(4)( kuku kdkE kD yxkyxkE zzD d d ),,(2)(

2

1 u

kkkkkkkzk

z d )(4d ),(42

0

2

uu

kk

E

zk

D d 3

0zk

222zkkk

Dobler, et al(2003, PRE 68, 026304)

7

256 processor run at 1024256 processor run at 102433

Haugen et al. (2003, ApJ 597, L131)

8

(ii) Helical dynamo saturation (ii) Helical dynamo saturation with hyperdiffusivitywith hyperdiffusivity

23231 f

bB kk

for ordinaryhyperdiffusion

42k

221 f

bB kk ratio 53=125 instead of 5

BJBA 2d

d

t

PRL 88, 055003

9

(iii) Small scale dynamo: Pm dependence??(iii) Small scale dynamo: Pm dependence??

Small Pm=: stars and discs around NSs and YSOs

Here: non-helicallyforced turbulence

SchekochihinHaugenBrandenburget al (2005)

k

Cattaneo,Boldyrev

10

(iv) Does compressibility affect the dynamo?(iv) Does compressibility affect the dynamo?

Direct simulation, =5 Direct and shock-capturing simulations, =1

Shocks sweep up all the field: dynamo harder?-- or artifact of shock diffusion?

Bimodal behavior!ψ u

Supersonic shock turblenceSupersonic shock turblence

Gustafsson et al. (2006, A&A, in press)

12

LES conclusionsLES conclusions• Hydro: LES does a good job, but hi-res important

– the bottleneck is physical

– hyperviscosity does not affect inertial range

• Helical MHD: hyperresistivity exaggerates B-field• Prandtl number does matter!

– LES for B-field difficult or impossible!

Fundamental questions idealized simulations important at this stage!

13

Pencil CodePencil Code

• Started in Sept. 2001 with Wolfgang Dobler

• High order (6th order in space, 3rd order in time)

• Cache & memory efficient

• MPI, can run PacxMPI (across countries!)

• Maintained/developed by ~20 people (CVS!)

• Automatic validation (over night or any time)

• Max resolution so far 10243 , 256 procs

• Isotropic turbulence– MHD, passive scl, CR

• Stratified layers– Convection, radiation

• Shearing box– MRI, dust, interstellar

• Sphere embedded in box– Fully convective stars– geodynamo

• Other applications– Homochirality– Spherical coordinates

14

(i) Higher order – less viscosity(i) Higher order – less viscosity

15

(ii) High-order temporal schemes(ii) High-order temporal schemes

),( 111 iiiii utFtww

Main advantage: low amplitude errors

iiii wuu 1

3)1()(

0 , uuuu nn

2/1 ,1 ,3/1

1 ,3/2 ,0

321

321

1 ,2/1

2/1 ,0

21

21

1

0

1

1

3rd order

2nd order

1st order

2N-RK3 scheme (Williamson 1980)

16

Cartesian box MHD equationsCartesian box MHD equations

JBuA

t

visc2 ln

D

DFf

BJu

sc

t

utD

lnD

AB

BJ

Induction

Equation:

Magn.Vectorpotential

Momentum andContinuity eqns

ln2312

visc SuuF

Viscous force

forcing function kk hf 0f (eigenfunction of curl)

17

Vector potentialVector potential

• B=curlA, advantage: divB=0• J=curlB=curl(curlA) =curl2A• Not a disadvantage: consider Alfven waves

z

uB

t

b

z

bB

t

u

00 and ,

uBt

a

z

aB

t

u02

2

0 and ,

B-formulation

A-formulation 2nd der onceis better than1st der twice!

18

Comparison of Comparison of AA and and BB methods methods

2

2

02

2

2

2

0 and ,z

auB

t

a

z

u

z

aB

t

u

2

2

02

2

0 and ,z

b

z

uB

t

b

z

u

z

bB

t

u

19

Wallclock time versus processor #

nearly linearScaling

100 Mb/s showslimitations

1 - 10 Gb/sno limitation

20

Forced LS dynamo with Forced LS dynamo with nono stratification stratification

•Open bc critical•Helicity losses•Shear relevant to the sun

azimuthallyaveraged

Actual field:(i) kinematicphase

(ii) late phase

21

Current helicity and Current helicity and magn. hel. fluxmagn. hel. flux

Bao & Zhang (1998),neg. in north, plus in south

(also Seehafer 1990)

Berger & Ruzmaikin (2000)

cycle/Mx104 246S

NDeVore (2000)

cycle/Mx10 246

(for BR & CME)

22

Helicity fluxes at large and small scalesHelicity fluxes at large and small scales

Negative current helicity:net production in northern hemisphere

SJE d2 Sje d21046 Mx2/cycle

Brandenburg & Sandin (2004, A&A 427, 13)

Helicity fluxes from shear: Vishniac & Cho (2001, ApJ 550, 752)Subramanian & Brandenburg (2004, PRL 93, 20500)

23

Application to the sun: spots rooted at Application to the sun: spots rooted at r/Rr/R=0.95=0.95

Benevolenskaya, Hoeksema, Kosovichev, Scherrer (1999) Pulkkinen & Tuominen (1998)

nHz 473/360024360

/7.14

ds

do

o

=AZ=(180/) (1.5x107) (210-8)

=360 x 0.15 = 54 degrees!

24

Simulations of near-surface shearSimulations of near-surface shear

• Unstable layer in 0<z<1• 0o latitude• 4x4x1 aspect ratio• 512x512x256

Prograde pattern speed, but rather slow(Green & Kosovichev 2006)

25

Simulations of near-surface shearSimulations of near-surface shear

4x4x1 aspect ratio512x512x256

0o lat

15o latnegative uyuz stress negative shear

Convection with rotationConvection with rotation

Inv. Rossby Nr. 2d/urms=4

Horizontal flow patternHorizontal flow pattern

Stongly retrograde motionsPlunge into prograde shock

yx

28

Arguments against and in favor?Arguments against and in favor?

• Flux storage• Distortions weak• Problems solved with

meridional circulation• Size of active regions

• Neg surface shear: equatorward migr.• Max radial shear in low latitudes• Youngest sunspots: 473 nHz• Correct phase relation• Strong pumping (Thomas et al.)

• 100 kG hard to explain

• Tube integrity

• Single circulation cell

• Too many flux belts*

• Max shear at poles*

• Phase relation*

• 1.3 yr instead of 11 yr at bot

• Rapid buoyant loss*

• Strong distortions* (Hale’s polarity)

• Long term stability of active regions*

• No anisotropy of supergranulation

in favor

against

Tachocline dynamos Distributed/near-surface dynamo

Brandenburg (2005, ApJ 625, 539)

Is magnetic buoyancy a problem?Is magnetic buoyancy a problem?

Stratified dynamo simulation in 1990Expected strong buoyancy losses,but no: downward pumping Tobias et al. (2001)

Is magnetic buoyancy a problem?Is magnetic buoyancy a problem?

Stratified dynamo simulation in 1990Expected strong buoyancy losses,but no: downward pumping Brandenburg et al. (1996)

Is magnetic buoyancy a problem?Is magnetic buoyancy a problem?

Stratified dynamo simulation in 1990Expected strong buoyancy losses,but no: downward pumping Tobias et al. (2001)

32

ConclusionsConclusions• Shearflow turbulence: likely to produce LS field

– even w/o stratification (WxJ effect, similar to Rädler’s xJ effect)

• Stratification: can lead to effect– modify WxJ effect– but also instability of its own

• SS dynamo not obvious at small Pm• Application to the sun?

– distributed dynamo can produce bipolar regions– perhaps not so important?– solution to quenching problem? No: M even from WxJ effect

1046 Mx2/cycle