Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB....

22
Basic feedback loop design 1 i i ref L i T T i i G 1 ˆ ˆ s id M ci i R G V G T 1 Closedloop response Loop gain Design compensator transfer function G ci (s) to obtain: Large ||T|| over wide range of frequencies, and high crossover f c Sufficiently large phase margin Crossover frequency should be well below switching frequency, e.g. f c < f s /5 m

Transcript of Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB....

Page 1: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

Basic feedback loop design

1

i

i

ref

Li T

TiiG

1ˆˆ

sidM

cii RGV

GT 1

Closed‐loop response

Loop gain

Design compensator transfer function Gci(s) to obtain: • Large ||T|| over wide range of frequencies, and high cross‐over fc• Sufficiently large phase margin Cross‐over frequency should be well below switching frequency, e.g. fc < fs/5

m

Page 2: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

0

20

40

60

80

100

Mag

nitu

de (

dB)

100

101

102

103

104

-180

-135

-90

-45

0

45

90

135

180

Pha

se (

deg)

Bode Diagram

Frequency (Hz)

Start from uncompensated loop gain, Gci = 1

2

sidM

cii RGV

GT 1

ExampleConverter parametersfs = 20 kHzL = 150 HC = 500 FVM = 1Rs = 1 

DC operating point:Vbus = 500 VIbus = 30 AVbat = 200 VD = 1‐Vbat/Vbus = 0.6IL = Ibus/D’ = 75 A

idsidM

i GRGV

T 1

uncomp,

)(log20 uncomp, jTi

)(uncomp, jTi

Page 3: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

Loop gain with P compensator

3

-60

-40

-20

0

20

40

60

Mag

nitu

de (

dB)

100

101

102

103

104

-180

-90

0

90

180

Pha

se (

deg)

Bode Diagram

Frequency (Hz)

pici KsG )(

idpii

sidM

cii

GKT

RGV

GT

1

Page 4: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

Closed‐loop response Gi with P compensator

4

pici KsG )(

i

i

ref

Li T

TiiG

1ˆˆ

-60

-40

-20

0

20

Mag

nitu

de (

dB)

100

101

102

103

104

-180

-90

0

90

180

Pha

se (

deg)

Bode Diagram

Frequency (Hz)

Page 5: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

Proportional‐Integral (PI) Compensator

5

sK

sKKsG zc

piii

pici1)(

f

f

fzc

Page 6: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

Loop gain with Proportional‐Integral (PI) compensator

6

sKsG zc

pici1)(

5/czc ff

-60

-40

-20

0

20

40

60

Mag

nitu

de (

dB)

100

101

102

103

104

-180

-90

0

90

180

Pha

se (

deg)

Bode Diagram

Frequency (Hz)

Page 7: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

MATLAB code: find fc and 

7

m% find phase margin and cross-over frequency[Gm,Pm,Wg,Wp] = margin(Ti);Pm % phase marginFc_actual = Wp/2/pi % cross-over frequency

Pm =78.3553

Fc_actual =2.0374e+03

Page 8: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

Closed‐loop response Gi with PI compensator

8

i

i

ref

Li T

TiiG

1ˆˆ

sKsG zc

pici1)(

5/czc ff

-60

-40

-20

0

20

Mag

nitu

de (

dB)

100

101

102

103

104

-180

-90

0

90

180

Pha

se (

deg)

Bode Diagram

Frequency (Hz)

Page 9: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

9

Voltage control loop• Incorporating the inner current control loop• Voltage loop gain Tv• Compensator design Gcv

+

vbat

_

+

vbus

_

iLL

S1

S2

Q1 D1

Q2 D2

ibat

Ibus

vs

+vge1_

+vge2_

C

ic

c1

c2

PWM

Pulse-widthmodulator c1

c2

cDead-timeGciGcv

currentsensing

voltagesensing

H

RsiL

Rsiref

HVref

Hvbus

+

_

+_

vc

Page 10: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

Small‐signal AC equivalent circuit model

10

+–vbat

iL D’:1

ibus

+

vbus

_

L

C

Vbusd

IL d

Page 11: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

Voltage control loop (outer loop), with embedded current control loop (inner loop)

11

GcvHvref

+

_Gi /Rs

vbus

H

Rsiref iL Gvi

Page 12: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

Finding Gvi

12

0ˆ ,0ˆˆ

ˆ

busbat ivL

busvi i

vG

+–vbat

iL D’:1

ibus

+

vbus

_

L

C

Vbusd

IL d

Page 13: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

Finding Gvi

13

Page 14: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

14

zi

zvio

ivL

busvi s

s

Gi

vGbusbat

1

1

ˆˆ

0ˆ ,0ˆ

bus

busvio I

VDG '

bus

busz I

VL

Df2'

21

bus

buszi V

IC

f 121

2.8 kHz

19 Hz

Same numerical example

dB 5.167.6

Page 15: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

Voltage control loop: loop gain

15

GcvHvref

+

_Gi /Rs

vbus

H

Rsiref iL Gvi

Page 16: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

Closed‐loop response Gi with PI compensator

16

i

i

ref

Li T

TiiG

1ˆˆ

-60

-40

-20

0

20

Mag

nitu

de (

dB)

100

101

102

103

104

-180

-90

0

90

180

Pha

se (

deg)

Bode Diagram

Frequency (Hz)

ci

i sG

1

1

Page 17: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

-120

-100

-80

-60

-40

-20

0

Mag

nitu

de (

dB)

100

101

102

103

104

0

90

180

270

360

Pha

se (

deg)

Bode Diagram

Frequency (Hz)

Voltage‐loop compensator Gcv designStart from uncompensated loop gain, Gcv = 1

17

vis

iv GR

HGT 1uncomp,

ExampleConverter parametersfs = 20 kHzL = 150 HC = 500 FVM = 1Rs = 1 H = 1/100

DC operating point:Vbus = 500 VIbus = 30 AVbat = 200 VD = 1‐Vbat/Vbus = 0.6IL = Ibus/D’ = 75 A

)(log20 uncomp, jTv

)(uncomp, jTv

0

‐90

‐180

‐270

‐360

Pha

se (

deg)

Page 18: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

Loop gain with Proportional‐Integral (PI) compensator

18

sKsG zv

pvcp1)(

5/cvzv ff

-60

-40

-20

0

20

40

60

Mag

nitu

de (

dB)

100

101

102

103

104

0

90

180

270

360

Pha

se (

deg)

Bode Diagram

Frequency (Hz)

Hz 200cvfo

m 77

0

‐90

‐180

‐270

‐360

Pha

se (

deg)

Page 19: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

Closed‐loop response Gv with PI compensator

19

v

v

ref

busv T

TvvG

1ˆˆ

-60

-40

-20

0

20

40

60

Mag

nitu

de (

dB)

100

101

102

103

104

0

90

180

270

360

Pha

se (

deg)

Bode Diagram

Frequency (Hz)

0

‐90

‐180

‐270

‐360

Pha

se (

deg)

Page 20: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

Transient response

20

PID(s)

voltage-loopcompensator

Gcv

PID(s)

current-loopcompensator

Gci

Step

Scope

Inductor currentl imits

1/100

H

Duty cyclelimits

6

Bus voltagereference

250

Battery Voltage

ibus

Vbat

d

v bus

iL

Averaged Boost Converter Dynamic Model

Vbat iLv bus

d

‐30A to +30 step ibus(t) transient

Inductor(battery) 

current limits‐200A, +200A

Page 21: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

21

d

vbus

iL

Page 22: Basic feedback loop designecee.colorado.edu/~ecen5017/lectures/CU/L27_out.pdf · 6.7 16.5 dB. Voltage control loop: loop gain 15 G cv Hv ref + _ G i /R s v bus H R s i ref i L G vi.

22

d

vbus

iL