Bayesian Inference

56
Bayesian Inference Will Penny SPM for fMRI Course, London, October 21st, 2010 Wellcome Centre for Neuroimaging, UCL, UK.

description

Bayesian Inference. Will Penny. Wellcome Centre for Neuroimaging, UCL, UK. SPM for fMRI Course, London, October 21st, 2010. What is Bayesian Inference ?. (From Daniel Wolpert). Bayesian segmentation and normalisation. realignment. smoothing. general linear model. Gaussian - PowerPoint PPT Presentation

Transcript of Bayesian Inference

Page 1: Bayesian Inference

Bayesian Inference

Will Penny

SPM for fMRI Course,London, October 21st, 2010

Wellcome Centre for Neuroimaging, UCL, UK.

Page 2: Bayesian Inference

What is Bayesian Inference ?

(From Daniel Wolpert)

Page 3: Bayesian Inference

realignmentrealignment smoothingsmoothing

normalisationnormalisation

general linear modelgeneral linear model

templatetemplate

Gaussian Gaussian field theoryfield theory

p <0.05p <0.05

statisticalstatisticalinferenceinference

Bayesian segmentationand normalisation

Bayesian segmentationand normalisation

Page 4: Bayesian Inference

realignmentrealignment smoothingsmoothing

normalisationnormalisation

general linear modelgeneral linear model

templatetemplate

Gaussian Gaussian field theoryfield theory

p <0.05p <0.05

statisticalstatisticalinferenceinference

Bayesian segmentationand normalisation

Bayesian segmentationand normalisation

Smoothnessmodelling

Smoothnessmodelling

Page 5: Bayesian Inference

realignmentrealignment smoothingsmoothing

normalisationnormalisation

general linear modelgeneral linear model

templatetemplate

Gaussian Gaussian field theoryfield theory

p <0.05p <0.05

statisticalstatisticalinferenceinference

Bayesian segmentationand normalisation

Bayesian segmentationand normalisation

Smoothnessestimation

Smoothnessestimation

Posterior probabilitymaps (PPMs)

Posterior probabilitymaps (PPMs)

Page 6: Bayesian Inference

realignmentrealignment smoothingsmoothing

normalisationnormalisation

general linear modelgeneral linear model

templatetemplate

Gaussian Gaussian field theoryfield theory

p <0.05p <0.05

statisticalstatisticalinferenceinference

Bayesian segmentationand normalisation

Bayesian segmentationand normalisation

Smoothnessestimation

Smoothnessestimation

Dynamic CausalModelling

Dynamic CausalModelling

Posterior probabilitymaps (PPMs)

Posterior probabilitymaps (PPMs)

Page 7: Bayesian Inference

Overview

• Parameter Inference– GLMs, PPMs, DCMs

• Model Inference– Model Evidence, Bayes factors (cf. p-values)

• Model Estimation– Variational Bayes

• Groups of subjects– RFX model inference, PPM model inference

Page 8: Bayesian Inference

Overview

• Parameter Inference– GLMs, PPMs, DCMs

• Model Inference– Model Evidence, Bayes factors (cf. p-values)

• Model Estimation– Variational Bayes

• Groups of subjects– RFX model inference, PPM model inference

Page 9: Bayesian Inference

General Linear Model

eXy Model:

X

Page 10: Bayesian Inference

1

2

eXy Model:

Prior:

)2/exp(

),0()(

2

122

T

kk INp

Prior

Page 11: Bayesian Inference

Sample curves from prior (before observing any data)

Mean curve

x

Z

1

2

eXy Model:

Prior:

)2/exp(

),0()(

2

122

T

kk INp

Prior

Page 12: Bayesian Inference

1

2

Priors and likelihood

1

2

)2/)(exp(

),(),(

),|(),(

21

111

1

111

ii

ii

N

ii

Xy

XNyp

ypyp

eXy Model:

Prior:

)2/exp(

),0()(

2

122

T

kk INp

Likelihood:

x

X

Page 13: Bayesian Inference

1

2

eXy Model:

Prior:

)2/exp(

),0()(

2

122

T

kk INp

Likelihood:

)2/)(exp(

),(),(

),|(),(

21

111

1

111

ii

ii

N

ii

Xy

XNyp

ypyp

x

X

Priors and likelihood

Page 14: Bayesian Inference

yCX

IXXC

CNyp

T

kT

1

1

21

, ,|

x

X

eXy Model:

Prior:

)2/exp(

),0()(

2

122

T

kk INp

Likelihood:

Bayes Rule:

)|(),|(),( pypyp

Posterior:

N

iiypyp

111 ),|(),(

1

2

Posterior after one observation

Page 15: Bayesian Inference

1

2

x

X

yCX

IXXC

CNyp

T

kT

1

1

21

, ,|

eXy Model:

Prior:

)2/exp(

),0()(

2

122

T

kk INp

Likelihood:

Bayes Rule:

)|(),|(),( pypyp

Posterior:

N

iiypyp

111 ),|(),(

Posterior after two observations

Page 16: Bayesian Inference

1

2

yCX

IXXC

CNyp

T

kT

1

1

21

, ,|

eXy Model:

Prior:

)2/exp(

),0()(

2

122

T

kk INp

Likelihood:

Bayes Rule:

)|(),|(),( pypyp

Posterior:

N

iiypyp

111 ),|(),(

Posterior after eight observations

x

X

Page 17: Bayesian Inference

Overview

• Parameter Inference– GLMs, PPMs, DCMs

• Model Inference– Model Evidence, Bayes factors (cf. p-values)

• Model Estimation– Variational Bayes

• Groups of subjects– RFX model inference, PPM model inference

Page 18: Bayesian Inference

SPM Interface

Page 19: Bayesian Inference

AR coeff(correlated noise)

prior precisionof AR coeff

A

Bayesian ML

aMRI Smooth Y (RFT)

Posterior Probability Maps

observations

GLM

prior precisionof GLM coeff

Observation noise

Y

112,0 LNp XY

Page 20: Bayesian Inference

Sen

sitiv

ity

1-Specificity

ROC curve

Page 21: Bayesian Inference

Mean (Cbeta_*.img)

Std dev (SDbeta_*.img)

activation threshold

ths

Posterior density

Probability mass p

probability of getting an effect, given the dataprobability of getting an effect, given the data

),()( nnn Nq mean: size of effectcovariance: uncertainty

thpp

Display only voxels that exceed e.g. 95%Display only voxels that exceed e.g. 95%

PPM (spmP_*.img)

Posterior Probability Maps

Page 22: Bayesian Inference

Overview

• Parameter Inference– GLMs, PPMs, DCMs

• Model Inference– Model Evidence, Bayes factors (cf. p-values)

• Model Estimation– Variational Bayes

• Groups of subjects– RFX model inference, PPM model inference

Page 23: Bayesian Inference

Dynamic Causal Models

V1

V5

SPC

V5->SPC

Posterior Density

PriorsAre Physiological

Page 24: Bayesian Inference

Overview

• Parameter Inference– GLMs, PPMs, DCMs

• Model Inference– Model Evidence, Bayes factors (cf. p-values)

• Model Estimation– Variational Bayes

• Groups of subjects– RFX model inference, PPM model inference

Page 25: Bayesian Inference

Model Evidence

Bayes Rule:

)(

)|(),|(),(

myp

mpmypmyp

normalizing constant

dmpmypmyp )|(),|()(

Model evidence

Page 26: Bayesian Inference

( | ) ( )( | )

( )

p m p mp m

p

yy

y

PriorPosterior EvidenceModel Model Bayes factor:

( | )

( | )ij

p m iB

p m j

y

y

V1

V5

SPC

V1

V5

SPC

Model, m=i Model, m=j

Page 27: Bayesian Inference

( | ) ( )( | )

( )

p m p mp m

p

yy

y

PriorPosterior EvidenceModel Model Bayes factor:

( | )

( | )ij

p m iB

p m j

y

y

For EqualModelPriors

Page 28: Bayesian Inference

Overview

• Parameter Inference– GLMs, PPMs, DCMs

• Model Inference– Model Evidence, Bayes factors (cf. p-values)

• Model Estimation– Variational Bayes

• Groups of subjects– RFX model inference, PPM model inference

Page 29: Bayesian Inference

Bayes Factors versus p-values

Two sample t-test

Subjects

Conditions

Page 30: Bayesian Inference

Bay

esia

n

Classical

p=0.05

BF=3

Page 31: Bayesian Inference

Bay

esia

n

Classical

BF=3

BF=20

Page 32: Bayesian Inference

Bay

esia

n

Classical

BF=3

BF=20

p=0.05

Page 33: Bayesian Inference

Bay

esia

n

Classical

BF=3

BF=20

p=0.05p=0.01

Page 34: Bayesian Inference

Model Evidence Revisited

dmpmypmyp )|(),|()(

)()(

)|(log

mcomplexitymaccuracy

myp

...)(

...)(2

02

2

1

mcomplexity

Zymaccuracy

Page 35: Bayesian Inference

Overview

• Parameter Inference– GLMs, PPMs, DCMs

• Model Inference– Model Evidence, Bayes factors (cf. p-values)

• Model Estimation– Variational Bayes

• Groups of subjects– RFX model inference, PPM model inference

Page 36: Bayesian Inference
Page 37: Bayesian Inference
Page 38: Bayesian Inference

Free Energy OptimisationInitial Point

Parameters,

Pre

cisi

ons,

Page 39: Bayesian Inference

Overview

• Parameter Inference– GLMs, PPMs, DCMs

• Model Inference– Model Evidence, Bayes factors (cf. p-values)

• Model Estimation– Variational Bayes

• Groups of subjects– RFX model inference, PPM model inference

Page 40: Bayesian Inference

-5 -4 -3 -2 -1 0 1 2 3 4 5

Sim

ulat

ed d

ata

sets

Log model evidence differences

x1 x2u1

x3

u2

x1 x2u1

x3

u2

incorrect model (m2) correct model (m1)

Figure 2

m2 m1

Page 41: Bayesian Inference

-35 -30 -25 -20 -15 -10 -5 0 5

Sub

ject

s

Log model evidence differences

MOG

LG LG

RVFstim.

LVFstim.

FGFG

LD|RVF

LD|LVF

LD LD

MOGMOG

LG LG

RVFstim.

LVFstim.

FGFG

LD

LD

LD|RVF LD|LVF

MOG

m2 m1

Models from Klaas Stephan

Page 42: Bayesian Inference

1 2 3 4 5 60

0.2

0.4

0.6

0.8

r

Models

A

Models

Sub

ject

s

1 2 3 4 5 6

5

10

15

20

log p(y|a)log p(yn|m)

Random Effects (RFX) Inference

Page 43: Bayesian Inference

Gibbs SamplingInitial Point

Assignments, A

Fre

quen

cies

, r

Stochastic Method

),|( YrAp

),|( yArp

Page 44: Bayesian Inference

log p(y|a)log p(yn|m)

)(

]log)|(exp[log

''

nn

mnm

nmnm

mnnm

gMulta

u

ug

rmypu

)(

0

Dirr

an

nmmm

),|( YrAp

),|( yArp

GibbsSampling

Page 45: Bayesian Inference

-35 -30 -25 -20 -15 -10 -5 0 5

Sub

ject

s

Log model evidence differences

MOG

LG LG

RVFstim.

LVFstim.

FGFG

LD|RVF

LD|LVF

LD LD

MOGMOG

LG LG

RVFstim.

LVFstim.

FGFG

LD

LD

LD|RVF LD|LVF

MOG

m2 m1

11/12=0.92

Page 46: Bayesian Inference

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

r1

p(r 1

|y)

p(r1>0.5 | y) = 0.997

843.01 r

Page 47: Bayesian Inference

Overview

• Parameter Inference– GLMs, PPMs, DCMs

• Model Inference– Model Evidence, Bayes factors (cf. p-values)

• Model Estimation– Variational Bayes

• Groups of subjects– RFX model inference, PPM model inference

Page 48: Bayesian Inference

PPMs for Models

)()(log qFmyp

Compute log-evidence for each model/subjectCompute log-evidence for each model/subject

model 1model 1

model Kmodel K

subject 1subject 1

subject Nsubject N

Log-evidence mapsLog-evidence maps

Page 49: Bayesian Inference
Page 50: Bayesian Inference
Page 51: Bayesian Inference

kr

k

BMS mapsBMS maps

PPMPPM

EPMEPM

)()(log qFmyp

Compute log-evidence for each model/subjectCompute log-evidence for each model/subject

model 1model 1

model Kmodel K

subject 1subject 1

subject Nsubject N

Log-evidence mapsLog-evidence maps

)( krq

kr

941.0)5.0( krq

Probability that model k generated data

Probability that model k generated data

PPMs for Models

Rosa et al Neuroimage, 2009

Page 52: Bayesian Inference

Primary visual cortex

ShortTime Scale

Long TimeScale

Frontal cortex

Computational fMRI: Harrison et al (in prep)

Page 53: Bayesian Inference

Non-nested versus nested comparison

Non-nested:

Compare model A versus model B

Nested:

Compare model A versus model AB

For detecting model B:

Penny et al, HBM,2007

Page 54: Bayesian Inference

Primary visual cortex

ShortTime Scale

Long TimeScale

Frontal cortex

Double Dissociations

Page 55: Bayesian Inference

Summary

• Parameter Inference– GLMs, PPMs, DCMs

• Model Inference– Model Evidence, Bayes factors (cf. p-values)

• Model Estimation– Variational Bayes

• Groups of subjects– RFX model inference, PPM model inference

Page 56: Bayesian Inference