Basic Principles of X-ray Reflectivity in Thin Films ...beaucag/Classes/Characterization...Feb 24,...

12
Basic Principles of Xray Reflectivity in Thin Films Félix JiménezVillacorta 02-24-2011

Transcript of Basic Principles of X-ray Reflectivity in Thin Films ...beaucag/Classes/Characterization...Feb 24,...

Page 1: Basic Principles of X-ray Reflectivity in Thin Films ...beaucag/Classes/Characterization...Feb 24, 2011  · Outline •X‐ray diffraction •X‐ray diffraction in thin films: high

Basic Principles of X‐ray Reflectivity in Thin Films

Félix Jiménez‐Villacorta

02-24-2011

Page 2: Basic Principles of X-ray Reflectivity in Thin Films ...beaucag/Classes/Characterization...Feb 24, 2011  · Outline •X‐ray diffraction •X‐ray diffraction in thin films: high

Outline

• X‐ray diffraction• X‐ray diffraction in thin films: high angle vs low angle

• XRR as structural characterization• Diffuse scattering: specular vs off‐specular reflectivity

• Summary

Page 3: Basic Principles of X-ray Reflectivity in Thin Films ...beaucag/Classes/Characterization...Feb 24, 2011  · Outline •X‐ray diffraction •X‐ray diffraction in thin films: high

William Lawrence Bragg

William Henry Bragg

Page 4: Basic Principles of X-ray Reflectivity in Thin Films ...beaucag/Classes/Characterization...Feb 24, 2011  · Outline •X‐ray diffraction •X‐ray diffraction in thin films: high

X‐ray diffraction

Bragg s law: angle where constructive interference of scattered X‐rays produces a diffraction peak:

nλ = BC + CD = 2dhklsinθ

where dhkl is the vector drawn from the origin of the unit cell to intersect the crystallographic plane.

Page 5: Basic Principles of X-ray Reflectivity in Thin Films ...beaucag/Classes/Characterization...Feb 24, 2011  · Outline •X‐ray diffraction •X‐ray diffraction in thin films: high

High angle vs Low angleProbing ranges in x-ray diffraction on thin filmsnλ = 2dsinθ

λ = 2dhklsinθ nλ = 2tsinθ

θ ~ 1/d

2θω=θ

ki kfQ2θ

ω=θki kfQ

k (incident)

k’(diffracted)

Q

θ

d

High θ (high Q) = Low d Low θ (low Q) = High d

Page 6: Basic Principles of X-ray Reflectivity in Thin Films ...beaucag/Classes/Characterization...Feb 24, 2011  · Outline •X‐ray diffraction •X‐ray diffraction in thin films: high

X‐ray Reflectivity

0 1 2 3 41E-6

1E-4

0,01

1

θ2

αc2

m2

Log(

Ref

lect

ivity

)

Grazing incidence (degree)

8 nm 15 nm

0 20 40 60 80

0,000

0,001

0,002

W (8 nm) // Si

(λ/2d)2

2222

2⎟⎠⎞

⎜⎝⎛=−

dmc

λαθ

44

22 116)(z

yxz

el

qqq

qQR ∝= δδρπReflectivity (background)

At every interface, a portion of x‐rays is reflected. Interference of these partialy reflected x‐ray beams creates a reflectometry pattern.

Kiessig fringes

Page 7: Basic Principles of X-ray Reflectivity in Thin Films ...beaucag/Classes/Characterization...Feb 24, 2011  · Outline •X‐ray diffraction •X‐ray diffraction in thin films: high

X‐ray Reflectivity

0 1 2 3 41E-7

1E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

Grazing incidence angle (degree)

Log(

Ref

lect

ivity

)

CoSi2 (15 nm) // Si

* Flat surface σVacuum/CoSi

2

=0

* Rough interface σCoSi

2/Si

no roughness 5A 10 A

∙ X‐ray reflectivity can be used for:‐ Layer thickness of thin films and multilayers.‐ Surface and interface roughness. ‐ Surface density gradients and layer density.

Page 8: Basic Principles of X-ray Reflectivity in Thin Films ...beaucag/Classes/Characterization...Feb 24, 2011  · Outline •X‐ray diffraction •X‐ray diffraction in thin films: high

X‐ray ReflectivitySpecial case: bilayers and multilayers

Bilayer: 2 oscillation frequencies are evidenced

0 1 2 31E-6

1E-5

1E-4

1E-3

0.01

0.1

1

10

Grazing incidence (degree)

Log(

Reflec

tivity

)

CuO2 (5,5 nm) // Cu (45 nm) // Si

Cu thickness

CuO2thickness

Multilayer: n‐1 Kiessig fringes between 2 Bragg Peaks

1 2 310

100

1000

10000

100000

Inte

nsity

(c.p

.s.)

2-Theta

CoSN2

Page 9: Basic Principles of X-ray Reflectivity in Thin Films ...beaucag/Classes/Characterization...Feb 24, 2011  · Outline •X‐ray diffraction •X‐ray diffraction in thin films: high

Diffuse scatteringSpecular vs off-specular reflectivity

‐ Specular contribution of the diffuse scattering‐ Same oscillations than reflectivity curve

Longitudinal diffuse scattering

Page 10: Basic Principles of X-ray Reflectivity in Thin Films ...beaucag/Classes/Characterization...Feb 24, 2011  · Outline •X‐ray diffraction •X‐ray diffraction in thin films: high

Diffuse scattering

0 1 2 3 4 5

10

100

1000

10000

100000

1000000

Inte

nsity

2 theta (º)

XRR specular long. diff (Δω=0.05º) long. diff (Δω=0.1º)

Off Specular XRR - (s2 - Au Cold)

0 1 2 3 4 5

10

100

1000

10000

100000

1000000

Off Specular XRR - (s6 - Au Hot)

Inte

nsity

2 theta

XRR specular long. diff. (Δω=0.05º) long. diff. (Δω=0.1º)

Longitudinal diffuse scatteringFeRh thin films + cap

Um+1(x,y)

Um (x,y)

Um (x’,y’)hm

ideal

zm+1

zm

Q ≠ qzQ = qz

Page 11: Basic Principles of X-ray Reflectivity in Thin Films ...beaucag/Classes/Characterization...Feb 24, 2011  · Outline •X‐ray diffraction •X‐ray diffraction in thin films: high

Diffuse scatteringTransverse diffuse scan (ω‐rocking curve)

0 1 2

Log

[Int

ensity

(ar

b. u

nits

)]

ω scan

ξ=7000 A ξ=2000 A ξ=500 A

Yoneda Wingsαc

αc

Specular

Various ξ : Large lateral correlation ξ at interface⇓

Specular peak

Yoneda wings : each time αi or αf = αc

Page 12: Basic Principles of X-ray Reflectivity in Thin Films ...beaucag/Classes/Characterization...Feb 24, 2011  · Outline •X‐ray diffraction •X‐ray diffraction in thin films: high

Summary

‐At every interface, a portion of x‐rays is reflected. Interference of these partialy reflected x‐ray beams creates a reflectometry pattern.

‐ X‐ray reflectivity is a useful techinque for structural characterization of thin films. Information about the thickness and the roughness of such samples can be obtained.

‐ Diffuse scattering of x‐rays give also information about the roughness, correlation length (fractal parameters) in surfaces and interfaces.