Bcn 5905 report yash kapadia

25
Fall 2015. BCN 5905 – Building Energy Modelling Rinker Hall Energy Model Report 12.13.2015 Prepared by Yash N. Kapadia M.E. Rinker, Sr. School of Building Construction University of Florida, Gainesville FL

Transcript of Bcn 5905 report yash kapadia

Page 1: Bcn 5905 report yash kapadia

Fall 2015. BCN 5905 – Building Energy Modelling

Rinker Hall Energy Model Report

12.13.2015

PreparedbyYashN.KapadiaM.E.Rinker,Sr.SchoolofBuildingConstructionUniversityofFlorida,GainesvilleFL

Page 2: Bcn 5905 report yash kapadia

2

Contents1 ExecutiveSummary 32 ModelingMethodology 63 BenchmarkModel 74 EnergyEfficiencyMeasures

4.1.1 BuildingEnvelope-Glazing 94.1.2 BuildingEnvelope-Walls 104.1.3 BuildingEnvelope-Roof 104.1.4 BuildingEnvelope–Daylighting 114.2.1 HVAC–Fanspeed,controlandperformance 114.2.2 Waterside 124.2.3 HVAC–DemandControlVentilation124.3SolarPanels13

5 ParametricModels 5.1ParametricModel#1 145.2ParametricModel#2166 Results&Conclusions 18Appendices A.1 OperatingSchedules19A.2 LightingPowerDensityandEquipmentPowerDensity20A.3 PVcellsgenerationanalysisfromPVWATTS.COM25

Page 3: Bcn 5905 report yash kapadia

3

1. Executive Summary 1.1 RINKER HALL Thisreportdetails theresultsofanenergyanalysiscompletedforRinkerHall,Gainesville,FL.Rinker Hall is one of the facilities within University of Florida’s College of Design andConstruction. Named afterMarshall E. Rinker, the building serves the students of School ofBuilding construction. The building includes amix of classrooms, teaching labs, constructionlabsandadministrativeofficesandcanaccommodateupto450students.RinkerHallisthefirstbuilding in the state university system designed using the LEED (Leadership in Energy andEnvironmentalDesign)GreenBuildingRating System.RinkerHall is known forbeing the firstbuilding inFlorida to receivea LEEDGoldcertification fromtheUnitedStatesGreenBuildingCouncil,theUSGBC.TheLEEDcertificationisbasedonthesustainabilityandgreenabilitiesofthe buildings certified. It has been designed and built with a lot of intricate measuresconsidering the climate, orientation and the material for low energy consumption of thebuilding.

InordertoimproveenergyefficiencyofRinkerHall,severalEnergyEfficiencyMeasures(EEMs)andparametric models were developed and analysed. The proposed building scenario exceeds thebenchmarkmodelby117.37%.SavingsmaybeattributedtoimprovedLightandequipmentpowerdensities, Glazing, Wall and roof insulations and Fan speed and control in HVAC. The end usebreakdownofenergyandcostsavingsisrepresentedinfigures1.1below.

Figure1.1End-useenergy(MBtu)savings(in%)ascomparedtobenchmarkbuilding.

Page 4: Bcn 5905 report yash kapadia

4

Sectiontwoof thereportdiscussesthemodellingmethodologyandmodelling inputs/assumptionsasapplicabletothebaselineandproposedbuilding.SectionthreeofthereportdiscussesaboutthedifferencesinthebenchmarkandproposedmodelsandtheircalibrationswiththeUtilitydataofRinkerHall,givenbytheuser.Italsohelpsininferenceof the areas where EEMs can be introduced, which will reduce the energy consumption of thebuilding.Section four of the report discusses the performance of individual EEMs as compared with thebaselinemodel,andtheresultsoftheenergysavingsoffollowingcomponentsaredocumented.

• BuildingEnvelope–GlazingThisEEMwasperformedtopreventheatandenergylossbychangingtheu-factor,typeofglass, SHGC, Visible transmittance, Shading co-efficient and the number of panes of thewindowsandcurtainwallsbychangingitsmaterials.Therewasasignificantsavingof20.89%from changing the Equipment and Lighting power densities to its optimum usage. Asexpected,thesavingsfromthisEEMwere31.43%ofthebenchmarkmodel.Thepercentageis significantasa largeportionof theexternal façade is coveredbyglass in formofeitherwindowsorcurtainwalls.

• BuildingEnvelope–WallThis EEM was performed to prevent heat and energy loss by changing the u-value andabsorptance of the external walls by changing its construction materials. There was asignificantsavingof20.89%fromchangingtheEquipmentandLightingpowerdensitiestoitsoptimum usage. As expected, the savings from this EEM were 21.34% of the benchmarkmodel. The percentage is small but itwas run to understand the energy loss through theexternalwalls.

• BuildingEnvelope–RoofThis EEM was performed to prevent heat and energy loss by changing the u-value andabsorptanceoftheroofbychangingitsconstructionmaterials.Therewasasignificantsavingof20.89%fromchangingtheEquipmentandLightingpowerdensitiestoitsoptimumusage.As expected, the savings from this EEM were 21.15% of the benchmark model. Thepercentageissmallbutitwasruntounderstandtheenergylossthroughtheroof.• DaylightingThisEEMwasperformedtospecifyLightwelltubevisiblereflectance.Therewasasignificantsavingof20.89%fromchangingtheEquipmentandLightingpowerdensitiestoitsoptimumusage.Asexpected, thesavings fromthisEEMwere20.89%of thebenchmarkmodel.Thepercentageissmallbutitwasruntounderstandtheenergysavingsduetogooddaylighting,whichwoulduselessenergy.

Page 5: Bcn 5905 report yash kapadia

5

• HVAC–Fanspeed,controlandperformance

This EEMwas performed to prevent energy loss by changing the outside air controls,nightventcontrolsandschedulesandbasicfancontrolsofthefansintheHVACsystem.There was a significant saving of 20.89% from changing the Equipment and Lightingpower densities to its optimum usage. As expected, the savings from this EEM were49.01%ofthebenchmarkmodel.Thepercentageissignificantasfansusealargeamountofelectricalenergyandimprovingitsperformancewillresultinbettersavings.

• Waterside–ChillersystemandChilledWaterLoops

Theminimumandmaximumreset temperatureswereput tooptimumto increase theperformanceof theChillerand theChilledwater loops in theHVACsystem.Thiscouldresultinthesystemperformingbetterandinturnreducetheenergyusage.Therewasasignificantsavingof20.89%fromchangingtheEquipmentandLightingpowerdensitiestoitsoptimumusage.ThisEEMresultedin20.89%savingsfromthebenchmarkmodel.

• DemandControlVentilationDemandcontrolventilationsensor is input in the returnduct todetect thedifferentialCO2levelsinthezones.Thisletsthefansoperateaccordingtotheoccupancygivinguslowerfanusageaccordingtotheinletzoneconditions.Therewasasignificantsavingof20.89%fromchangingtheEquipmentandLightingpowerdensitiestoitsoptimumusage.Theoverallsavingsare45.26%forthisEEMwhencomparedtoproposedbaselinemodel.

• PhotovoltaicPanels Thephotovoltaiccellsifinstalledontheroofofthebuilding,wouldgenerate72.11%ofenergyontheBenchmarkmodeldata.ThisdatahasbeenreceivedfromthewebsitePVwatts.Thesepanelswouldgenerateenergyandhenceisalsocountedassavingsontheactual usage of the building as it consumes that amount of energy, which is self-generatedandnotfromanexternalsource.

SectionfiveofthereportdiscussestheparametricmodelsderivedbasedonEEMs. Itshowswhichparametricmodelswhenruntogethergiveanoptimumsimulationandthemostenergysavings.Theoptimum simulation of combined parametricmodels is given as the proposedmodel, having themaximumsavings.Appendicesareprovidedthatshowdetailedmodelinginputsandsoftwareresults.

Page 6: Bcn 5905 report yash kapadia

6

2. Modeling Methodology 2.1SIMULATIONPROGRAM&ANALYSISMETHODOLOGYAnnualenergysavingspresentedinthisreportwereanalyzedbygeneratinganhourlysimulationofbuilding energy consumptionusing the eQuest software (v.3.64). eQuest uses the latestDOE2.2buildingenergyanalysissoftwareasitscalculationengine.TheprogramreliesonthewelltestedandvalidatedDOE2.2simulationengineandincorporatesastate-of-the-artGraphicUserInterfaceandfeatures.2.2MODELINGLIMITATIONS

• TheschedulesforprocessesarebasedonIRSTaxdeductionguidelinesforCaliforniabyNREL.

• TheElectricpowerdensityandlightpowerdensitiesforproposedmodelsaregivenbytheuserandarementionedintheappendix.

• Schedulingforvariousprocessescanbecreatedonlyforweekendandweekdaybasisi.e.individuallywecannotdefinethescheduleforspecificdaysoftheweek.ThusallschedulesforweekendisbasedonSundayschedule.

• AllindirectlyconditionedzonesaresetasconditionedaseQuestonlyhasthesetwooptions.

• Thesteamgenerationinthewatersidesystemhasnoefficiencyinput,soitisnotdefined.

2.3ClimateZone&WEATHERFILETheprojectislocatedinGainesville,FL.TheASHRAE90.1-2004climatezoneforGainesville,FLis2A.Thisclimatezoneischaracterizedas‘Hot-Humid’withIPUnits6300<CDD50°F≤9000.

Theweather file used for the project energy analysis is “Fl_Gainesville_Regional_A.bin” in TypicalMeteorologicalYear(TMY)format.2.4SUMMARYOFINPUTS&ASSUMPTIONSAppendixA.2ofthisreportincludesatablethatsummarizesthecomparisonbetweenthebaselinecase and the design buildingmodels. It lists the input parameters used in the eQuest simulation,including, but not limited to, building envelope, HVAC, lighting, domestic hot water and processenergy.Informationregardingtheproposedbuildingwasobtainedfromtheconstructiondocumentsanddesignteam.Energyefficiencymeasuresincludeanimprovedthermalenvelope,highefficiencyglazing, reduced interiorandexterior lightingpowerdensity,andvariablespeeddrivepumps,anddiscussedinSection4ofthisreport.

Page 7: Bcn 5905 report yash kapadia

7

3. Benchmark Model The building energymodel was calibrated using actual energy use data to develop a benchmarkmodel.Theperformanceofthebenchmarkmodelwasstudied.Theresultsaredocumentedinthissectionofthereport.3.1MODELCALIBRATIONTheerrorinmonthlyenergyuseiscalculatedasthepercentagedifferenceofmeasuredkWhdataandsimulatedkWhoverthemeasureddataforthemonth.TheacceptabletolerancerangeformonthlydatacalibrationperAmericanSocietyofHeating,RefrigerationandAir-ConditioningEngineers,Inc.(ASHREA)is +/-15%. The monthly energy use model error percentage and the acceptable tolerance for datacalibrationareshowninfigure3.1.TheBenchmarkmodelhasanerrorof-12.2%withthemetereddata.Itmeansthatthesimulateddatashowsmoreenergyconsumptionthanactualconsumption.

Reasonsfornon-calibration:1. FebruaryandDecembermonthsenergyconsumptionfromtheactualUtilitydataareoffthenormal

simulationbecauseoftheincreaseinenergyusageduetotheonsetofsummerandfall.2. The Equipment power densities specified in the ASHREA standards arewell away from the actual

data,whichresultsinerrorsduringthecomparisonofbothsetsofdata.3. Thenon-calibration isalsodue to limitations in thesoftware,which resulted inmanyassumptions,

andactualdatacouldnotbeused.4. Thecalibrationisoffasthemetereddataisof2011.

Figure3.1AnnualEndEnergyuseofUtilityDatavs.BenchmarkSimulation

Page 8: Bcn 5905 report yash kapadia

8

While the utility data provides Utility energy use; the simulated energy use per the energymodel isbased on the data parsed from as-built drawings, retrofit specifications, event logs and sequence ofoperationdocuments.Figure3.2showsthemeasuredenergyuseofElectricity,SteamandNaturalGasfromtheutilitydata.

Electricity(KWh)

NaturalGas(Btu)

Steam(Btu)

ChilledWater(MBtu)

Lights 433.3 0 0 0TaskLights 0 0 0 0Equipment 304.1 0 0 0SpaceHeating 0 0 8.1 0SpaceCooling 0 0 0 3427.8Pumps&Aux 324.2 0 0 0Fans 558.4 0 0 0Referigeration 0 0 0 0HTSupp 0 0 0 0DomesticHW 15.2 28 0 0Externalusgae 0 0 0 0

HeatRejection 0 0 0 0

1635.2 28 8.1 3427.8

Figure3.2AnnualBuildingEnergyUsefromUtilityData

3.2 PROPOSEDBASELINETheproposedmodelusestheactualEPDandLPDvalues,thustounderstandtheeffectofEEMonthebuildingperformancethebenchmarksimulationisperformedonlywiththenewEPDandLPDvalues.TheEPDvaluesusedaremeasuredvaluesandtheLPDvaluesarefortheproposedlighting,boththesevaluesareincludedintheappendixA.TheelectricityrecordedintheelectricmeterisinKWh,theseparameterswillbecomparedtotheEEMtounderstandtheeffectofindividualchangeonvariousparameters.

Page 9: Bcn 5905 report yash kapadia

9

4.EnergyEfficiencyMeasuresTheperformanceofthefollowingindividualEEMswereanalysedandcomparedwiththebenchmarkmodel,andtheresultsweredocumentedinthissectionofthereport.

• BuildingEnvelope–Glazing• BuildingEnvelope–Wall• BuildingEnvelope–Roof• Daylighting• HVAC–Fanspeed,controlandperformance• Waterside–ChillersystemandChilledWaterLoops• DemandControlVentilation• PhotovoltaicPanel

4.1BUILDINGENVELOPE–CONSTRUCTIONASSEMBLIES

4.1.1Glazing

Theeffectofproposedglazingresponseto loadandenergyusewasanalysed. Theoverallenergysavings is31.43%for improvedglazingperformance.TheU-factorof thewindowswaschangedto0.24,whichistheoptimumforGainesville.Also,theSolarHeatGainCoefficient(SHGC)waschangedto0.27toreduceheatgainfromwindows.Thevisibletransmittancewasalsochangedto64%,whichissufficientfordaylightinginGainesville,andashadingcoefficientof0.24wasalsoinputted.Thesespecificationswereusedfromlow-eglasses,whichareavailableinthemarketandbeingusedintheindustry.

Table4.1.1ImpactofproposedGlazingontheoverallbuildingenergyusage

TypeBenchmark EEM4.1.1 Savings

(inKWHx000) (inKWHx000)

(in%)

LightingEnergy 126.95 112.53 11.36%

Equipment 89.12 32.22 63.85%

SpaceHeating 0.00 0.00 0.00%

SpaceCooling 0.00 0.00 0.00%

Pump 95.00 94.98 0.02%

Fan 163.62 84.38 48.43%

DomesticHotWater 4.46 4.46 0.00%

Total 479.15 328.57 31.43%Table4.1.1-Showsimulatedresultsofoverallenergysavingsforproposedglazing

Page 10: Bcn 5905 report yash kapadia

10

4.1.2WallsThe effect of proposedWall response to load and energy usewas analysed. The overall energysavingsis21.34%forimprovedWallperformance.AU-valueof0.052andanabsorptionof0.30wasused to reduce heat transfer through the walls, insulating the building more efficiently, henceincreasingtheperformanceofthebuilding.

Table4.1.2

ImpactofproposedWallontheoverallbuildingenergyusage

TypeBenchmark EEM4.1.1 Savings

(inKWHx000)(inKWHx000) (in%)

LightingEnergy 126.95 108.33 14.67%

Equipment 89.12 32.22 63.85%

SpaceHeating 0.00 0.00 0.00%

SpaceCooling 0.00 0.00 0.00%

Pump 95.00 94.98 0.02%

Fan 163.62 136.93 16.31%

DomesticHotWater 4.46 4.46 0.00%

Total 479.15 376.92 21.34%Table4.1.2-ShowsimulatedresultsofoverallenergysavingsforproposedWalls

4.1.3RoofThe effect of proposedRoof response to load and energy use was analysed. The overall energysavingsis21.15%forimprovedRoofperformance.AU-valueof0.027andanabsorptionof0.30wasused to reduce heat transfer through the roof, insulating the building more efficiently, henceincreasingtheperformanceofthebuilding.

Table4.1.3ImpactofproposedRoofontheoverallbuildingenergyusage

TypeBenchmark EEM4.1.1 Savings

(inKWHx000) (inKWHx000)

(in%)

LightingEnergy 126.95 108.34 14.66%

Equipment 89.12 32.22 63.85%

SpaceHeating 0.00 0.00 0.00%

SpaceCooling 0.00 0.00 0.00%

Pump 95.00 94.98 0.02%

Fan 163.62 137.81 15.77%

DomesticHotWater 4.46 4.46 0.00%

Total 479.15 377.81 21.15%Table4.1.3-ShowsimulatedresultsofoverallenergysavingsforproposedRoof

Page 11: Bcn 5905 report yash kapadia

11

4.1.4DaylightingThe effect of proposed Day lighting response to load and energy use was analysed. The overallenergysavingsis20.89%forimprovedDaylightingperformance.Thetubevisiblereflectanceofthewellwaschangedto0.025butthatdidnotresultinanychangeintheenergyconsumption.

Table4.1.4

ImpactofproposedDaylightingontheoverallbuildingenergyusage

TypeBenchmark EEM4.1.1 Savings

(inKWHx000) (inKWHx000) (in%)

LightingEnergy 126.95 108.34 14.66%

Equipment 89.12 32.22 63.85%

SpaceHeating 0.00 0.00 0.00%

SpaceCooling 0.00 0.00 0.00%

Pump 95.00 94.98 0.02%

Fan 163.62 139.06 15.01%

DomesticHotWater 4.46 4.46 0.00%

Total 479.15 379.06 20.89%Table4.1.4-ShowsimulatedresultsofoverallenergysavingsforproposedDaylighting

4.2HVAC

4.2.1HVAC–Fanspeed,controlandperformanceTheeffectofproposedfanperformanceresponsetoloadandenergyusewasanalysed.Theoverallenergysavingsis49.88%forimprovedfanperformance.Thefancontrolsweresettovariablespeed.Theminimumoutsideairwasalsosettoaratioof0.31,whichwouldincreaseitsperformance.Thesupplycfmwasalso set to10cfm,which isoptimumfor the systemtoperformefficiently.Thesechangeshadahugeimpactontheenergyconsumptionofthebuilding.

Table4.2.1ImpactofproposedFanperformanceontheoverallbuildingenergyusage

TypeBenchmark EEM4.1.1 Savings

(inKWHx000) (inKWHx000)

(in%)

LightingEnergy 126.95 108.34 14.66%

Equipments 89.12 32.22 63.85%

SpaceHeating 0.00 0.00 0.00%

SpaceCooling 0.00 0.00 0.00%

Pump 95.00 94.99 0.01%

Page 12: Bcn 5905 report yash kapadia

12

Fan 163.62 0.14 99.91%

DomesticHotWater 4.46 4.46 0.00%

Total 479.15 240.15 49.88%Table4.2.1-Showsimulatedresultsofoverallenergysavingsforproposedfanperformance

4.2.2WatersideTheeffectofproposedWatersideresponsetoloadandenergyusewasanalysed.Theoverallenergysavingsis20.89%forimprovedWatersideperformance.Inthewaterside,theHotwaterLoopresettemperatureswereadjustedtoreceiveabetterperformance.Theminimumresettemperaturewassetto35degreesFahrenheitandthemaximumresettemperaturewassetto60degreesFahrenheit.Similarly, the reset temperatures for the Chilled water loop were changed to 55 and 75 degreeFahrenheitrespectively.Thesechangesdidnotmakeanyimpactontheenergyconsumptionofthebuildingbutweredonetounderstandtheimpacttheyhaveontheenergyusage.

Table4.2.2ImpactofproposedWatersideontheoverallbuildingenergyusage

TypeBenchmark EEM4.1.1 Savings

(inKWHx000) (inKWHx000)

(in%)

LightingEnergy 126.95 108.34 14.66%

Equipment 89.12 32.22 63.85%

SpaceHeating 0.00 0.00 0.00%

SpaceCooling 0.00 0.00 0.00%

Pump 95.00 94.98 0.02%

Fan 163.62 139.06 15.01%

DomesticHotWater 4.46 4.46 0.00%

Total 479.15 379.06 20.89%Table4.2.2-ShowsimulatedresultsofoverallenergysavingsforproposedWatersideperformance

4.2.3DemandControlVentilationThe effect of proposed DCV response to load and energy use was analysed. The overall energysavings is 36.51% for improved DCV performance. The DCV sensors was changed to DCV returnsensors and theminimumoutsideair ratiowasalso changed to0.03,whichmakes the system toperformoptimallysavingasignificantamountofenergyconsumption.Theairflowvalueswerealsochangedto10cfmperpersonand0.12cfm/ft2,whichimprovetheperformanceofthesystemevenfurther.

Page 13: Bcn 5905 report yash kapadia

13

Table4.2.3-ShowsimulatedresultsofoverallenergysavingsforproposedDCV

4.3SolarPanelsThephotovoltaiccells if installedontheroofofthebuilding,wouldgenerate72.11%ofenergyontheBenchmarkmodeldata.ThisdatahasbeenreceivedfromthewebsitePVwatts. Thesepanelswouldgenerateenergyandhenceisalsocountedassavingsontheactualusageofthebuildingasitconsumesthatamountofenergy,whichisself-generatedandnotfromanexternalsource.345,536KWhisgeneratedannuallybythesolarpanels.TheD.C.systemsizeofthepanelsisshowsas204.9,which covers the Rinker Hall Roof with a tilt angle of 22 degrees with the array type of 1-AxisTracking. The PV cells usedwereHIT panelsmanufactured by Sanyo and are used in themarket.Thesecellsarepremiumcellswithanactualefficiencyof19.6%.

Table4.2.3

ImpactofproposedDCVontheoverallbuildingenergyusage

TypeBenchmark EEM4.1.1 Savings

(inKWHx000)(inKWHx000) (in%)

LightingEnergy 126.95 108.34 14.66%

Equipment 89.12 32.22 63.85%

SpaceHeating 0.00 0.00 0.00%

SpaceCooling 0.00 0.00 0.00%

Pump 95.00 93.78 1.28%

Fan 163.62 65.39 60.04%

DomesticHotWater 4.46 4.46 0.00%

Total 479.15 304.19 36.51%

Page 14: Bcn 5905 report yash kapadia

14

5.1ParametricModelsThe performance of the following parametric models were analyzed and compared with thebenchmarkmodel,andtheresultsweredocumentedinthissectionofthereport.

• Parametricmodel#1includes,

o Windows–improvedUfactor,SHGC,Visibletransmittance&Shadingcoefficiento Wall–ImprovedwallAbsorptanceandUValueo Roof–ImprovedroofAbsorptanceandUValueo Fan performance – Improved fan Supply cfm, Heating/Cooling fan control,

Minimum Outdoor air, Night vent Schedule, Night vent Control, Air vent andeconomizer.

5.1PARAMETRICMODEL#1TheeffectofproposedEEMsresponsetoloadandenergyusewereanalysed.Theoverallenergysavingsis49.03%overbenchmarkmodel.

Table5.1

ImpactofproposedParametricmodel1ontheoverallbuildingenergyusage

TypeBenchmark EEM4.1.1 Savings

(inKWHx000)(inKWHx000) (in%)

LightingEnergy 126.95 112.53 11.36%

Equipments 89.12 32.22 63.85%

SpaceHeating 0.00 0.00 0.00%

SpaceCooling 0.00 0.00 0.00%

Pump 95.00 94.98 0.02%

Fan 163.62 0.01 99.99%

DomesticHotWater 4.46 4.46 0.00%

Total 479.15 244.20 49.03%Table5.1-Showsimulatedresultsofoverallenergysavingsforproposedparametricmodel1

Table5.1showstheend-useenergyconsumersintheproposedbuilding.LightingenergyandPumpsarethehighestenergyusers,followedbyfans,domestichotwater&Equipment.

Page 15: Bcn 5905 report yash kapadia

15

Figure5.2showsacomparisonoftotalbenchmarkandproposedbuildingenergyuse(inMBtu).

Figure5.2-End-useenergyconsumers(inMBtu)fortheproposedbuilding

Page 16: Bcn 5905 report yash kapadia

16

• Parametricmodel#2includes,

o Windows–improvedUfactor,SHGC,Visibletransmittance&Shadingcoefficiento Wall–ImprovedwallAbsorptanceandUValueo Roof–ImprovedroofAbsorptanceandUValueo Fan performance – Improved fan Supply cfm, Heating/Cooling fan control,

Minimum Outdoor air, Night vent Schedule, Night vent Control, Air vent andeconomizer.

o DCV-Minimum OA & Vent and economizer

5.2PARAMETRICMODEL#2TheeffectofproposedEEMsresponsetoloadandenergyusewereanalysed.Theoverallenergysavingsis49.03%overbenchmarkmodel.

Table5.4

ImpactofproposedModelontheoverallbuildingenergyusage

TypeBenchmark EEM4.1.1 Savings

(inKWHx000)(inKWHx000) (in%)

LightingEnergy 126.95 112.53 11.36%

Equipments 89.12 32.22 63.85%

SpaceHeating 0.00 0.00 0.00%

SpaceCooling 0.00 0.00 0.00%

Pump 95.00 94.98 0.02%

Fan 163.62 19.31 88.20%

DomesticHotWater 4.46 4.46 0.00%

Total 479.15 263.50 45.01%Table5.4-Showsimulatedresultsofoverallenergysavingsforproposedparametricmodel2

Table5.1showstheend-useenergyconsumersintheproposedbuilding.LightingenergyandPumpsarethehighestenergyusers,followedbyfans,domestichotwater&Equipment.

Page 17: Bcn 5905 report yash kapadia

17

Figure5.5&5.6showacomparisonoftotalbenchmarkandproposedbuildingenergyuse.

Figure5.5-End-useenergyconsumers(inMBtu)fortheproposedbuilding

Page 18: Bcn 5905 report yash kapadia

18

Results&ConclusionsIwouldproposetheparametricmodel#2asmyproposedmodelasthereisafansavingsofabout99%,whichisnotrealisticandthesystemmightnotperformsoefficientlyasthesimulateddata.Themodel#2stillgivesagoodamountofsavingsandwhenitiscombinedwiththePVcellsgenerationitmakesthebuildinganenergyplusbuilding,whichmeans itnotonlygeneratestheamount it isrequiredbutalsogeneratesexcessenergyofabout17.37%.RESULTSThe results show an overall energy savings of approximately 117.37%. Savings may be attributed toimprovedenvelope systems.However, additional timewouldbe required to analyze reasons forhighsavingsinfans,lighting,DCVandequipment.Thegenerationofabout72.11%fromtheexteriorand35%fortheinteriorlightingappearsreasonableaccordingtodetailedanalysis.Theenergysavingsofabout63%forequipmentand88%forfansisveryhigh.Thissavingsalsorelatestotheissuediscussedaboutheatingenergysavings.

Table6.1 ImpactofproposedModelontheoverallbuildingenergyusage Comments

TypeBenchmark EEM4.1.1 Savings

(inKWHx000) (inKWHx000) (in%) LightingEnergy 126.95 112.53 11.36% IntroductionofCFLs

Equipments 89.12 32.22 63.85% UsingactualEPDs

SpaceHeating 0.00 0.00 0.00% -

SpaceCooling 0.00 0.00 0.00% -

Pump 95.00 93.75 1.32% DCV

Fan 163.62 19.31 88.20% FancontrolandDCV

DomesticHotWater 4.46 4.46 0.00% -

PVCells _ _ 72.11%

Total 479.15 262.27 117.37%

Table6.1-Providesadetailedcomparisonofthebuildingenergyuseandtheirrespectivesavings(in%)

CONCLUSIONThe proposed building scenario exceeds the benchmark building by 117.37%.

Page 19: Bcn 5905 report yash kapadia

19

APPENDICESAPPENDIXANon-residentialschedulesfromTableN2-5,CaliforniaTitle24.

Page 20: Bcn 5905 report yash kapadia

20

AppendixBBaselineEPDandLPDvalues

Baseline Space ID Space Description EPD LPD Per Plans Per Plans W/SF W/SF

FIRSTFLOOR 30 MECHROOM 1.00 1.50106 MEDIUMCLASSROOM 1.00 1.40110 LARGECLASSROOM 1.00 1.40115 STUDENTORG/LOUNGE 1.00 1.20C199C ENTRYEXHIBIT 1.00 1.00125 MEPSTUDIO 1.00 1.40136 SHOP 1.00 1.10138 SOILS&CONCLAB 1.00 1.40140 STRUCTURESSTUDIO 1.00 1.40140A STORAGE 1.00 0.30141 INTERVIEWROOM 1.00 1.30143 INTERVIEWROOM 1.00 1.30145 MENRESTROOM 1.00 0.90146 WOMENRESTROOM 1.00 0.90 LOBBY(ENTRANCETORESTROOMS) 1.00 0.50C199A LOBBY 1.00 1.30110A ELEC 1.00 1.50146A MECHROOM 1.00 1.50C199B CORRIDOR 1.00 0.50C199D CORRIDOR 1.00 0.50134 SHOWER 1.00 0.90C199D CORRIDOR(ADJACENTTOS.ENTRANCE) 1.00 0.50E197 ELEVATOR 1.00 0.60S198A STAIRS 1.00 0.60SECONDFLOOR 201 TECHSERVICES 1.00 1.10202 D.E.S. 1.00 1.10203 C.F.A.H. 1.00 1.10203A SERVERROOM 50.00 1.10204 PLANROOM 1.00 1.10207A STORAGE 1.00 0.30206 COMPUTERLAB 1.00 1.40208 INFORMATIONTECHNOLOGY 1.00 1.10209 MCESWROOM 1.00 0.30210 MEDIUMCLASSROOM 1.00 1.40215 MEDIUMCLASSROOM 1.00 1.40220 MEDIUMCLASSROOM 1.00 1.40225 MEDIUMCLASSROOM 1.00 1.40230 MEDIUMCLASSROOM 1.00 1.40238 CONSTRUCTIONLAB 1.00 1.40235 STORAGE 1.00 0.30240 ESTIMATION/DWG/SCH 1.00 1.40240A STORAGE 1.00 0.30245 MENRESTROOM 1.00 0.90

Page 21: Bcn 5905 report yash kapadia

21

245A STORAGE 1.00 0.30246 WOMENRESTROOM 1.00 0.90246A STORAGE 1.00 0.30205 JANITORCLOSET 1.00 0.30C299A CORRIDOR 1.00 0.50C299A CORRIDOR(ADJACENTTOS.ENTRANCE) 1.00 0.50235A ELECTRICALCLOSET 1.00 0.30E297A ELEVATOR 1.00 0.60S298A STAIR 1.00 0.60THIRDFLOOR 301 ADMIN/REGISTRAR 1.00 1.10302 DIRECTORGRADE/D.E. 1.00 1.10301A CAREEROFFICE 1.00 1.10C399A (L-SHAPEDCORRIDORFRONTOFELEV) 1.00 0.50303 CONFERENCEROOM 1.00 1.30304 RECEPTION 1.00 1.10305 OPENOFFICE 1.00 1.10306 DIRECTOR 1.00 1.10307 ASSOCIATEDIRECTOR 1.00 1.10309 FACULTYOFFICE 1.00 1.10311 FACULTYOFFICE 1.00 1.10308 SUPPLYSTORAGE 1.00 0.80308A TELEPHONE 1.00 1.50C399C CORRIDOR(T-SHAPED) 1.00 0.50310 MAIL/KITCHEN/COPY 1.00 0.90312 FACULTYWORKROOM 1.00 1.30313 RESOURCECENTER 1.00 0.80C399C CORRIDOR 1.00 0.50314 FACULTYOFFICE 1.00 1.10315 FACULTYOFFICE 1.00 1.10316 FACULTYOFFICE 1.00 1.10319 FACULTYOFFICE 1.00 1.10320 GRADSTUDIO 1.00 1.10324 GRADSTUDIO 1.00 1.10326 GRADSTUDIO 1.00 1.10321 FACULTYOFFICE 1.00 1.10322 FACULTYOFFICE 1.00 1.10323 FACULTYOFFICE 1.00 1.10325 FACULTYOFFICE 1.00 1.10328 GRADSTUDIO 1.00 1.10327 FACULTYOFFICE 1.00 1.10329 FACULTYOFFICE 1.00 1.10331 FACULTYOFFICE 1.00 1.10332 FACULTYOFFICE 1.00 1.10333 CLOSET 1.00 0.30C399C CORRIDOR(T-SHAPED) 1.00 0.50334 CENTERSTORAGE 1.00 0.30336 B.C.I.A.C. 1.00 1.10338 C.P.R. 1.00 1.10340 C.C.E. 1.00 1.10341 C.C.S.I.C. 1.00 1.10342 ENDOWEDCHAIR 1.00 1.10

Page 22: Bcn 5905 report yash kapadia

22

343 STORAGE 1.00 0.30344 JOURNALEDITOR 1.00 1.10345 MENRESTROOM 1.00 0.90346 WOMENRESTROOM 1.00 0.90 CORRIDOR(C399A) 1.00 0.50345A JANITORCLOSET 1.00 0.30C399A/C399B CORRIDOR 1.00 0.50336B ELECTRICALCLOSET 1.00 0.30E397A ELEVATOR 1.00 0.60S398A STAIR 1.00 0.60

ProposedModelEDPandLPDvalues:

Proposed Space ID Space Description EPD LPD Per Plans Per Plans W/SF W/SF

FIRSTFLOOR 30 MECHROOM 1.00 0.96 106 MEDIUMCLASSROOM 0.20 1.81 110 LARGECLASSROOM 0.20 1 115 STUDENTORG/LOUNGE 0.20 1.01 C199C ENTRYEXHIBIT 0.10 1.01 125 MEPSTUDIO 0.20 1.69 136 SHOP 0.20 0.82 138 SOILS&CONCLAB 0.20 1.89 140 STRUCTURESSTUDIO 0.20 2.05 140A STORAGE 0.10 0.84 141 INTERVIEWROOM 0.30 0.53 143 INTERVIEWROOM 0.30 0.53 145 MENRESTROOM 0.10 0.53 146 WOMENRESTROOM 0.10 0.53 LOBBY(ENTRANCETORESTROOMS) 0.10 0.53 C199A LOBBY 0.10 0.32 110A ELEC 0.10 0.32 146A MECHROOM 0.30 0.32 C199B CORRIDOR 0.10 0.32 C199D CORRIDOR 0.10 0.32 134 SHOWER 0.10 0.35 C199D CORRIDOR(ADJACENTTOS.ENTRANCE) 0.10 0.35 E197 ELEVATOR 0.10 0 S198A STAIRS 0.10 0.17 SECONDFLOOR 201 TECHSERVICES 0.50 0.77 202 D.E.S. 0.20 1.27 203 C.F.A.H. 0.20 0.67 203A SERVERROOM 1.40 0.87 204 PLANROOM 0.20 0.84 207A STORAGE 0.10 0.84 206 COMPUTERLAB 0.50 1.21 208 INFORMATIONTECHNOLOGY 0.50 0.99

Page 23: Bcn 5905 report yash kapadia

23

209 MCESWROOM 0.20 1.1 210 MEDIUMCLASSROOM 0.20 0.95 215 MEDIUMCLASSROOM 0.20 0.93 220 MEDIUMCLASSROOM 0.20 0.94 225 MEDIUMCLASSROOM 0.20 1.21 230 MEDIUMCLASSROOM 0.20 1.01 238 CONSTRUCTIONLAB 0.20 1.12 235 STORAGE 0.10 1.12 240 ESTIMATION/DWG/SCH 0.20 1.29 240A STORAGE 0.10 0.3 245 MENRESTROOM 0.10 0.3 245A STORAGE 0.10 0.3 246 WOMENRESTROOM 0.10 0.3 246A STORAGE 0.10 0.3 205 JANITORCLOSET 0.10 0.3 C299A CORRIDOR 0.10 0.3 C299A CORRIDOR(ADJACENTTOS.ENTRANCE) 0.10 0.25 235A ELECTRICALCLOSET 0.10 0.25 E297A ELEVATOR 0.10 0 S298A STAIR 0.10 0.16 THIRDFLOOR 301 ADMIN/REGISTRAR 0.30 1.17 302 DIRECTORGRADE/D.E. 0.30 1.17 301A CAREEROFFICE 0.30 0.91 C399A (L-SHAPEDCORRIDORFRONTOFELEV) 0.10 0.91 303 CONFERENCEROOM 0.30 0.63 304 RECEPTION 0.30 0.63 305 OPENOFFICE 0.30 1.12 306 DIRECTOR 0.30 1.2 307 ASSOCIATEDIRECTOR 0.30 0.87 309 FACULTYOFFICE 0.30 0.87 311 FACULTYOFFICE 0.30 0.87 308 SUPPLYSTORAGE 0.10 1.79 308A TELEPHONE 0.10 1.79 C399C CORRIDOR(T-SHAPED) 0.10 1.79 310 MAIL/KITCHEN/COPY 0.70 1.79 312 FACULTYWORKROOM 0.30 1.38 313 RESOURCECENTER 0.20 1.38 C399C CORRIDOR 0.10 1.38 314 FACULTYOFFICE 0.30 0.8 315 FACULTYOFFICE 0.30 0.8 316 FACULTYOFFICE 0.30 0.8 319 FACULTYOFFICE 0.30 0.8 320 GRADSTUDIO 0.20 1.15 324 GRADSTUDIO 0.20 1.15 326 GRADSTUDIO 0.20 1.15 321 FACULTYOFFICE 0.30 0.8 322 FACULTYOFFICE 0.30 0.8 323 FACULTYOFFICE 0.30 0.8 325 FACULTYOFFICE 0.30 0.8 328 GRADSTUDIO 0.20 1.19 327 FACULTYOFFICE 0.30 0.97

Page 24: Bcn 5905 report yash kapadia

24

329 FACULTYOFFICE 0.30 0.97 331 FACULTYOFFICE 0.30 0.97 332 FACULTYOFFICE 0.30 0.97 333 CLOSET 0.10 0.97 C399C CORRIDOR(T-SHAPED) 0.10 0.97 334 CENTERSTORAGE 0.10 0.97 336 B.C.I.A.C. 0.20 0.93 338 C.P.R. 0.70 1.16 340 C.C.E. 0.20 1.25 341 C.C.S.I.C. 0.20 1.16 342 ENDOWEDCHAIR 0.20 0.79 343 STORAGE 0.10 0.79 344 JOURNALEDITOR 0.30 0.79 345 MENRESTROOM 0.10 0.18 346 WOMENRESTROOM 0.10 0.18 CORRIDOR(C399A) 0.10 0.18 345A JANITORCLOSET 0.10 0.18 C399A/C399B CORRIDOR 0.10 1.06 336B ELECTRICALCLOSET 0.10 1.06 E397A ELEVATOR 0.10 0 S398A STAIR 0.10 1.16

Page 25: Bcn 5905 report yash kapadia

25

APPENDIXC