Basic Model MEDIUM Distributed Sources Fig.13 Generic Model for Media Access Systems.

70
Basic Model MEDIUM Distributed Sources Fig.13 Generic Model for Media Access Systems

Transcript of Basic Model MEDIUM Distributed Sources Fig.13 Generic Model for Media Access Systems.

  • Basic ModelMEDIUMDistributed SourcesFig.13 Generic Model for Media Access Systems

  • FrequencyMultiplexed Channel

    l

    l

    l

    1

    2

    N

    Guard Band

    BW

    Time

    FDMA

  • Message Delay - FDMA

  • Example FDMA50 kbps line - 1000 bit frames to be transmitted from four sourcesTwo Approaches 1) All traffic on 50 kps line

    2) 12.5 kbps dedicated to each sourceMUXMUXMUXMUXMUX

  • Four 12.5 kbps linesOne 50 kbps linesAverage delay(sec)Load

  • L=1L=4L=16L=64LoadAverage delay(sec)

    Continuation FDMA

  • l

    TimeMultiplexed Channel

    l

    l

    l

    1

    2

    N

    S1

    S2

    SN

    Time

    S1

    S2

    SN

    Frame

    Guard space

    TDMA

    TF

    Ts

  • Message Delay - TDMA

  • L=64L=16L=4

  • Polling Models

    CentralProcessor

    Broadcast Polls

    Trees

    Bridge

  • Cycle timeDelay

    exhaustive -

    (44a)

    gated -

    (44b)

    limited

    _954856824.unknown

    _954924024.unknown

    _933775958.unknown

  • Normalized Average Delay

    Load

    Limited Service

    Exhaustive andGated Service

    32 StationsW/M=1

  • Limited service

    Exhaustive andGated Service

    W/M=1

    Number of Stations

    Normalized Delay

    Load=0.4

  • Limited service

    Exhaustive andGated Service

    Normalized Delay

    W/M

    Number of Stations =32

    Load=0.4

  • Random Access-ALOHA

    Common Channel

    Uncontrolled access

    Collision

    ...

    RetransmissionsAfter Random Time-out

  • M

    Potentialcollidingpackets

    Pure ALOHA

    Collision Window

    Fig. 20 Pure ALOHA Collision Mechanism

  • P(Collision)=Total trafficNew trafficRetransmitted trafficAssumption: Total lineflow , L, PoissonDefine R=LM, total load and r=lM, load due to new traffic

  • Slotted ALOHA

    Pure ALOHA

    r - Throughput

    R -Total line traffic

  • M

    Potentialcollidingpackets

    Transmitted innext slot

    Slotted ALOHA

    Fig. 22 Slotted ALOHA

    CollisionWindow

  • P(Collision)=Total trafficNew trafficRetransmitted trafficDefine R=LM, total load and r=lM, load due to new traffic

  • Delay Analysis

  • rAverage Delay/Retransmission Interval Pure ALOHASlotted ALOHA

  • Load

    Average Delay

    Polling

    SlottedALOHA

    Pure ALOHA

    Half slot time

    Walk-time

    0 0.18 0.36

  • Carrier Sense Multiple AccessCollision avoided by sensing line for other users

    Three strategies:

    1-persistent - Transmit when line sensed idlep-persistent - Transmit with probability p when line sensed idle nonpersistent - random timeout before new attemptProblem: Two terminals transmit within t seconds of one another - collision results

  • Propagation delay - t secondsTerminal AtransmitsTerminal Btransmits

    e2t-eContentionIntervalDuration of Conflict

  • Arrival RateThroughputa=1a=.1a=.01a=.001a=0nonpersistent CSMAa=round trip delaymessage transmission time

  • Ethernet Protocol

    CSMA/CD Carrier Sense Multiple Accesswith Collision Detection

    line length 1 km t = 5 m sec a = .01 and 10 Mbps rateB=5000Same technique with optical fiber?R=1 Gbps a=t/(B/R)=1 Reduced efficiency

  • Polling model appropriate

  • CentralProcessorBroadcast PollsBridgePhysical TreeLogical Tree000 001 010 011100 101 110 1110 10 0 01 10 11

  • 0 10 0 01 10 11Terminalwithmessage011ExamplePolling - eight stepsProbing - four stepsGeneral result for light loadingPolling - N stepsProbing - log N steps

  • 0 10 0 01 10 11011Contention Resolutionin Random Access101

  • Code Division Multiple Access (pages 271-275)User data#1User data#2

    User data#N

    Code seq #1Code seq #2Code seq #NCHANNELCode seq #1Code seq #2Code seq #NUser data#1User data#2User data#N

  • Two kinds of code sequencesDirect sequenceTCTB1/TB =Data rate1/TC =Chip rateProcessing gain= TB /TC Hard to generatefast sequences

  • Frequency HoppingTCTB1/TB =Data rate1/TC =Chip rateProcessing gain= TB /TC

  • Orthogonality of Code SequencesCode sequence ACode sequence B

  • Average delay(sec)

    r

    FDMA

    TDMA

    Polling

  • Star CouplerWavelength Division Multiple Access(WDMA)Tuneable Transmittersand/or ReceiversAll opticalno electronicbottleneck

  • 802.1

    Introduction and Interface Primatives

    802.2

    Upper Part Data Link Layer

    802.3

    CSMA/CD

    802.4

    Token Bus

    802.5

    Token Ring

    802.6

    DQDB Distributed Queue Dual Bus

  • 802.3 - Derived from Ethernet

    Name

    Cable

    Max seg

    Nodes/Seg

    Advantages

    10 base5

    Thick

    Coax

    500m

    100

    Good for backbones

    10base10

    Thin

    Coax

    200m

    30

    Cheapest

    10 baseT

    Twisted

    Pair

    100m

    1024

    Easy mainentance

    10 baseF

    Optical

    Fiber

    2000m

    1024

    Good between buildings

  • 10base10

    CoreVapire tapCore10base5Connector10baseTHubPhysicalArrangementsTwisted pairscoax

  • TopologiesCable snakingthrough offices

    Backbone up an elevator shaft

  • TreeRepeaterGreatest length=2.5 km and four repeatersroundtrip delay=51.2 m seconds = 512 bit times

  • Preamble DestnAddrssSourceAddrssDataBytes 7 1 2 or 6 2 or 6 2 0-1500 0-46 4PadCksm802.3 Frame Format Start of frame delimiterLength ofdata fieldDotting patternAddressing - broadcast, multicast, local, globalMinimum frame length - 64 bytes

  • Binary Exponential Backoff AlgorithmInitial transmissioncollisionslot time= 51.2 m seconds = 512 bit timescollisionretransmissionretransmissionProcess continues to ten retransmissions-1023 slots

  • Efficiencyk statons with messages each transmits in a slot with prob Pslot = 2t=2line length(km)/propagation speed(km/sec)=2L/c

    A=P(one successful)=P(only one transmits)=kp(1-p)k-1 If p=1/k A is maximum (dA/dP=0) Amax=e-1 for k>>1

    P(j slot in contention interval)=A(1-A)j-1 Average number of slots in a contention interval=1/AAverage duration contention interval=2t/A=< 2t e=5.4 tP=average frame transmission time =average length(bits)/line rate(bps)=F/B

    Efficiency=P/(P+ 2t/A)=1/(1+2BLe/cF)

  • 802.4 Token BusLogical ringDirection of token motion75 ohm broadband coaxSpeeds - 1,5 and 10 Mbps

  • Four priority classes - 0(lowest), 2, 4, 6 (highest)Token passing sequenceClass 6 stationsClass 4 stationsClass 2 stationsClass 0 stationsStart

  • Preamble DestnAddrssSourceAddrssDataBytes 1 1 1 2 or 6 2 or 6 0-8182 4 1Cksm802.4 Frame Format Start of frame delimiterLength ofdata fieldframe controlend delimiter

  • 802.5 Token RingStationInterface

  • Two Modes for InterfaceStationOne bit delayRingInterfaceStationOne bit delayRingInterfaceListenTransmit

  • Speeds-1, 4 and 16 Mbps

    velocity = 1.8 x 105 km/secBits circulating in ringB=N+LR/V=No stations +Line length x bit rate/ Signal velocityPadding to transmit entire token

  • No restriction onmessage length

  • Wire CenterWire centerConnectorBypassrelayCable

  • 802.5 Frame Format Starting delimiteraccess control(ACK)SD AC ED 1 1 110 msec frame holding timeToken formatDestnAddrssSourceAddrssDataBytes 1 1 1 2 or 6 2 or 6 no limit 4 1 1CksmLength ofdata fieldframe controlending delimiterSD AC FCED FSframe statusViolations of differentialManchester coding for controlData frame format

  • Comparison of 802 LANs

    Advantages

    Disadvantages

    802.3

    most widely used, simple protocol, easy installation

    low delay for light loads

    analog, probabilistic limited line length, no priorities

    802.4

    reliable, priorities, more deterministic, good perform at high load

    complex protocol,

    not suited to opticalfiber

    802.5

    any transmission medium, priorities, unlimited message length

    control monitor,delay at low load

  • Load

    Average Delay

    Polling

    SlottedALOHA

    Pure ALOHA

    Half slot time

    Walk-time

    0 0.18 0.36

  • Bus ABus BData flowHead endData flowMAN-Distributed Queue Dual Bus(DQDB)IEEE 802.6

  • Distributed Queue ProtocolStation with a message for station to right(left) sendsrequest left(right) and puts message on internal stack forright(left)Each station counts requests from right(left) and increases the right(left)stack by one for eachEach station counts empty frames from left(right) anddecreases right(left)stack by oneTransmit message when it comes to head of line

  • LLCMACNetworklayerDatalinklayerPhysicallayerPacketPacketLLCPacketLLCMACNetwork802.2-Logical link controlService options:unreliable datagramACKed datagramconnection-oriented

  • BBBBWorkstationsFileserversBackboneLANBridgeCluster on single LANBridges

  • Reasons for BridgesConnect different kinds of LANs in an organizationConnect dispersed LANsHandle growth by splitting LANsIncreasing distance constraintsReliabilitySecurity

  • Host AHigher levels

    Network

    LCC

    MAC

    PhysicalHost BHigher levels

    Network

    LCC

    MAC

    Physical802.3802.4MAC

    PhysicalMAC

    PhysicalBridgePktPath

  • 802.3802.4802.5PreambleStart limiterAccess controlFrame controladdressesLengthDataPadChcksmEnd delimiterFrame statusProblem for Bridges - different formats

  • Transparent or Spanning tree Bridges

    Flooding and backward learningSpanning tree topology prevents loopingsub-optimum use of bandwidth Source Routing Bridgesdiscovery framesDestinationaddresses

  • Comparison Transparent and Source Routing BridgesIssue Transparent Source Routing

    Orientation

    Connectionless

    Connection

    oriented

    Transparency

    Fully

    Not transparent

    Configuration

    Automatic

    Manual

    Routing

    Suboptimal

    Optimal

    Locating

    Backward learning

    Discovery frames

    Failures

    Handled by bridges

    Handled by hosts

    Complexity

    In Bridges

    In Hosts

  • High-speed LANsFDDI-Fiber Distributed Data InterfaceFast Ethernet(802.3u)HIPPI - High-Performance Parallel InterfaceFibre Channel

  • FDDIHigh-speed optical ring100 Mbps200 km1000 stationsMultimode fiberLEDs

    FDDI - II PCM voiceISDN traffic

  • TopologyFailure modeAAABB

  • DestnAddrssSourceAddrssDataBytes >7 1 1 2 or 6 2 or 6 no limit 4 1 1CksmLength ofdata fieldframe controlending delimiterED FSframe statusStartdelimiterFDDI FrameBlocks of 5 bits16 data symbols3 delimiter symbols2 control symbols3 hardware signaling8 spareSynchronous frames every 125 m sec - 96 bytes of data each