Base Plate Design is 800-2007

99
L&T CONSTRUCTION Metallurgical & Material Handling IC BMH - EDRC PROJECT RIL-MHS FOR GASIFICATION PROJECT DOCUMENT NO DATE TITLE DESIGN CALCULATION FOR PLANT TRANSFER CONVEYOR DESIGNED CHECKED SHEET PDE VETRI DESIGN OF WALKWAY RUNNERS

description

base plate design

Transcript of Base Plate Design is 800-2007

Page 1: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN CALCULATION FOR PLANT TRANSFER CONVEYOR DESIGNED CHECKED SHEET

PDE VETRI

DESIGN OF WALKWAY RUNNERS

Page 2: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF WALKWAY RUNNERDESIGNED CHECKED SHEET

PDE VETRI

DESIGN OF WALKWAY MEMBER FOR 600 mm ( CLEAR) WALKWAY

Width of the walkway = 600 mm

Span of Walkway = 3000 mm

600 mm

SECTIONAL PROPERTIES

Section Assumed = TUBR60x40x4.5

W = 0.06 KN/m

A = 767 mm2

Izz = 333100 mm4

Zez= = 11100 mm3

Zpz= = 13253.923227 mm4

ry = 15.08 mm

D = 60 mm

T = 4.5 mm

B = 40 mm

d = 51 mm

b = 31 mm

fy = 310

fu = 450

E = 200000

ɣm0 = 1.1

FOR SHS,RHS

Ɛ = 0.899

Limit 29.3 Ɛ 33.5 Ɛ 42 Ɛ 84 Ɛ 105 Ɛ 126 Ɛ

Class Plastic Compact Semi compact Plastic Compact Semi compact

6.89 Plastic

11.33 Plastic Plastic

Hence the section is classified as PlasticLOAD CALCULATION

a) DEAD LOAD

Self Weight of chequerd plate(Thickness=6mm) = 0.53 KN/ m^2 x0.6/2"= 0.16 KN/ m

Self Weight of Walkway Member = 0.06 KN/ m

Self Weight of Handrails = 9.62 Kg/m = 0.095 KN/ m

TOTAL DEAD LOAD = 0.32 KN/m

b) LIVE LOAD

Live Load on Walkway = 2.5 KN/ m^2 As Per DBR

= 2.5x0.6/2"= = 0.75 KN/m

COMBINATION OF LOAD

TOTAL LOAD (DL + LL) = 0.32+0.75 = 1.07 KN/m

FACTORED LOAD (1.5DL+1.5LL) = (1.5*0.32)+(1.5*0.75) = 1.61 KN/m

CHECK FOR BENDING STRENGTH

The span of walkway is taken as 3000mm(maximum). Here the walkway is considered as three span continuous beam and accordingly moment, deflections were calculated.

N/mm2

N/mm2

N/mm2

b / tf d / tw

b / tf =

d / tw =`

Page 3: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF WALKWAY RUNNERDESIGNED CHECKED SHEET

PDE VETRI

Maximum Bending strength due to factored DL+LL

Considering walkway as a three span continuous beam

1.61 KN/m

3000 3000 3000

Maximum Bending strength due to factored DL+LL =

= 1.61*3^2/10

= 1.449KN-m

Design Bending Strength

= As per IS 800- 2007,Clause 8.2.1.2

Where β = 1

Md = 3.74 KN-m

Utilization ratio = 0.39 < 1

HENCE SAFE

CHECK FOR DEFLECTION (Considering Live load & SIDL only - Un factored)

Allowable deflectrion = L/300 As per IS: 800-2007,Table: 6

= 10mm

Actual deflection = For 3 span continuous beam

= 8mm < Allowable deflectrion

HENCE SAFE

SUMMARY ACTUAL ALLOWABLE

1 Check for bending strength 0.39 < 1 HENCE SAFE

2 Check for deflection 8mm < 10mm HENCE SAFE

WL2/10

Design Bending Strength Md βbZpfy / ɣm0

5 wl 4/ 768 EI

Page 4: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF WALKWAY RUNNERDESIGNED CHECKED SHEET

PDE VETRI

DESIGN OF WALKWAY MEMBER FOR 1400 mm ( CLEAR) WALKWAY

Width of the walkway = 1400 mm

Span of Walkway = 3000 mm

1400 mm

SECTIONAL PROPERTIES

Section Assumed = TUBR80x40x4.0

W = 0.066 KN/m

A = 855 mm2

Izz = 647900 mm4

Zez= = 16200 mm3

Zpz= = 19794.500877 mm4

ry = 15.85 mm

D = 80 mm

T = 4 mm

B = 40 mm

d = 72 mm

b = 32 mm

fy = 310

fu = 450

E = 200000

ɣm0 = 1.1

FOR SHS,RHS

Ɛ = 0.899

Limit 29.3 Ɛ 33.5 Ɛ 42 Ɛ 84 Ɛ 105 Ɛ 126 Ɛ

Class Plastic Compact Semi compact Plastic Compact Semi compact

8 Plastic

18 Plastic Plastic

Hence the section is classified as Plastic

LOAD CALCULATION

a) DEAD LOAD

Self Weight of chequerd plate(Thickness=6mm) = 0.53 KN/ m^2 x1.4/2"= 0.38 KN/ m

Self Weight of Walkway Member = 0.066 KN/ m

Self Weight of Handrails = 9.62 Kg/m = 0.095 KN/ m

TOTAL DEAD LOAD = 0.55 KN/mb) LIVE LOAD

Live Load on Walkway = 2.5 KN/ m^2 As Per DBR= 2.5x1.4/2"= = 1.75 KN/m

COMBINATION OF LOAD

TOTAL LOAD (DL + LL) = 0.55+1.75 = 2.3 KN/m

FACTORED LOAD (1.5DL+1.5LL) = (1.5*0.55)+(1.5*1.75) = 3.45 KN/m

The span of walkway is taken as 3000mm(maximum). Here the walkway is considered as three span continuous beam and accordingly moment, deflections were calculated.

N/mm2

N/mm2

N/mm2

b / tf d / tw

b / tf =

d / tw =`

Page 5: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF WALKWAY RUNNERDESIGNED CHECKED SHEET

PDE VETRI

CHECK FOR BENDING STRENGTH

Maximum Bending strength due to factored DL+LL

Considering walkway as a three span continuous beam

3.45 KN/m

3000 3000 3000

Maximum Bending strength due to factored DL+LL =

= 3.45*3^2/10

= 3.105KN-m

Design Bending Strength

= As per IS 800- 2007,Clause 8.2.1.2

Where β = 1

Md = 5.58 KN-m

Utilization ratio = 0.56 < 1

HENCE SAFE

CHECK FOR DEFLECTION (Considering Live load & SIDL only - Un factored)

Allowable deflectrion = L/300 As per IS: 800-2007,Table: 6

= 10mm

Actual deflection = For 3 span continuous beam

= 9.1mm < Allowable deflectrion

HENCE SAFE

SUMMARY ACTUAL ALLOWABLE

1 Check for bending strength 0.56 < 1 HENCE SAFE

2 Check for deflection 9.1mm < 10mm HENCE SAFE

WL2/10

Design Bending Strength Md βbZpfy / ɣm0

5 wl 4/ 768 EI

Page 6: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN CALCULATION FOR PLANT TRANSFER CONVEYOR DESIGNED CHECKED SHEET

PDE VETRI

DESIGN OF PURLINS

Page 7: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF PURLINDESIGNED CHECKED SHEET

PDE VETRI

Max span of purlins = 3 m

Spacing of purlins = 1.25 m 1.25

The purlin is designed as 3 span continuous beam

Consider purlin SHS TUBS60x60x4.0 α = 18.43 degree

1.19

DEAD LOAD CALCULATION

Self wt of Roofing sheet = 10 Kg/m2 Thickness of sheet= 1mm

Wt of sheet/m = 10x1.19x9.81/1000 = 0.117 KN/m

Self wt of purlin = 6.72 Kg/m

= 0.066 KN/m

Total = 0.183 KN/m

LIVE LOAD CALCULATION

Live load on roof = 0.75 (As per DBR)

Deduction as per IS875 (PART II)-1987,TABLE 2 = 0.59

Dust load = 0.5 (As per DBR)

Hence live load /m = (0.59+0.5)*1.19 = 1.3 KN/m

WIND LOAD CALCULATION

Basic wind speed = 50 m/sec (As per DBR)

K1 = 1.08 (As per DBR)

K3 = 1 (As per DBR)

K2 = 1.1

Design wind speed = 50*1.08*1*1.1 = 59.4 m/sec (As per IS875 (PART III)-1987,clause 5.3)

Design wind pressure = 0.6*59.4^2 = 2117.02 N/m2 (As per IS875 (PART III)-1987,clause 5.4)

= 2.117 KN/m2

Assuming % of openings 5 to 20%

Cpi = ±0.5 (As per IS875 (PART III)-1987,clause 6.2.3.2)

h = 2.625 m

w = 7.1 m

h/w = 2.625/7.1 = 0.37

Roof angle = = 18.43

FOR 0 Deg. Wind Cpe (WWS) = -0.5256

Cpe (LWS) = -0.4(As per IS875 (PART III)-1987,clause 6.2.2.2,Table 5)

FOR 90 Deg. Wind Cpe (WWS) = 0.7157

Cpe (LWS) = -0.6

Hence Wind load on purlin

On WWS - (0.7157-0.5)*2.117*1.25= = 0.570 KN/m For Cpi +ve

On LWS - (-0.6-0.5)*2.117*1.25= = -2.910 KN/m

On WWS - (0.7157+0.5)*2.117*1.25= = 3.217 KN/m For Cpi -ve

On LWS - (-0.6+0.5)*2.117*1.25= = -0.265 KN/m

Purlin will be designed for Cpi +ve. ( Maximum coefficient)

LOAD COMBINATION -1 DL+LL

Load component normal to the rafter - (DL+LL)Cosα = (0.183+1.3)*0.95 = 1.41 KN/m

Load component parallel to the rafter - (DL+LL)Sinα = (0.183+1.3)*0.32 = 0.47 KN/m

sag rod = 0 no sag rod

Max bending moment for 3 span continuous beam = wl^2/10

Mz = 1.41 x 3 ^2/10 = 1.27 KN-m

My = 0.47 x (3/1)^2/10 = 0.43 KN-m

KN/m2

KN/m2

KN/m2

(As per IS875 (PART III)-1987,TABLE 2,For Terrain category-2, class B )

Page 8: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF PURLINDESIGNED CHECKED SHEET

PDE VETRI

Mz = 1.5 x 1.27 = 1.905 KN- m 1.5

My = 1.5 x 0.43 = 0.645 KN- m 1.1

Max shear for 3 span continuous beam = 2.2wl/2

Vy = 1.5 x2.2x1.41 x 3/2 = 6.98 KN

Vz = 1.5 x 0.47 x 3x2.2/2 = 2.3265 KN

SECTION PROPERTIES

A= 855 mm^2 4mm b = 52mm D(or, h)= 60mm

B = 60mm 14520mm^3 14520mm^3 ###

### 435500mm^4 435500mm^4 d = 52mm

310 N/mm2 450 N/mm2

SECTION CLASSIFICATION

Ɛ = 0.9 0.81

For CHS only

Limit 42 Ɛ^2 52 Ɛ^2 146 Ɛ^2

Class Plastic Compact Semi compact

15 Plastic

FOR SHS,RHS

Limit 29.3 Ɛ 33.5 Ɛ 42 Ɛ 84 Ɛ 105 Ɛ 126 Ɛ

Class Plastic Compact Semi compact Plastic Compact Semi compact

13 Plastic

13 Plastic Plastic

Hence the section is classified as Plastic

CHECK FOR SHEAR CAPACITY

A h / (b + h) = = 458.04 mm^2

A b / (b + h) = = 396.96 mm^2

= 74.53 KN Vdy > Vy HENCE SAFE

= 64.59 KN Vdz > Vz HENCE SAFE

Vy&Vz < 0.6*Vdy & 0.6* Vdz,So calculate Design Moment (Md) as per IS 800-2007, clause 8.2.1.2

CHECK FOR BENDING STRENGTH

= As per IS 800- 2007,Clause 8.2.1.2

Where = 1

a. Design strength in bending (Mdz)

= 4.73KN-m

= 4.91 KN- m

= 4.73 KN- m

b. Design strength in bending (Mdy)

= 4.73KN-m

= 4.91 KN- m

= 4.73 KN- m

Member section strength

0.54 < 1

HENCE SAFE

CHECK FOR DEFLECTION (Considering Live load & SIDL only - Un factored)

Actual vertical deflection = 5wl^4/768EI For 3 span continuous beam

Load component normal to the rafter - (LL)Cosα = (1.3+0.117)*0.95 = 1.35 KN/m

Actual vertical deflection = 8.160 mm

Allowable deflection = Span / 150 As per IS: 800-2007,T able: 6 for purlins

= 20 mm

So 8.160 < 20 mm

HENCE SAFE

Factored moments,

ɣf =

ɣmo=

Factored shear,

t =

Zez = Zey = Zpz =

Zpy = Izz = Iyy =

fy = fU =

Ɛ2=

D / t =

b / tf d / tw

b / tf =

d / tw =

Avy =

Avz =

Vdy = fy x Av / ɣmo x 1.732

Vdz = fy x Av / ɣ mo x 1.732

Design Bending Strength Md (βbZpfy / ɣm0) ≤ (1.2Zefy / ɣm0)

βb

βbZpfy / ɣm0

1.2Zefy / ɣm0

Therefore Mdz

βbZpfy / ɣm0

1.2Zefy / ɣm0

Therefore Mdy

Mz / Mdz + My / Mdy =

Page 9: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF PURLINDESIGNED CHECKED SHEET

PDE VETRI

LOAD COMBINATION -1 (DL+WL) (Check for wind suction)

Load component normal to the rafter = WL+DLCosα = -2.91+(0.183*0.95) = -2.736 KN/m

Load component parallel to the rafter = DLSinα = 0.06 KN/m

Max bending moment for 3 span continuous beam = wl^2/10

Mz = 2.736 x 3 ^2/10 = 2.47 KN- m

My = 0.06 x (3/1)^2/10 = 0.06 KN- m

Factored momenMz = 1.5 x 2.47 = 3.705 KN- m 1.5

My = 1.5 x 0.06 = 0.09 KN- m

Factored shear, Vy = 1.5 x2.2x2.736 x 3/2 = 13.54 KN Vdy > Vy HENCE SAFE

Vz = 1.5 x 0.06 x 3x2.2/2 = 0.297 KN Vdz > Vz HENCE SAFE

Member section strength

Mz / Mdz + My / Mdy = 0.8 < 1

HENCE SAFE

CHECK FOR DEFLECTION (Considering Wind load only- Un factored)

Actual vertical deflection = 5wl^4/768EI For 3 span continuous beam

Load component normal to the rafter - (WL) = 2.91 KN/ m

Actual vertical deflection = 17.590 mm

Allowable deflection = Span / 150 As per IS: 800-2007,T able: 6 for purlins

= 20 mm

So 17.590 < 20 mm

HENCE SAFE

SUMMARY

Dead Load + Live Load combination

Check for shear capacity ACTUAL ALLOWABLE

Check for Vertical shear 6.98 KN < 74.53 KN HENCE SAFE

Check for Horizontal shear 2.3265 KN < 64.59 KN HENCE SAFE

Check for bending 0.54 < 1 HENCE SAFE

Dead Load + Wind Load combination

Check for shear capacity

Check for Vertical shear 13.54 KN < 74.53 KN HENCE SAFE

Check for Horizontal shear 0.297 KN < 64.59 KN HENCE SAFE

Check for bending 0.8 < 1 HENCE SAFE

Unfactored Wind Load

Check for deflection 17.590 < 20 HENCE SAFE

gf =

Page 10: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN CALCULATION FOR PLANT TRANSFER CONVEYOR DESIGNED CHECKED SHEET

PDE VETRI

DESIGN OF SIDE RUNNERS

Page 11: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF SIDE RUNNERSDESIGNED CHECKED SHEET

PDE VETRI

As per IS 800: 2007

Max span of side runner = 3 m

Spacing of side runner = 1 m 1 m

Side runner is designed as 3 span continuous beam

Consider side runner as SHS TUBS60x60x4.0

1 m

DEAD LOAD CALCULATION

Self wt of cladding sheet = 10 Kg/m2 Thickness of sheet= 0.8mm

Wt of sheet/m = 10x1x9.81/1000 = 0.098 KN/m DL

Self wt of the member = 6.72 Kg/m

= 0.07 KN/m WL

Total = 0.168 KN/m

WIND LOAD CALCULATION

Basic wind speed Vb = 50 m/sec (As per DBR)

K1 = 1.08 (As per DBR)

K3 = 1 (As per DBR)

K2 = 1.1

Design wind speed = 50*1.08*1*1.1 = 59.4 m/sec (As per IS875 (PART III)-1987,clause 5.3)

Design wind pressure = 0.6*59.4^2 = 2117.02 N/m2 (As per IS875 (PART III)-1987,clause 5.4)

= 2.117 KN/m2

Assuming % of openings 5 to 20%

Cpi = ±0.5 (As per IS875 (PART III)-1987,clause 6.2.3.2)

Structure height, h = 2.625 m

Structure width, w = 7.1 m

Structure length, l = 24 m

h/w = 2.625/7.1 = 0.37 Therefore,1/2 < h / w < 3/2

l/w = 24/7.1 3.38 Therefore, 3/2 < l / w < 4

For wind Angle = 0 Cpe (WWS) = 0.7(As per IS875 (PART III)-1987,Table 4)

Cpe (LWS) = -0.25

Considering maximum coeffiecient for Face A & B

Total wind force on a side runner (WWS) -

(0.7+0.5)*2.117*(1)= 2.540 KN/m

Total wind force on a side runner (LWS) - 1.5

(0.25-0.5)*2.117*(1)= -0.53 KN/m 1.1

sag rod = 0 no sag rod

DL+WL (Check for wind loading)

Max bending moment for 3 span continuous beam = wl^2/10

Mz = 2.54 x 3 ^2/12 = 1.91 KN- m

My = 0.168 x (3/1)^2/12 = 0.13 KN- m

Mz = 1.5 x 1.91 = 2.865 KN- m

My = 1.5 x 0.13 = 0.195 KN- m

(As per IS875 (PART III)-1987,TABLE 2,For Terrain category-2, class B )

ɣf =

ɣm0 =

Factored moments,

Page 12: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF SIDE RUNNERSDESIGNED CHECKED SHEET

PDE VETRI

Max shear for 3 span continuous beam = 2.2wl/2

Vy = 1.5 x2.2x2.54 x 3/2 = 12.57 KN

Vz = 1.5 x 0.168 x 3x2.2/2 = = 0.8316 KN

SECTION PROPERTIES

A= 855 mm^2 4mm b = 52mm D(or, h)= 60mm

B = 60mm 14520mm^3 14520mm^3 ###

### 435500mm^4 435500mm^4 d = 52mm

310 N/mm2 450 N/mm2

SECTION CLASSIFICATION

Ɛ = 0.89802651013 0.81

For CHS only

Limit 42 Ɛ^2 52 Ɛ^2 146 Ɛ^2

Class Plastic Compact Semi compact

15 Plastic

FOR SHS,RHS

Limit 29.3 Ɛ 33.5 Ɛ 42 Ɛ 84 Ɛ 105 Ɛ 126 Ɛ

Class Plastic Compact Semi compact Plastic Compact

13 Plastic

13 Plastic Plastic

Hence the section is classified as Plastic

CHECK FOR SHEAR CAPACITY

A h / (b + h) = = 458.04 mm^2

A b / (b + h) = = 396.96 mm^2

= 74.53 KN Vdy > Vy HENCE SAFE

= 64.59 KN Vdz > Vz HENCE SAFE

Vy&Vz < 0.6*Vdy & 0.6* Vdz,So calculate Design Moment (Md) as per IS 800-2007, clause 8.2.1.2

CHECK FOR BENDING STRENGTH

= As per IS 800- 2007,Clause 8.2.1.2

Where = 1

a. Design strength in bending (Mdz)

= 4.73KN-m

= 4.91 KN- m

Therefore Mdz = 4.73 KN- m

b. Design strength in bending (Mdy)

= 4.73KN-m

= 4.91 KN- m

Therefore Mdy = 4.73 KN- m

Factored shear,

t =

Zez = Zey = Zpz =

Zpy = Izz = Iyy =

fy = fU =

Ɛ2 =

D / t =

b / tf d / tw

Semi compact

b / tf =

d / tw =

Avy =

Avz =

Vdy = fy x Avy / ɣmo x 1.732

Vdz = fy x Avz / ɣmo x 1.732

Design Bending Strength Md (βbZpfy / ɣm0) ≤ (1.2Zefy / ɣm0)

βb

βbZpfy / ɣm0

1.2Zefy / ɣm0

βbZpfy / ɣm0

1.2Zefy / ɣm0

Page 13: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF SIDE RUNNERSDESIGNED CHECKED SHEET

PDE VETRI

Member section strength

0.65 < 1

HENCE SAFE

CHECK FOR DEFLECTION (Considering Wind load only- Un factored)

Actual vertical deflection = 5wl^4/768EI For 3 span continuous beam

Load considered for deflection- (WL) = 2.54 KN/ m

Actual vertical deflection = = 15.354 mm

Allowable deflection = Span / 150 As per Table: 6 of IS: 800-2007 for purlins

= 20 mm

So 15.354 < 20 mm

HENCE SAFE

SUMMARY

ACTUAL ALLOWABLE

Check for shear capacity

Check for Vertical shear 12.57 KN < 74.53 KN HENCE SAFE

Check for Horizontal shear 0.8316 KN < 64.59 KN HENCE SAFECheck for bending 0.65 < 1 HENCE SAFE

Check for deflection 15.354 < 20 HENCE SAFE

Mz / Mdz + My / Mdy =

Page 14: Base Plate Design is 800-2007

SECTION PROPERTIES FOR PARALLEL FLANGE BEAMS & COLUMNS PRODUCED AT RAIGARH.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1

SECTION Weight Total Depth Flange Width Th. Of Web Th. Of Flange Root Radius Area Ixx Iyy Zxx Zyy rxx ryy SECTION

W (kg/m) H (mm) b (mm) tw (mm) tf (mm) r (mm) cm2 cm4 cm4 cm3 cm3 cm cm

UB 203X133X25 25.10 203.2 133.2 5.7 7.8 7.6 31.97 2340 307.6 230.3 46.2 8.56 3.1 UB 203X133X25

UB 254X146X37 37.00 256 146.4 6.3 10.9 7.6 47.17 5537.0 570.6 432.6 78.0 10.83 3.48 UB 254X146X37

UB 305X165X46 46.10 306.6 165.7 6.7 11.8 8.9 58.75 9899.0 895.7 645.7 108.0 12.98 3.9 UB 305X165X46

UB 305X165X54 54.00 310.4 166.9 7.9 13.7 8.9 68.77 11700.0 1063.0 753.6 127.0 13.04 3.93 UB 305X165X54

NPB 400X180X57.4 57.40 397 180 7 12.0 21.0 73.1 20293.00 1170.6 1022.30 131.10 16.66 4 NPB 400X180X57.4

NPB 400X180X66.3 66.30 400 180 8.6 13.5 21.0 84.5 23128.00 1317.8 1156.40 146.40 16.55 3.95 NPB 400X180X66.3

NPB 450X190X77.6 77.60 450 190 9.4 14.6 21 98.8 33743.00 1675.9 1499.70 176.40 18.48 4.12 NPB 450X190X77.6

NPB 500X200X90.7 90.70 500 200 10.2 16 21 115.5 48199.00 2141.7 1927.90 241.20 20.43 4.31 NPB 500X200X90.7

NPB 600X220X107.6 107.6 597 220 9.8 17.5 24 137 82919 3116.3 2777.8 283.3 24.6 4.77 NPB 600X220X107.6

NPB 600X220X122.4 122.4 600 220 12 19 24 156 92083 3387.3 3069.4 307.9 24.3 4.66 NPB 600X220X122.4

Page 15: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN CALCULATION FOR PLANT TRANSFER CONVEYOR DESIGNED CHECKED SHEET

PDE VETRI

DEAD LOAD AND LIVE LOAD CALCULATION

Page 16: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DEAD LOAD & LIVE LOAD CALCULATIONDESIGNED CHECKED SHEET

PDE VETRI

SUPPORT REACTIONS FOR 600 mm WIDE WALKWAY

FOR DEAD LOAD

FOR LIVE LOAD

SUPPORT REACTIONS FOR 800 mm WIDE WALKWAY

FOR DEAD LOAD

FOR LIVE LOAD

Page 17: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DEAD LOAD & LIVE LOAD CALCULATIONDESIGNED CHECKED SHEET

PDE VETRI

SUPPORT REACTIONS FOR SIDE RUNNERS

FOR DEAD LOAD

Page 18: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DEAD LOAD & LIVE LOAD CALCULATIONDESIGNED CHECKED SHEET

PDE VETRI

DEAD LOAD (Unfactored load)

1 Self Weight of the Members =

Dead load due to walkway1 Dead load due to 600mm walkway = 1.056 KN (FROM STAAD)2 Dead load due to 800mm walkway = 1.815 KN (FROM STAAD)

Dead load due to siderunner1 Dead load due to side runner at intermediate portals = 0.554 KN (FROM STAAD)2 Dead load due to side runner at end portals = 0.202 KN (FROM STAAD)

Dead load due to Seal Plate

1 Self Weight of Seal Plate ( 0.00315 X7850 ) = 24.75Self Weight of Seal Plate = 24.75x INFLUENCE WIDTHInfluence Width = 3 mDead load due to Seal Plate = 0.2428x3

= 0.729 KN/mDead load due to Stiffeners for seal plate = 25 % of self weight of seal plate

= 0.25x0.729= 0.183 KN/m

2 Spillage weight = 50

= 1.480 KN/mDead load due to Utility pipes

Support is provided at every 3 m1 1 no of Pipe for SW

Weight due to 1 no of Pipe for SW = 15 kg/m= 45 kg= 0.4415 KN

2 1 no of Pipe for SAWeight due to 1 no of Pipe for SA = 12 kg/m

= 36 kg= 0.3532 KN

3 1 no of Pipe for IAWeight due to 1 no of Pipe for IA = 8 kg/m

= 24 kg= 0.2354 KN

3 2 no of Pipe for FFWeight due to 1 no of Pipe for FF = 35 kg/m

= 105 kg= 1.0301 KN Applied at two points

Dead load due to Cable Tray

Support is provided at every 3 m

1 5 no of 600 mm wide Cable Tray

Weight due to 1 no of 600 mm Cable Tray = 80 kg/m

= 240 kg

= 2.36 KN

1 4 no of 300 mm wide Cable Tray

Weight due to 1 no of 300 mm Cable Tray = 60 kg/m

= 180 kg

= 1.77 KN

Weight due to 2 no of 300 mm Cable Tray = 120 kg/m

= 360 kg

= 3.54 KN

Dead load due to Gutter, Water in Gutter

1 Unit Weight of Gutter sheeting = 7850

Dia of the Gutter = 300 mm

Thickness of gutter = 3.15 mm

Influence Width = 3 m

Dead load due to Gutter = 0.343 KN

2 Unit Weight of water = 1000

Dead load due to Water = 1.041

Total Load = 1.384 KN

Taken care by SELFWEIGHT Command in Staad Analysis

KN/m2

Kg/m2

kg/m3

kg/m3

Page 19: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DEAD LOAD & LIVE LOAD CALCULATIONDESIGNED CHECKED SHEET

PDE VETRI

LIVE LOAD (Unfactored load)

Live load due to walkway

1 Live load due to 600mm walkway = 2.475 KN (FROM STAAD)

2 Live load due to 800mm walkway = 5.775 KN (FROM STAAD)

Short post load data ( Refer Mechanical GA of load data of SEZ - SILO BUILDING Sheet 4 of 5)

Page 20: Base Plate Design is 800-2007

UTILITY PIPE SIZES AND WEIGHT

SL.NO PIPE SIZE-NB(mm) OD ID THK

1 15 21.3 15.76 2.77 161.26 1.27 0.2 7.47 8 62 20 26.7 20.96 2.87 214.87 1.69 0.35 8.04 9 63 25 33.4 26.64 3.38 318.77 2.51 0.56 9.07 10 64 32 42.2 35.09 3.56 431.61 3.39 0.97 10.36 11 65 40 48.3 40.93 3.69 516.5 4.06 1.32 11.38 12 66 50 60.3 52.48 3.91 692.68 5.44 2.17 13.61 14 67 65 73 62.69 5.16 1098.75 8.63 3.09 17.72 18 68 80 88.9 77.92 5.49 1438.61 11.3 4.77 22.07 23 69 100 114.3 102.26 6.02 2047.84 16.08 8.22 30.3 31 6

10 125 141.3 128.2 6.55 2772.81 21.77 12.91 40.68 41 611 150 168.3 154.08 7.11 3600.46 28.27 18.65 52.92 53 612 200 219.1 202.74 8.18 5420.28 42.55 32.29 80.84 81 613 250 273 254.46 9.27 7680.5 60.3 50.86 117.16 118 614 300 323.9 304.86 9.52 9402.47 73.81 73 158.81 159 1215 350 355.6 336.56 9.52 10350.55 81.26 88.97 182.23 183 1216 400 406.4 387.36 9.52 11869.88 93.18 117.85 223.03 224 1217 450 457.2 438.16 9.52 13389.2 105.11 150.79 267.9 268 1218 500 508 488.96 9.52 14908.53 117.04 187.78 316.82 317 1219 550 558.8 539.76 9.52 16427.85 128.96 228.82 369.78 370 1220 600 609.6 590.56 9.52 17947.17 140.89 273.92 426.81 427 1221 650 660.4 641.36 9.52 19466.5 152.82 323.07 487.89 488 1222 700 711.2 692.16 9.52 20985.82 164.74 376.28 553.02 554 1223 750 762 742.96 9.52 22505.15 176.67 433.54 635.21 636 2524 800 812.8 793.76 9.52 24024.47 188.6 494.85 708.45 709 2525 850 863.6 844.56 9.52 25543.8 200.52 560.22 785.74 786 2526 900 914.4 895.36 9.52 27063.12 212.45 629.63 867.08 868 2527 950 965 945.96 9.52 28576.46 224.33 702.81 952.14 953 2528 1000 1016 996.96 9.52 30101.77 236.3 780.64 1041.94 1042 25

CABLE TRAY LOAD

150 mm wide: 30 kg/meter/tray

300 mm wide: 60 kg/meter/tray

600 mm wide: 80 kg/meter/tray

AREA (mm2)

PIPE WEIGHT (Kg/m)

WATER WEIGHT (Kg/m)

TOTAL WEIGHT (Kg/m)

WEIGHT TO BE CONSIDERED

(Kg/m)

SUPPORT WEIGHT

Page 21: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN CALCULATION FOR PLANT TRANSFER CONVEYOR DESIGNED CHECKED SHEET

PDE VETRI

WIND LOAD CALCULATION

Page 22: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO. DATE

TITLE WIND LOAD CALCULATION ON MGTDESIGNED CHECKED SHEET

PDE VETRI

WIND LOAD ON SIDE CLADDINGS

Basic Wind speed = 50 m/s (As per DBR)

k1 = 1.08 (As per DBR)

k3 = 1 (As per DBR)

k2 = 1.1

Design wind speed = 1.08*1*1.1*50 = 59.4 m/s

Design wind pressure = 0.6*59.4^2 = 2117 N/m2 = 2.117 KN/m2

Refer Table 4 of IS 875 Part 3

Length of the building, l = 22.7 m

Width of the building, w = 7.1 m

Height of the building, H = 2.625 m

H/w = 0.37

l/w = 3.197

Spacing of MGT verticals = 3 m

Spacing of side runners = 1.2 m

7.1 m

C

X

q

22.7 mA B Z

D

External Pressure Coefficients, CpeWind Direction Face A Face B

0 + X 0.7 -0.25

90 + Z -0.5 -0.5

Internal Pressure Coefficients, Cpi

Assuming 5 to 20 % openings, Cpi = ± 0.500

(As per IS875 (PART III)-1987, TABLE 2,For Terrain category-2, class B )

Angle, q

Page 23: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO. DATE

TITLE WIND LOAD CALCULATION ON MGTDESIGNED CHECKED SHEET

PDE VETRI

Case 1: Wind Acting along +ve X dir ( θ = 0 ) Cpi = 0.500

Face Cpe Cpi Cpe - CpiA 0.700 0.500 0.200B -0.250 0.500 -0.750

0.200 -0.750

Case 2: Wind Acting along +ve X dir ( θ = 0 ) Cpi = -0.500

Face Cpe Cpi Cpe - CpiA 0.700 -0.500 1.200B -0.250 -0.500 0.250

1.200 0.250

Case 3: Wind Acting along +ve Z dir ( θ = 90 ) Cpi = 0.500

Face Cpe Cpi Cpe - CpiA -0.500 0.500 -1.000B -0.500 0.500 -1.000

-1.000 -1.000

Case 4: Wind Acting along +ve Z dir ( θ = 90 ) Cpi = -0.500

Face Cpe Cpi Cpe - CpiA -0.500 -0.500 0.000B -0.500 -0.500 0.000

0.000 0.000

Case 1: Wind Acting along +ve X dir ( θ = 0 ) Cpi = 0.500

Pd (KN/m2) Cpe - Cpi

Face A

2.117 0.200 1.200 0.50808 0.61

2.117 0.200 1.200 0.50808 1.68

Spacing, s (m)

UDL on side runner, (KN/m)

Point Load on MGT Verticals, (KN)

At End Portal Verticals

At Intermediate

verticals

C

D

A B

C

D

A B

C

D

A B

C

D

A B

Page 24: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO. DATE

TITLE WIND LOAD CALCULATION ON MGTDESIGNED CHECKED SHEET

PDE VETRI

Face B

2.117 -0.750 1.200 -1.9053 -2.29

2.117 -0.750 1.200 -1.9053 -6.29

Case 2: Wind Acting along +ve X dir ( θ = 0 ) Cpi = -0.500

Pd (KN/m2) Cpe - Cpi

Face A

2.117 1.200 1.200 3.04848 3.66

2.117 1.200 1.200 3.04848 10.06

Face B

2.117 0.250 1.200 0.6351 0.77

2.117 0.250 1.200 0.6351 2.1

Case 3: Wind Acting along +ve X dir ( θ = 90 ) Cpi = 0.500

Pd (KN/m2) Cpe - Cpi

Face A

2.117 -1.000 1.200 -2.5404 -3.05

2.117 -1.000 1.200 -2.5404 -8.39

Face B

2.117 -1.000 1.200 -2.5404 -3.05

2.117 -1.000 1.200 -2.5404 -8.39

Case 4: Wind Acting along +ve X dir ( θ = 90 ) Cpi = -0.500

Pd (KN/m2) Cpe - Cpi

Face A

2.117 0.000 1.200 0 0

2.117 0.000 1.200 0 0

Face B

2.117 0.000 1.200 0 0

2.117 0.000 1.200 0 0

At End Portal Verticals

At Intermediate

verticals

Spacing, s (m)

UDL on side runner, (KN/m)

Point Load on MGT Verticals, (KN)

At End Portal Verticals

At Intermediate

verticals

At End Portal Verticals

At Intermediate

verticals

Spacing, s (m)

UDL on side runner, (KN/m)

Point Load on MGT Verticals, (KN)

At End Portal Verticals

At Intermediate

verticals

At End Portal Verticals

At Intermediate

verticals

Spacing, s (m)

UDL on side runner, (KN/m)

Point Load on MGT Verticals, (KN)

At End Portal Verticals

At Intermediate

verticals

At End Portal Verticals

At Intermediate

verticals

Page 25: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF BOTTOM CROSS BEAMDESIGNED CHECKED SHEET

MFM VETRI

Member mkd. 1002 L/C 211

Factored

Vertical Bending Moment (Mz) = 9 KN- m Eff. Ly = 1.90 m

Horizontal Bending Moment (My) = 7.2 KN- m fu = 410

Shear force (V) = 4 KN = 1.25

Axial force- Tension (T) (Absolute value) = 0 KN = 1.1

Axial force- Compression (C) = 14 KN μ = 0.3

Eff. Length of the member (L x) = 3.80 m

Section assumed = MC250

PROPERTIES OF THE SECTION

D (or, h)= 250.0 mm 80.0 mm

7.200 mm 14.10 mm

307000 99 mm

38500 250

672190 82056

Area = 3900 mm2 38800000

2110000 23.7 mm

12 mm E= 200000 N/mm2

SECTION CLASSIFICATION

Type Channel e= 1 Limit Class

Flange criteria: 9.4 Plastic

b = 80mm 5.7 10.5 Compact

Plastic 15.7 Semi compact

Web criteria: Limit Class

d= 198mm 27.5 42 Plastic

Plastic 42 Compact

Hence the section is classified as Plastic 42 Semi compact

COMBINED AXIAL FORCE AND BENDING MOMENT-SECTION STRENGTH

(As per IS 800:2007, clause 9.3.1.2 ( c ))

a. Design strength in bending (Mdz)

Case: Laterally supported

= 1

= 84 KN- m

= 153 KN- m

Mdz = 83.73 KN- m

b. Design strength in bending (Mdy)

Case: Laterally supported

= 1

= 11.00 KN- m

= 19.00 KN- m

Mdy = 11.00 KN- m

γm1

γmo

bf =

tw = tf =

Zez = mm3 rxx =

Zey = mm3 fy = N/mm2

Zpz = mm3 Zpy = mm3

Ixx= mm4

Iyy = mm4 ryy =

r1=

b/tf =

d/tw =

Section is not susceptible to web buckling under shear force before yielding

(My/Mndy)a1 + (Mz/Mndz)a2 ≤ 1.0

Mndz = 1.11 Mdz (1-n) ≤ Mdz

Mndy = Mdy (for n ≤ 0.2) & Mndy = 1.56 Mdy (1-n) (n+0.6) (for n > 0.2)

Md (βbZpfy / ɣm0) ≤ (1.2Zefy / ɣm0) Where βb =

1.2Zefy / ɣm0

βbZpfy / ɣm0

Md (βbZpfy / ɣm0) ≤ (1.2Zefy / ɣm0) Where βb =

1.2Zefy / ɣm0

βbZpfy / ɣm0

Page 26: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF BOTTOM CROSS BEAMDESIGNED CHECKED SHEET

MFM VETRI

c. Design strength in Tension (Td)

i. Design strength due to yielding of Gross section:

= 886.36 KN

ii. Design strength due to rupture of critical section:

=

β =

≥ 0.7

Assume the connection as Web connected to gusset plate - welded connection

= 1.3 ≥ 0.7 O.K

w=80/2 = 40 mm bs =w = 40 mm

= 100 mm

14.1 mm

β = = 1.35

Therefore β = 1.3

= 1424.16 mm^2 (197.8x7.2)

= 2256 mm^2 (2x80x14.1)

= 1086.96 KN

Design tensile strength of the section (Td) = 886.36 KN

91.08 KN- m > 83.73 KN-m

83.73 KN-m

11 KN-m

d. Check for combined axial compression with bending

n= N/Nd = 886.36 KN a1= 1

n=14.007/886.36= 0.02 5n = 0.1 a2= 2

= 0.67 < 1 O.K

= 0.78 < 1 O.K

HENCE SAFE

e. Check for combined axial Tension with bending

Nd= 886.36 KN N= 0 KN a1= 1

n=0/886.36= 0 5n = 0 a2= 2

= N.A

= N.A

N.A

COMBINED AXIAL FORCE AND BENDING MOMENT - OVERALL MEMBER STRENGTH

a. Bending and axial tension Case: Laterally unsupported

Elastic lateral torsional buckling moment:

= 3800mm As per IS 800-2007 Table- 15 & 16

= 76923.08

Tensile strength , Tdg = Ag X (fy/ɣm0)

Tensile strength ,Tdn

≤ 0.9 x (fuɣmo/fyɣm1)

β = 0.9 x (fuɣmo/fyɣm1)

Length of end connection (Lc)

tf=

Anc

Ago

Tdn

Mndz = Mdz Where Mdz =

Therefore Mndz =

Mndy =

Where Nd = Ag x fy/ɣmo

As per IS 800-2007 Table- 17

(My/Mndy)a1 + (Mz/Mndz)a2

(N/Nd)+(My/Mdy)+(Mz/Mdz)

As per IS 800-2007 Table- 17

(My/Mndy)a1 + (Mz/Mndz)a2

(N/Nd)+(My/Mdy)+(Mz/Mdz)

LLT=

G = E/2(1+μ) N/mm2

0 .9 × Anc × ( f u /γm1) + β × Ag 0 × ( f y / γm0 )

1 .4 − 0 .076 × (w / t ) × ( f y / f u) × (bs /Lc )

M cr= √ π2EI y(LLT )

2 [GI t+ π 2EIw(LLT )

2 ]

1 .4 − 0 .076 × (w / t ) × ( f y / f u) × (bs /Lc )

Page 27: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF BOTTOM CROSS BEAMDESIGNED CHECKED SHEET

MFM VETRI

= 177100.59

As per IS 800-2007,clause E-1.2, Pg. 129

= 235.9mm

= 29354747275

= 71.322 KN- m

= 1

= 1.5350 ≤ 1.136

= 1.14

>0.4 Therefore Lateral buckling governs

= 0.21

= 1.8

= 0.37 ≤ 1

= 85

= 58.00 KN-m

Check for major axis bending (Mz)

= (As per IS 800:2007, clause 9.3.2.1)

y = 1

= N.A

N.A

Check for minor axis bending (My)

Meff = N.A

N.A

b. Bending and axial Compression

(As per IS 800:2007, clause 9.3.2.2)

= 0.9 = 0.9

P = 14 KN My = 7 KN- m Mz = 9 KN- m

i. Design strength under axial compression (Pdz)

Euler buckling stress fcc = Clause 7.1.2.1

Effective Slenderness ratios 3.80m 1.90m

= 38.3 = 80.17

Max. slenderness ratio = 80.2 < 250

HENCE SAFE

= 1345.2

It mm4 (bfxtf3)/3+((D-2xtf)xtw

3)/3

Iw = Warping constant =

hy = (D - tf)

Iw mm6

Mcr

Non dimensional slenderness ratio(λLT):

≤ Sqrt (1.2 Ze fy / Mcr)

βb

ʎLT

ʎLT

aLT

ΦLT

c LT

fbd N/mm2

Mdz

Meff (M- ψT Zec/A) ≤ Md

Meff

Cmy Cmz

(π2E)/ (KL/r) 2

KLz = Kly =

KLz Kly

fcc N/mm2

b p yLT

cr

Z f

M

χ LT={ 1

φ LT +[φ LT2−λ

2LT ]0 . 5 }≤1.0

φ LT=0 .5 [1+α ( λ LT−0 . 2)+λLT2 ]

f bd= χ LT f y /γ mo

M d=β b Z p f bd

(1−β f ) β f I yh y2

Page 28: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF BOTTOM CROSS BEAMDESIGNED CHECKED SHEET

MFM VETRI

Non- dimensional effective slenderness ratio

= 0.43 tf<40mm

Buckling class about z-z axis = a h/bf = 3.13 >1.2

α = 0.21

Ф = 0.5[1 + (λ – 0.2)+λ2] (As per IS 800:2007, clause 7.1.2.1)

= 0.62

Stress reduction factor (χ):

χ = (As per IS 800:2007, clause 7.1.2.1)

= 0.94

=

= 213.64

= (As per IS 800:2007, clause 7.1.2)

= 833.2 KN

ii. Design strength under axial compression (Pdy)

= 307.13

l = 0.9

tf<40mm Class = b

Ф = 1.02 α = 0.34

Stress reduction factor (χ) = 0.67

= 152.27

= 594 KN

iii. Design bending strength considering laterally unsupported length of C/S (Mdz)

= 58.00 KN-m (As per 3. a)

iv. Design bending strength considering laterally supported length of C/S (Mdy) (Cl.8.2.2)

= 11.00 KN-m (As per 2.b)

v. constants

= 0.0236

0.9 1.01

1.0 = 1.0100

0.0168 0.43

1.00 1.0134488718195

1.0038665506481

= 1 Assuming sway members

= 1.1364

= 0.99 ≥ 0.99

0.990

= 0.770

1/(Ф+ (Ф2 - λ2)0.5)

Design compressive stress, fcd

fcd χ fy / ɣmo

N/mm2

Design compressive strength, Pdzfcd X area of the section

fcc N/mm2

fcd N/mm2

Pdy

Mdz

Mdy

Ky = 1+ (ly-0.2) ny ≤ 1 +0.8 ny

ny = applied axial force / design axial strength about y axis

l y= 1+0.8 ny =

Ky =

Kz = 1+ (lz-0.2) nz ≤ 1 +0.8 nz

nz= l z=

Kz = 1+0.8 nz =

Kz =

KLT =

CmLT 0.6+0.4y =

l LT

KLT

Therefore, KLT =

λ=√ f y / f cc

Page 29: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF BOTTOM CROSS BEAMDESIGNED CHECKED SHEET

MFM VETRI

HENCE SAFE

= 0.51

HENCE SAFE

SHEAR CHECK

= 27.5 < 67

=

=

= 1800

= 259807.62 KN

= 236.19 KN

Utilization ratio = 0.02

HENCE SAFE

SUMMARY

ACTUAL ALLOWABLE

COMBINED AXIAL FORCE AND BENDING MOMENT-SECTION STRENGTH

Check for combined axial compression with bending

0.67 < 1 HENCE SAFE

0.78 < 1 HENCE SAFE

Check for combined axial Tension with bending

N.A N.A N.A N.A

N.A N.A N.A N.A

COMBINED AXIAL FORCE AND BENDING MOMENT - OVERALL MEMBER STRENGTH

Bending and axial tension

N.A N.A N.A N.A

N.A N.A N.A N.A

Bending and axial Compression

Check for slenderness 80.2 < 250.0 HENCE SAFE

0.770 < 1 HENCE SAFE

0.51 < 1 HENCE SAFE

SHEAR CHECK 0.02 < 1 HENCE SAFE

d/tw

No need to check for combined shear with bending

Vn = Vp Av x f yw/ √3

Vd Vn / ɣmo

Av mm2

Vn

Vd

(My/Mndy)a1 + (Mz/Mndz)a2

(N/Nd)+(My/Mdy)+(Mz/Mdz)

(My/Mndy)a1 + (Mz/Mndz)a2

(N/Nd)+(My/Mdy)+(Mz/Mdz)

Check for major axis bending (Mz)

Check for minor axis bending (My)

Check for major axis bending (Mz)

Check for minor axis bending (My)

Page 30: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF BOTTOM CROSS BEAMDESIGNED CHECKED SHEET

MFM VETRI

Member mkd. 1016 L/C 216

Factored

Vertical Bending Moment (Mz) = 1 KN- m Eff. Ly = 1.58 m

Horizontal Bending Moment (My) = 0.0 KN- m fu = 410

Shear force (V) = 1 KN = 1.25

Axial force- Tension (T) (Absolute value) = 0 KN = 1.1

Axial force- Compression (C) = 0 KN μ = 0.3

Eff. Length of the member (L x) = 3.16 m

Section assumed = MC150

PROPERTIES OF THE SECTION

D (or, h)= 150.0 mm 75.0 mm

5.700 mm 9.00 mm

105000 61 mm

19500 250

211250 41877

Area = 2130 mm2 7880000

1030000 22 mm

10 mm E= 200000 N/mm2

SECTION CLASSIFICATION

Type Channel e= 1 Limit Class

Flange criteria: 9.4 Plastic

b = 75mm 8.3 10.5 Compact

Plastic 15.7 Semi compact

Web criteria: Limit Class

d= 112mm 19.7 42 Plastic

Plastic 42 Compact

Hence the section is classified as Plastic 42 Semi compact

COMBINED AXIAL FORCE AND BENDING MOMENT-SECTION STRENGTH

(As per IS 800:2007, clause 9.3.1.2 ( c ))

a. Design strength in bending (Mdz)

Case: Laterally supported

= 1

= 29 KN- m

= 48 KN- m

Mdz = 28.64 KN- m

b. Design strength in bending (Mdy)

Case: Laterally supported

= 1

= 6.00 KN- m

= 10.00 KN- m

Mdy = 6.00 KN- m

γm1

γmo

bf =

tw = tf =

Zez = mm3 rxx =

Zey = mm3 fy = N/mm2

Zpz = mm3 Zpy = mm3

Ixx= mm4

Iyy = mm4 ryy =

r1=

b/tf =

d/tw =

Section is not susceptible to web buckling under shear force before yielding

(My/Mndy)a1 + (Mz/Mndz)a2 ≤ 1.0

Mndz = 1.11 Mdz (1-n) ≤ Mdz

Mndy = Mdy (for n ≤ 0.2) & Mndy = 1.56 Mdy (1-n) (n+0.6) (for n > 0.2)

Md (βbZpfy / ɣm0) ≤ (1.2Zefy / ɣm0) Where βb =

1.2Zefy / ɣm0

βbZpfy / ɣm0

Md (βbZpfy / ɣm0) ≤ (1.2Zefy / ɣm0) Where βb =

1.2Zefy / ɣm0

βbZpfy / ɣm0

Page 31: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF BOTTOM CROSS BEAMDESIGNED CHECKED SHEET

MFM VETRI

c. Design strength in Tension (Td)

i. Design strength due to yielding of Gross section:

= 484.09 KN

ii. Design strength due to rupture of critical section:

=

β =

≥ 0.7

Assume the connection as Web connected to gusset plate - welded connection

= 1.3 ≥ 0.7 O.K

w=75/2 = 37.5 mm bs =w = 37.5 mm

= 100 mm

9 mm

β = = 1.33

Therefore β = 1.3

= 638.4 mm^2 (112x5.7)

= 1350 mm^2 (2x75x9)

= 587.32 KN

Design tensile strength of the section (Td) = 484.09 KN

31.79 KN- m > 28.64 KN-m

28.64 KN-m

6 KN-m

d. Check for combined axial compression with bending

n= N/Nd = 484.09 KN a1= 1

n=0.036/484.09= 0 5n = 0 a2= 2

= 0 < 1 O.K

= 0.02 < 1 O.K

HENCE SAFE

e. Check for combined axial Tension with bending

Nd= 484.09 KN N= 0 KN a1= 1

n=0/484.09= 0 5n = 0 a2= 2

= N.A

= N.A

N.A

COMBINED AXIAL FORCE AND BENDING MOMENT - OVERALL MEMBER STRENGTH

a. Bending and axial tension Case: Laterally unsupported

Elastic lateral torsional buckling moment:

= 3160mm As per IS 800-2007 Table- 15 & 16

= 76923.08

Tensile strength , Tdg = Ag X (fy/ɣm0)

Tensile strength ,Tdn

≤ 0.9 x (fuɣmo/fyɣm1)

β = 0.9 x (fuɣmo/fyɣm1)

Length of end connection (Lc)

tf=

Anc

Ago

Tdn

Mndz = Mdz Where Mdz =

Therefore Mndz =

Mndy =

Where Nd = Ag x fy/ɣmo

As per IS 800-2007 Table- 17

(My/Mndy)a1 + (Mz/Mndz)a2

(N/Nd)+(My/Mdy)+(Mz/Mdz)

As per IS 800-2007 Table- 17

(My/Mndy)a1 + (Mz/Mndz)a2

(N/Nd)+(My/Mdy)+(Mz/Mdz)

LLT=

G = E/2(1+μ) N/mm2

0 .9 × Anc × ( f u /γm1) + β × Ag 0 × ( f y / γm0 )

1 .4 − 0 .076 × (w / t ) × ( f y / f u) × (bs /Lc )

M cr= √ π2EI y(LLT )

2 [GI t+ π 2EIw(LLT )

2 ]

1 .4 − 0 .076 × (w / t ) × ( f y / f u) × (bs /Lc )

Page 32: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF BOTTOM CROSS BEAMDESIGNED CHECKED SHEET

MFM VETRI

= 44598.49

As per IS 800-2007,clause E-1.2, Pg. 129

= 141.0mm

= 5119357500

= 30.076 KN- m

= 1

= 1.3251 ≤ 1.023

= 1.02

>0.4 Therefore Lateral buckling governs

= 0.21

= 1.4

= 0.55 ≤ 1

= 125

= 27.00 KN-m

Check for major axis bending (Mz)

= (As per IS 800:2007, clause 9.3.2.1)

y = 1

= N.A

N.A

Check for minor axis bending (My)

Meff = N.A

N.A

b. Bending and axial Compression

(As per IS 800:2007, clause 9.3.2.2)

= 0.9 = 0.9

P = 0 KN My = 0 KN- m Mz = 1 KN- m

i. Design strength under axial compression (Pdz)

Euler buckling stress fcc = Clause 7.1.2.1

Effective Slenderness ratios 3.16m 1.58m

= 52.0 = 71.82

Max. slenderness ratio = 71.8 < 250

HENCE SAFE

= 730.74

It mm4 (bfxtf3)/3+((D-2xtf)xtw

3)/3

Iw = Warping constant =

hy = (D - tf)

Iw mm6

Mcr

Non dimensional slenderness ratio(λLT):

≤ Sqrt (1.2 Ze fy / Mcr)

βb

ʎLT

ʎLT

aLT

ΦLT

c LT

fbd N/mm2

Mdz

Meff (M- ψT Zec/A) ≤ Md

Meff

Cmy Cmz

(π2E)/ (KL/r) 2

KLz = Kly =

KLz Kly

fcc N/mm2

b p yLT

cr

Z f

M

χ LT={ 1

φ LT +[φ LT2−λ

2LT ]0 . 5 }≤1.0

φ LT=0 .5 [1+α ( λ LT−0 . 2)+λLT2 ]

f bd= χ LT f y /γ mo

M d=β b Z p f bd

(1−β f ) β f I yh y2

Page 33: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF BOTTOM CROSS BEAMDESIGNED CHECKED SHEET

MFM VETRI

Non- dimensional effective slenderness ratio

= 0.58 tf<40mm

Buckling class about z-z axis = a h/bf = 2 >1.2

α = 0.21

Ф = 0.5[1 + (λ – 0.2)+λ2] (As per IS 800:2007, clause 7.1.2.1)

= 0.71

Stress reduction factor (χ):

χ = (As per IS 800:2007, clause 7.1.2.1)

= 0.89

=

= 202.27

= (As per IS 800:2007, clause 7.1.2)

= 430.84 KN

ii. Design strength under axial compression (Pdy)

= 382.7

l = 0.81

tf<40mm Class = b

Ф = 0.93 α = 0.34

Stress reduction factor (χ) = 0.72

= 163.64

= 349 KN

iii. Design bending strength considering laterally unsupported length of C/S (Mdz)

= 27.00 KN-m (As per 3. a)

iv. Design bending strength considering laterally supported length of C/S (Mdy) (Cl.8.2.2)

= 6.00 KN-m (As per 2.b)

v. constants

= 0.0001

0.81 1

1.0 = 1.0000

0.0001 0.58

1.00 1.000066846161

1.00003175192647

= 1 Assuming sway members

= 1.0234

= 0.99 ≥ 0.99

0.990

= 0.020

1/(Ф+ (Ф2 - λ2)0.5)

Design compressive stress, fcd

fcd χ fy / ɣmo

N/mm2

Design compressive strength, Pdzfcd X area of the section

fcc N/mm2

fcd N/mm2

Pdy

Mdz

Mdy

Ky = 1+ (ly-0.2) ny ≤ 1 +0.8 ny

ny = applied axial force / design axial strength about y axis

l y= 1+0.8 ny =

Ky =

Kz = 1+ (lz-0.2) nz ≤ 1 +0.8 nz

nz= l z=

Kz = 1+0.8 nz =

Kz =

KLT =

CmLT 0.6+0.4y =

l LT

KLT

Therefore, KLT =

λ=√ f y / f cc

Page 34: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF BOTTOM CROSS BEAMDESIGNED CHECKED SHEET

MFM VETRI

HENCE SAFE

= 0.02

HENCE SAFE

SHEAR CHECK

= 19.7 < 67

=

=

= 855

= 123408.62 KN

= 112.19 KN

Utilization ratio = 0

HENCE SAFE

SUMMARY

ACTUAL ALLOWABLE

COMBINED AXIAL FORCE AND BENDING MOMENT-SECTION STRENGTH

Check for combined axial compression with bending

0 < 1 HENCE SAFE

0.02 < 1 HENCE SAFE

Check for combined axial Tension with bending

N.A N.A N.A N.A

N.A N.A N.A N.A

COMBINED AXIAL FORCE AND BENDING MOMENT - OVERALL MEMBER STRENGTH

Bending and axial tension

N.A N.A N.A N.A

N.A N.A N.A N.A

Bending and axial Compression

Check for slenderness 71.8 < 250.0 HENCE SAFE

0.020 < 1 HENCE SAFE

0.02 < 1 HENCE SAFE

SHEAR CHECK 0 < 1 HENCE SAFE

d/tw

No need to check for combined shear with bending

Vn = Vp Av x f yw/ √3

Vd Vn / ɣmo

Av mm2

Vn

Vd

(My/Mndy)a1 + (Mz/Mndz)a2

(N/Nd)+(My/Mdy)+(Mz/Mdz)

(My/Mndy)a1 + (Mz/Mndz)a2

(N/Nd)+(My/Mdy)+(Mz/Mdz)

Check for major axis bending (Mz)

Check for minor axis bending (My)

Check for major axis bending (Mz)

Check for minor axis bending (My)

Page 35: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF TOP CROSS BEAMDESIGNED CHECKED SHEET

MFM VETRI

Member mkd. 2001 L/C 211

Factored

Vertical Bending Moment (Mz) = 0.512 KN m

Horizontal Bending Moment (My) = 0.02 KN m

Axial force - Compression = 46.837 KN

Axial force - Tension = 0 KN

Shear force (V) = 1.727 KN

Eff. Length of the member (KLz) = 1.9 m Kly = 1.9 m

Section assumed RHS TUBR80x40x4.0

PROPERTIES OF THE SECTION

D (or h) = 80 mm B = 40 mm

d = 72 mm b = 32 mm

t = 4 mm 1.1

450 310

19795 12208

Area = 855 mm2 16200

10740 15.85 mm

27.53 mm E = 200000

SECTION CLASSIFICATION

Ɛ= 0.898 0.81

For CHS only D / t = 20 CHS Class

Plastic 29.3 Ɛ 42 Ɛ^2 84 Ɛ Plastic

8 33.5 Ɛ 52 Ɛ^2 105 Ɛ Compact

18 42 Ɛ 146 Ɛ^2 126 ƐSemi compact

Flange criteria: Plastic

Web criteria: Plastic Therefore Plastic

HENCE Plastic

CHECK FOR COMPRESSIVE STRENGTH OF THE MEMBER

As per IS 800-2007,clause 7.1

69.02 119.87

Slenderness Ratio = 119.87

=

= 1.502

Buckling Class = a

Buckling Class a b c d

a 0.21 0.34 0.49 0.76

= 0.21

= 1.77

Therefore Stress Reduction Factor,

0.37

γmo=

fu = N/mm2 fy = N/mm2

Zpz = mm3Zpy = mm3

Zez= mm4

Zey= mm4 ry =

rz = N/mm2

Ɛ2=

Flange of RHS/SHS

Web of RHS / SHS

For SHS / RHS only b/tf =

d/tw =

KLz/rZ= KLy/ry=

Non-dimensional Slenderness ratio,

Therefore imperfection Factor = a

f = 0.5*[1 + a ( - 0.2) + 2]

c =

Therefore Design Strength of Section Pd = Ag.c.fy / ɣmo

√ f y . (KL/r )2 /π 2E

χ=1

[φ+(φ2−λ2) 0 .5 ]

√ f y . (KL/r )2 /π 2E

Page 36: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF TOP CROSS BEAMDESIGNED CHECKED SHEET

MFM VETRI

89153.18 N = 89.15 KN > 46.837 KN

HENCE SAFE

CHECK FOR TENSILE STRENGTH OF THE MEMBER

As per IS 800-2007,clause 6.1

The members are connected by welding. As the gross section and net section of members

are the same, the checks due to "Rupture of Critical Section" and "Design Strength due to

Block Shear" do not arise.

Hence Design strength is governed by "Yielding of Gross area" only.

240954.545454546 N = 240.95 KN > 0 KN

N.A

CHECK FOR SHEAR STRENGTH OF THE MEMBER

As per IS 800-2007,clause 8.4

Vertical shear capacity -Vdy:

= 610.71 Av =A h / (b + h)

= 109304.01

= 99.37 KN

= 0.02

Utilization ratio = 0.02

HENCE SAFE

So calculate Design Moment (Md) as per IS 800-2007, clause 8.2.1.2

Horizontal shear capacity -Vdz:

= 244.29

= 109304.01

= 99.37 KN

= 0.02

Utilization ratio = 0.02

HENCE SAFE

So calculate Design Moment (Md) as per IS 800-2007, clause 8.2.1.2

CHECK FOR FLEXURAL STRENGTH OF THE MEMBER

Vertical bending - Mdz As per IS 800- 2007,Clause 8.2.1.2

(for Simply supported) Where 1

= 5.48 KN- m

= 6 KN- m

= 5.48 KN- m

Utilization ratio = 0.093

HENCE SAFE

Horizontal bending - Mdy As per IS 800- 2007,Clause 8.2.1.2

Pd =

Therefore Design Strength of Section Tdg = Ag.fy / ɣmo

Pd =

Vd = Vn / g mo

As per IS 800-2007,clause 8.4.1.1Vn = Vp = Av x f yw/ √3

Av mm2

Vn

Vd

V/Vd

Av mm2 As per IS 800-2007,clause 8.4.1.1

Vn

Vd

V/Vd

βb =

Md=(βbZpfy/ɣm0)

Md=(1.2Zefy/ɣm0)

Design Bending Moment Md

M d=β b Z p f yγ mo

≤1 .2 Z e f yγ mo

M d=β b Z p f yγ mo

≤1 .2 Z e f yγ mo

Page 37: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF TOP CROSS BEAMDESIGNED CHECKED SHEET

MFM VETRI

(for Simply supported) Where 1

= 3.63 KN- m

= 3 KN- m

= 3.44 KN- m

Utilization ratio = 0.006

HENCE SAFE

CHECK FOR COMBINED AXIAL FORCE AND BENDING MOMENT

I) SECTION STRENGTH

As per IS 800:2007,clause 9.3.1.1

1. Axial Compression and Bending

N = 46.837 (C) KN = 89.15 KN

= 0.512 KN-m = 5.5 KN- m

= 0.0 KN- m = 3.4 KN- m

46.837/89.15+0.512/5.48+0.02/3.44 = 0.62 < 1

HENCE SAFE

2 Axial Tension and Bending

N = 0 (T) KN = 240.95 KN

= 0.512KN-m = 5.5 KN- m

= 0.0 KN- m = 3.4 KN- m

NA N.A 1

N.A

II) OVERALL MEMBER STRENGTH

Bending and Axial Tension

As per IS 800:2007,clause 9.3.2

Bending and Axial Compression

As per IS 800:2007,clause 9.3.2.2

SUMMARY

ACTUAL ALLOWABLE

46.837 KN < 89.15 KN HENCE SAFE

CHECK FOR TENSILE STRENGTH OF THE MEMBER 0 KN N.A N.A N.A

CHECK FOR FLEXURAL STRENGTH OF THE MEMBER

0.093 < 1 HENCE SAFE

0.006 < 1 HENCE SAFE

CHECK FOR SHEAR STRENGTH OF THE MEMBER

0.020 < 1 HENCE SAFE

0.020 < 1 HENCE SAFE

CHECK FOR COMBINED AXIAL FORCE AND BENDING MOMENT

1. Axial Compression and Bending 0.62 < 1 HENCE SAFE

2 Axial Tension and Bending N.A N.A N.A N.A

βb =

Md=(βbZpfy/ɣm0)

Md=(1.2Zefy/ɣm0)

Design Bending Moment Md

Nd

Mz Mdz

My Mdy

(N/Nd)+(My/Mdy)+(Mz/Mdz)

Nd

Mz Mdz

My Mdy

(N/Nd)+(My/Mdy)+(Mz/Mdz)

As per IS 800:2007 clause 8.2.2, For Hollow section resistance of lateral torsional buckling need not be checked seperately. Hence both these checks are not required in this situation

CHECK FOR COMPRESSIVE STRENGTH OF THE MEMBER

Check for major axis bending (Mz)

Check for minor axis bending (My)

Vertical shear capacity -Vdy

Horizontal shear capacity -Vdz

M d=β b Z p f yγ mo

≤1 .2 Z e f yγ mo

Page 38: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF ROOF TRUSS VERTICALSDESIGNED CHECKED SHEET

MFM VETRI

fy = 310 Mpa E = 200000 Mpa Ɛ = 0.9 = 1.1

Memb. No Le

ng

th

Axial Force

HOLLOW SECTION

SECTION CLASSIFICATION SLENDERNESS CHECK

T CKLz/rz KLy/ry

Inte

ract

ion

ra

tio

Inte

ract

ion

ra

tio

(m) (kN) (kN) (mm) (mm) (mm) (mm) (mm) (mm)

ROOF TRUSS VERTICAL MEMBERS

7001 212 0.63 3.2 0 TUBR60x40x4.5 767 630 630 630 630 20.84 15.08 Plastic Plastic Plastic 30.231 41.778 41.778 160 HENCE SAFE 194.33 0 HENCE SAFE 216.16 0.02

7002 211 0.63 3.84 0 TUBR60x40x4.5 767 630 630 630 630 20.84 15.08 Plastic Plastic Plastic 30.231 41.778 41.778 160 HENCE SAFE 194.33 0 HENCE SAFE 216.16 0.02

7003 210 0.63 3.78 0 TUBR60x40x4.5 767 630 630 630 630 20.84 15.08 Plastic Plastic Plastic 30.231 41.778 41.778 160 HENCE SAFE 194.33 0 HENCE SAFE 216.16 0.02

7004 210 0.63 3.69 0 TUBR60x40x4.5 767 630 630 630 630 20.84 15.08 Plastic Plastic Plastic 30.231 41.778 41.778 160 HENCE SAFE 194.33 0 HENCE SAFE 216.16 0.02

7005 210 0.63 4.28 0 TUBR60x40x4.5 767 630 630 630 630 20.84 15.08 Plastic Plastic Plastic 30.231 41.778 41.778 160 HENCE SAFE 194.33 0 HENCE SAFE 216.16 0.02

7006 210 0.63 3.69 0 TUBR60x40x4.5 767 630 630 630 630 20.84 15.08 Plastic Plastic Plastic 30.231 41.778 41.778 160 HENCE SAFE 194.33 0 HENCE SAFE 216.16 0.02

7007 210 0.63 3.78 0 TUBR60x40x4.5 767 630 630 630 630 20.84 15.08 Plastic Plastic Plastic 30.231 41.778 41.778 160 HENCE SAFE 194.33 0 HENCE SAFE 216.16 0.02

7008 211 0.63 3.84 0 TUBR60x40x4.5 767 630 630 630 630 20.84 15.08 Plastic Plastic Plastic 30.231 41.778 41.778 160 HENCE SAFE 194.33 0 HENCE SAFE 216.16 0.02

7009 212 0.63 3.2 0 TUBR60x40x4.5 767 630 630 630 630 20.84 15.08 Plastic Plastic Plastic 30.231 41.778 41.778 160 HENCE SAFE 194.33 0 HENCE SAFE 216.16 0.02

ɣm0

Load case

C/s area of sect.

Un

sup

p le

ng

th @

xa

xis

(l

ZZ

)

Un

sup

p le

ng

th @

ya

xis

(l

yy)

Eff

len

gth

@ x

axi

s

(Le

ZZ

)

Eff

len

gth

@ y

axi

s

(Le

yy)

r zz ryy

CHECK FOR COMPRESSION STRENGTH

CHECK FOR TENSION STRENGTH

web classific

ation

flange classific

ation

OVERALL SCTION

CLASSIFICATION

Govn. Slenderness

Allowable slenderness

Check for slenderness

De

sig

n C

om

pre

ssiv

e

stre

ng

th K

N

Is sect. Ok/Not Ok?

De

sig

n T

en

sile

st

ren

gth

Is sect. Ok/Not Ok?

cm2

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

Page 39: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF INCLINED ROOF TRUSS MEMBERSDESIGNED CHECKED SHEET

MFM VETRI

Member mkd. 7064 L/C 216

Factored

Vertical Bending Moment (Mz) = 4.311 KN m

Horizontal Bending Moment (My) = 0.015 KN m

Axial force - Compression = 0 KN

Axial force - Tension = 30.424 KN

Shear force (V) = 14.188 KN

Eff. Length of the member (KLz) = 2 m Kly = 0.976 m

Section assumed SHS TUBS60x60x4.0

PROPERTIES OF THE SECTION

D (or h) = 60 mm B = 60 mm

d = 52 mm b = 52 mm

t = 4 mm 1.1

450 310

16801 16801

Area = 855 mm2 14520

14520 22.57 mm

22.57 mm E = 200000

SECTION CLASSIFICATION

Ɛ= 0.898 0.81

For CHS only D / t = 15 CHS Class

Plastic 29.3 Ɛ 42 Ɛ^2 84 Ɛ Plastic

13 33.5 Ɛ 52 Ɛ^2 105 Ɛ Compact

13 42 Ɛ 146 Ɛ^2 126 ƐSemi compact

Flange criteria: Plastic

Web criteria: Plastic Therefore Plastic

HENCE Plastic

CHECK FOR COMPRESSIVE STRENGTH OF THE MEMBER

As per IS 800-2007,clause 7.1

88.61 43.24

Slenderness Ratio = 88.61

=

= 1.110

Buckling Class = a

Buckling Class a b c d

a 0.21 0.34 0.49 0.76

= 0.21

= 1.21

Therefore Stress Reduction Factor,

0.59

γmo=

fu = N/mm2 fy = N/mm2

Zpz = mm3Zpy = mm3

Zez= mm4

Zey= mm4 ry =

rz = N/mm2

Ɛ2=

Flange of RHS/SHS

Web of RHS / SHS

For SHS / RHS only

b/tf =

d/tw =

KLz/rZ= KLy/ry=

Non-dimensional Slenderness ratio,

Therefore imperfection Factor = a

f = 0.5*[1 + a ( - 0.2) + 2]

c =

Therefore Design Strength of Section Pd = Ag.c.fy / ɣmo

√ f y . (KL/r )2 /π 2E

χ=1

[φ+(φ2−λ2) 0 .5 ]

√ f y . (KL/r )2 /π 2E

Page 40: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF INCLINED ROOF TRUSS MEMBERSDESIGNED CHECKED SHEET

MFM VETRI

142163.18 N = 142.16 KN > 0 KN

HENCE SAFE

CHECK FOR TENSILE STRENGTH OF THE MEMBER

As per IS 800-2007,clause 6.1

The members are connected by welding. As the gross section and net section of members

are the same, the checks due to "Rupture of Critical Section" and "Design Strength due to

Block Shear" do not arise.

Hence Design strength is governed by "Yielding of Gross area" only.

240954.55 N = 241 KN > 30.424 KN

HENCE SAFE

CHECK FOR SHEAR STRENGTH OF THE MEMBER

As per IS 800-2007,clause 8.4

Vertical shear capacity -Vdy:

= 458.04 Av =A h / (b + h)

= 81979.35

= 74.53 KN

= 0.19

Utilization ratio = 0.19

HENCE SAFE

So calculate Design Moment (Md) as per IS 800-2007, clause 8.2.1.2

Horizontal shear capacity -Vdz:

= 396.96

= 81979.35

= 74.53 KN

= 0.19

Utilization ratio = 0.19

HENCE SAFE

So calculate Design Moment (Md) as per IS 800-2007, clause 8.2.1.2

CHECK FOR FLEXURAL STRENGTH OF THE MEMBER

Vertical bending - Mdz As per IS 800- 2007,Clause 8.2.1.2

Where 1

= 5 KN- m

= 5 KN- m

= 5.00 KN- m

Utilization ratio = 0.862

HENCE SAFE

Horizontal bending - Mdy As per IS 800- 2007,Clause 8.2.1.2

Pd =

Therefore Design Strength of Section Tdg = Ag.fy / ɣmo

Pd =

Vd = Vn / g mo

As per IS 800-2007,clause 8.4.1.1Vn = Vp = Av x f yw/ √3

Av mm2

Vn

Vd

V/Vd

Av mm2 As per IS 800-2007,clause 8.4.1.1

Vn

Vd

V/Vd

(for Simply supported)

βb =

Md=(βbZpfy/ɣm0)

Md=(1.2Zefy/ɣm0)

Design Bending Moment Md

M d=β b Z p f yγ mo

≤1 .2 Z e f yγ mo

M d=β b Z p f yγ mo

≤1 .2 Z e f yγ mo

Page 41: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF INCLINED ROOF TRUSS MEMBERSDESIGNED CHECKED SHEET

MFM VETRI

Where 1

= 4.91 KN- m

= 5 KN- m

= 4.73 KN- m

Utilization ratio = 0.003

HENCE SAFE

CHECK FOR COMBINED AXIAL FORCE AND BENDING MOMENT

I) SECTION STRENGTH

As per IS 800:2007,clause 9.3.1.1

1. Axial Compression and Bending

N = 0 (C) KN = 142.16 KN

= 4.311 KN-m = 5.0 KN- m

= 0.0 KN- m = 4.7 KN- m

0/142.16+4.311/5+0.015/4.73 = 0.87 1

NA

2 Axial Tension and Bending

N = 30.424 (T) KN = 241 KN

= 4.311KN-m = 5.0 KN- m

= 0.0 KN- m = 4.7 KN- m

30.424/241+4.311/5+0.015/4.73 = 0.99 < 1

HENCE SAFE

II) OVERALL MEMBER STRENGTH

Bending and Axial Tension

As per IS 800:2007,clause 9.3.2

Bending and Axial Compression

As per IS 800:2007,clause 9.3.2.2

SUMMARY

ACTUAL ALLOWABLE

0 KN < 142.16 KN HENCE SAFE

CHECK FOR TENSILE STRENGTH OF THE MEMBER 30.424 KN < 241 KN HENCE SAFE

CHECK FOR FLEXURAL STRENGTH OF THE MEMBER

0.862 < 1 HENCE SAFE

0.003 < 1 HENCE SAFE

CHECK FOR SHEAR STRENGTH OF THE MEMBER

0.190 < 1 HENCE SAFE

0.190 < 1 HENCE SAFE

CHECK FOR COMBINED AXIAL FORCE AND BENDING MOMENT

1. Axial Compression and Bending 0.87 < 1 HENCE SAFE

2 Axial Tension and Bending 0.99 < 1 HENCE SAFE

(for Simply supported)

βb =

Md=(βbZpfy/ɣm0)

Md=(1.2Zefy/ɣm0)

Design Bending Moment Md

Nd

Mz Mdz

My Mdy

(N/Nd)+(My/Mdy)+(Mz/Mdz)

Nd

Mz Mdz

My Mdy

(N/Nd)+(My/Mdy)+(Mz/Mdz)

As per IS 800:2007 clause 8.2.2, For Hollow section resistance of lateral torsional buckling need not be checked seperately. Hence both these checks are not required in this situation

CHECK FOR COMPRESSIVE STRENGTH OF THE MEMBER

Check for major axis bending (Mz)

Check for minor axis bending (My)

Vertical shear capacity -Vdy

Horizontal shear capacity -Vdz

M d=β b Z p f yγ mo

≤1 .2 Z e f yγ mo

Page 42: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF PLAN BRACINGSDESIGNED CHECKED SHEET

MFM VETRI

fy = 310 Mpa E = 200000 Mpa Ɛ = 0.9 = 1.1

Memb. No Le

ng

th

Axial Force

HOLLOW SECTION

SECTION CLASSIFICATION SLENDERNESS CHECK

T CKLz/rz KLy/ry

Inte

ract

ion

ra

tio

Inte

ract

ion

ra

tio

(m) (kN) (kN) (mm) (mm) (mm) (mm) (mm) (mm)

BOTTOM PLAN BRACING

3003 211 3.55 33.5 0 TUBS60x60x4.0 855 3550 3550 3550 3550 22.57 22.57 Plastic Plastic Plastic 157.289 157.289 157.289 250 HENCE SAFE 54.94 0 HENCE SAFE 240.96 0.14

3004 613 3.55 0.24 33.32 TUBS60x60x4.0 855 3550 3550 3550 3550 22.57 22.57 Plastic Plastic Plastic 157.289 157.289 157.289 250 HENCE SAFE 54.94 0.61 HENCE SAFE 240.96 0.01

3005 211 3.55 16.84 0 TUBS60x60x4.0 855 3550 3550 3550 3550 22.57 22.57 Plastic Plastic Plastic 157.289 157.289 157.289 250 HENCE SAFE 54.94 0 HENCE SAFE 240.96 0.07

3006 613 3.55 0.42 16.48 TUBS60x60x4.0 855 3550 3550 3550 3550 22.57 22.57 Plastic Plastic Plastic 157.289 157.289 157.289 250 HENCE SAFE 54.94 0.3 HENCE SAFE 240.96 0.01

3007 501 3.55 115.62 2.52 TUBS60x60x4.0 855 3550 3550 3550 3550 22.57 22.57 Plastic Plastic Plastic 157.289 157.289 157.289 250 HENCE SAFE 54.94 0.05 HENCE SAFE 240.96 0.48

3008 501 3.55 115.37 2.66 TUBS60x60x4.0 855 3550 3550 3550 3550 22.57 22.57 Plastic Plastic Plastic 157.289 157.289 157.289 250 HENCE SAFE 54.94 0.05 HENCE SAFE 240.96 0.48

3009 501 3.55 115.92 2.67 TUBS60x60x4.0 855 3550 3550 3550 3550 22.57 22.57 Plastic Plastic Plastic 157.289 157.289 157.289 250 HENCE SAFE 54.94 0.05 HENCE SAFE 240.96 0.49

3010 501 3.55 114.5 17.89 TUBS60x60x4.0 855 3550 3550 3550 3550 22.57 22.57 Plastic Plastic Plastic 157.289 157.289 157.289 250 HENCE SAFE 54.94 0.33 HENCE SAFE 240.96 0.48

3011 211 3.55 34.52 0.1 TUBS60x60x4.0 855 3550 3550 3550 3550 22.57 22.57 Plastic Plastic Plastic 157.289 157.289 157.289 250 HENCE SAFE 54.94 0.01 HENCE SAFE 240.96 0.15

3012 213 3.55 0.44 34.09 TUBS60x60x4.0 855 3550 3550 3550 3550 22.57 22.57 Plastic Plastic Plastic 157.289 157.289 157.289 250 HENCE SAFE 54.94 0.63 HENCE SAFE 240.96 0.01

3013 211 3.55 51.19 0.1 TUBS60x60x4.0 855 3550 3550 3550 3550 22.57 22.57 Plastic Plastic Plastic 157.289 157.289 157.289 250 HENCE SAFE 54.94 0.01 HENCE SAFE 240.96 0.22

3014 213 3.55 0.27 50.94 TUBS60x60x4.0 855 3550 3550 3550 3550 22.57 22.57 Plastic Plastic Plastic 157.289 157.289 157.289 250 HENCE SAFE 54.94 0.93 HENCE SAFE 240.96 0.01

3015 211 3.55 68.04 0.11 TUBS72x72x4.0 1047 3550 3550 3550 3550 27.47 27.47 Plastic Plastic Plastic 129.232 129.232 129.232 250 HENCE SAFE 95.61 0.01 HENCE SAFE 295.07 0.24

3016 213 3.55 0.28 67.78 TUBS72x72x4.0 1047 3550 3550 3550 3550 27.47 27.47 Plastic Plastic Plastic 129.232 129.232 129.232 250 HENCE SAFE 95.61 0.71 HENCE SAFE 295.07 0.01

3017 214 1.9 46.25 0.1 TUBS50x50x4.5 767 1900 1900 1900 1900 18.23 18.23 Plastic Plastic Plastic 104.224 104.224 104.224 250 HENCE SAFE 99.44 0.01 HENCE SAFE 216.16 0.22

3018 613 1.9 0.55 46.31 TUBS50x50x4.5 767 1900 1900 1900 1900 18.23 18.23 Plastic Plastic Plastic 104.224 104.224 104.224 250 HENCE SAFE 99.44 0.47 HENCE SAFE 216.16 0.01

ɣm0

Load case

C/s area of sect.

Un

sup

p le

ng

th @

xa

xis

(lZ

Z)

Un

sup

p le

ng

th @

ya

xis

(ly

y)

Eff

len

gth

@ x

axi

s

(Le

ZZ

)

Eff

len

gth

@ y

axi

s

(Le

yy)

r zz ryy

CHECK FOR COMPRESSION STRENGTH

CHECK FOR TENSION STRENGTH

web classific

ation

flange classific

ation

OVERALL SCTION

CLASSIFICATION

Govn. Slenderness

Allowable slenderness

Check for slenderness

De

sig

n C

om

pre

ssiv

e

stre

ng

th K

N

Is sect. Ok/Not Ok?

De

sig

n T

en

sile

st

ren

gth

Is sect. Ok/Not Ok?

cm2

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

Page 43: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF PLAN BRACINGSDESIGNED CHECKED SHEET

MFM VETRI

fy = 310 Mpa E = 200000 Mpa Ɛ = 0.9 = 1.1

Memb. No Le

ng

th

Axial Force

HOLLOW SECTION

SECTION CLASSIFICATION SLENDERNESS CHECK

T CKLz/rz KLy/ry

Inte

ract

ion

ra

tio

Inte

ract

ion

ra

tio

(m) (kN) (kN) (mm) (mm) (mm) (mm) (mm) (mm)

ɣm0

Load case

C/s area of sect.

Un

sup

p le

ng

th @

xa

xis

(lZ

Z)

Un

sup

p le

ng

th @

ya

xis

(ly

y)

Eff

len

gth

@ x

axi

s

(Le

ZZ

)

Eff

len

gth

@ y

axi

s

(Le

yy)

r zz ryy

CHECK FOR COMPRESSION STRENGTH

CHECK FOR TENSION STRENGTH

web classific

ation

flange classific

ation

OVERALL SCTION

CLASSIFICATION

Govn. Slenderness

Allowable slenderness

Check for slenderness

De

sig

n C

om

pre

ssiv

e

stre

ng

th K

N

Is sect. Ok/Not Ok?

De

sig

n T

en

sile

st

ren

gth

Is sect. Ok/Not Ok?

cm2

3019 211 2.02 0 45.04 TUBS50x50x4.5 767 2020 2020 2020 2020 18.23 18.23 Plastic Plastic Plastic 110.807 110.807 110.807 250 HENCE SAFE 91.65 0.5 HENCE SAFE 216.16 0

3020 211 2.02 45.4 0 TUBS50x50x4.5 767 2020 2020 2020 2020 18.23 18.23 Plastic Plastic Plastic 110.807 110.807 110.807 250 HENCE SAFE 91.65 0 HENCE SAFE 216.16 0.22

TOP PLAN BRACING

4001 216 3.69 18.68 3.85 TUBS50x50x4.5 767 3690 3690 3690 3690 18.23 18.23 Plastic Plastic Plastic 202.414 202.414 202.414 250 HENCE SAFE 30.92 0.13 HENCE SAFE 216.16 0.09

4002 210 3.69 3.85 18.66 TUBS50x50x4.5 767 3690 3690 3690 3690 18.23 18.23 Plastic Plastic Plastic 202.414 202.414 202.414 250 HENCE SAFE 30.92 0.61 HENCE SAFE 216.16 0.02

4003 213 3.55 50.49 3.04 TUBS60x60x4.0 855 3550 3550 3550 3550 22.57 22.57 Plastic Plastic Plastic 157.289 157.289 157.289 250 HENCE SAFE 54.94 0.06 HENCE SAFE 240.96 0.21

4004 211 3.55 3.03 50.55 TUBS60x60x4.0 855 3550 3550 3550 3550 22.57 22.57 Plastic Plastic Plastic 157.289 157.289 157.289 250 HENCE SAFE 54.94 0.93 HENCE SAFE 240.96 0.02

4005 213 3.55 33.63 1.81 TUBS50x50x4.5 767 3550 3550 3550 3550 18.23 18.23 Plastic Plastic Plastic 194.734 194.734 194.734 250 HENCE SAFE 34 0.06 HENCE SAFE 216.16 0.16

4006 211 3.55 1.8 33.69 TUBS50x50x4.5 767 3550 3550 3550 3550 18.23 18.23 Plastic Plastic Plastic 194.734 194.734 194.734 250 HENCE SAFE 34 0.99 HENCE SAFE 216.16 0.01

4007 201 3.55 13.12 86.81 TUBS72x72x4.0 1047 3550 3550 3550 3550 27.47 27.47 Plastic Plastic Plastic 129.232 129.232 129.232 250 HENCE SAFE 95.61 0.91 HENCE SAFE 295.07 0.05

4008 201 3.55 1.9 87.58 TUBS72x72x4.0 1047 3550 3550 3550 3550 27.47 27.47 Plastic Plastic Plastic 129.232 129.232 129.232 250 HENCE SAFE 95.61 0.92 HENCE SAFE 295.07 0.01

4009 201 3.55 0.69 87.58 TUBS72x72x4.0 1047 3550 3550 3550 3550 27.47 27.47 Plastic Plastic Plastic 129.232 129.232 129.232 250 HENCE SAFE 95.61 0.92 HENCE SAFE 295.07 0.01

4010 201 3.55 1.95 86.81 TUBS72x72x4.0 1047 3550 3550 3550 3550 27.47 27.47 Plastic Plastic Plastic 129.232 129.232 129.232 250 HENCE SAFE 95.61 0.91 HENCE SAFE 295.07 0.01

4011 213 3.55 16.86 1.92 TUBS50x50x4.5 767 3550 3550 3550 3550 18.23 18.23 Plastic Plastic Plastic 194.734 194.734 194.734 250 HENCE SAFE 33.29 0.06 HENCE SAFE 216.16 0.08

4012 211 3.55 1.86 16.87 TUBS50x50x4.5 767 3550 3550 3550 3550 18.23 18.23 Plastic Plastic Plastic 194.734 194.734 194.734 250 HENCE SAFE 33.29 0.51 HENCE SAFE 216.16 0.01

4013 213 3.55 33.71 3.15 TUBS60x60x4.0 855 3550 3550 3550 3550 22.57 22.57 Plastic Plastic Plastic 157.289 157.289 157.289 250 HENCE SAFE 54.94 0.06 HENCE SAFE 240.96 0.14

4014 211 3.55 3.08 33.72 TUBS60x60x4.0 855 3550 3550 3550 3550 22.57 22.57 Plastic Plastic Plastic 157.289 157.289 157.289 250 HENCE SAFE 54.94 0.62 HENCE SAFE 240.96 0.02

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

Page 44: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF PLAN BRACINGSDESIGNED CHECKED SHEET

MFM VETRI

fy = 310 Mpa E = 200000 Mpa Ɛ = 0.9 = 1.1

Memb. No Le

ng

th

Axial Force

HOLLOW SECTION

SECTION CLASSIFICATION SLENDERNESS CHECK

T CKLz/rz KLy/ry

Inte

ract

ion

ra

tio

Inte

ract

ion

ra

tio

(m) (kN) (kN) (mm) (mm) (mm) (mm) (mm) (mm)

ɣm0

Load case

C/s area of sect.

Un

sup

p le

ng

th @

xa

xis

(lZ

Z)

Un

sup

p le

ng

th @

ya

xis

(ly

y)

Eff

len

gth

@ x

axi

s

(Le

ZZ

)

Eff

len

gth

@ y

axi

s

(Le

yy)

r zz ryy

CHECK FOR COMPRESSION STRENGTH

CHECK FOR TENSION STRENGTH

web classific

ation

flange classific

ation

OVERALL SCTION

CLASSIFICATION

Govn. Slenderness

Allowable slenderness

Check for slenderness

De

sig

n C

om

pre

ssiv

e

stre

ng

th K

N

Is sect. Ok/Not Ok?

De

sig

n T

en

sile

st

ren

gth

Is sect. Ok/Not Ok?

cm2

4015 208 3.55 10.48 3.95 TUBS50x50x4.5 767 3550 3550 3550 3550 18.23 18.23 Plastic Plastic Plastic 194.734 194.734 194.734 250 HENCE SAFE 33.29 0.12 HENCE SAFE 216.16 0.05

4016 210 3.55 3.97 10.46 TUBS50x50x4.5 767 3550 3550 3550 3550 18.23 18.23 Plastic Plastic Plastic 194.734 194.734 194.734 250 HENCE SAFE 33.29 0.32 HENCE SAFE 216.16 0.02

ROOF PLAN BRACING

6001 214 3.74 21.41 70.91 TUBS72x72x4.8 1231 1870 3740 1870 3740 27.09 27.09 Plastic Plastic Plastic 69.03 138.059 138.059 250 HENCE SAFE 100.61 0.71 HENCE SAFE 346.92 0.07

6002 501 3.74 59.94 33.64 TUBS72x72x4.8 1231 1870 3740 1870 3740 27.09 27.09 Plastic Plastic Plastic 69.03 138.059 138.059 250 HENCE SAFE 100.61 0.34 HENCE SAFE 346.92 0.18

6003 216 3.74 4.19 71.7 TUBS72x72x4.8 1231 1870 3740 1870 3740 27.09 27.09 Plastic Plastic Plastic 69.03 138.059 138.059 250 HENCE SAFE 100.61 0.72 HENCE SAFE 346.92 0.02

6004 207 3.74 73.63 1.18 TUBS72x72x4.8 1231 1870 3740 1870 3740 27.09 27.09 Plastic Plastic Plastic 69.03 138.059 138.059 250 HENCE SAFE 100.61 0.02 HENCE SAFE 346.92 0.22

6005 214 3.61 18.68 71.75 TUBS72x72x4.8 1231 1805 3610 1805 3610 27.09 27.09 Plastic Plastic Plastic 66.63 133.26 133.26 250 HENCE SAFE 107.2 0.67 HENCE SAFE 346.92 0.06

6006 501 3.61 61.66 25.07 TUBS72x72x4.8 1231 1805 3610 1805 3610 27.09 27.09 Plastic Plastic Plastic 66.63 133.26 133.26 250 HENCE SAFE 107.2 0.24 HENCE SAFE 346.92 0.18

6007 216 3.61 4.36 72.25 TUBS72x72x4.8 1231 1805 3610 1805 3610 27.09 27.09 Plastic Plastic Plastic 66.63 133.26 133.26 250 HENCE SAFE 107.2 0.68 HENCE SAFE 346.92 0.02

6008 207 3.61 67.69 0.94 TUBS72x72x4.8 1231 1805 3610 1805 3610 27.09 27.09 Plastic Plastic Plastic 66.63 133.26 133.26 250 HENCE SAFE 107.2 0.01 HENCE SAFE 346.92 0.2

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

Page 45: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF MGT VERTICALSDESIGNED CHECKED SHEET

MFM VETRI

Member mkd. 515 L/C 211

Factored

Vertical Bending Moment (Mz) = 14.014 KN m

Horizontal Bending Moment (My) = 0 KN m

Axial force - Compression = 68.476 KN

Axial force - Tension = 0 KN

Shear force (V) = 23.679 KN

Eff. Length of the member (KLz) = 2.625 m Kly = 2.625 m

Section assumed SHS TUBS100x100x5.0

PROPERTIES OF THE SECTION

D (or h) = 100 mm B = 100 mm

d = 90 mm b = 90 mm

t = 5 mm 1.1

450 310

62411 62411

Area = 1836 mm2 54220

54220 38.43 mm

38.43 mm E = 200000

SECTION CLASSIFICATION

Ɛ= 0.898 0.81

For CHS only D / t = 20 CHS Class

Plastic 29.3 Ɛ 42 Ɛ^2 84 Ɛ Plastic

18 33.5 Ɛ 52 Ɛ^2 105 Ɛ Compact

18 42 Ɛ 146 Ɛ^2 126 ƐSemi compact

Flange criteria: Plastic

Web criteria: Plastic Therefore Plastic

HENCE Plastic

CHECK FOR COMPRESSIVE STRENGTH OF THE MEMBER

As per IS 800-2007,clause 7.1

68.31 68.31

Slenderness Ratio = 68.31

=

= 0.856

Buckling Class = a

Buckling Class a b c d

a 0.21 0.34 0.49 0.76

= 0.21

= 0.94

Therefore Stress Reduction Factor,

0.75

γmo=

fu = N/mm2 fy = N/mm2

Zpz = mm3Zpy = mm3

Zez= mm4

Zey= mm4 ry =

rz = N/mm2

Ɛ2=

Flange of RHS/SHS

Web of RHS / SHS

For SHS / RHS only

b/tf =

d/tw =

KLz/rZ= KLy/ry=

Non-dimensional Slenderness ratio,

Therefore imperfection Factor = a

f = 0.5*[1 + a ( - 0.2) + 2]

c =

Therefore Design Strength of Section Pd = Ag.c.fy / ɣmo

√ f y . (KL/r )2 /π 2E

χ=1

[φ+(φ2−λ2) 0 .5 ]

√ f y . (KL/r )2 /π 2E

Page 46: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF MGT VERTICALSDESIGNED CHECKED SHEET

MFM VETRI

388063.64 N = 388.06 KN > 68.476 KN

HENCE SAFE

CHECK FOR TENSILE STRENGTH OF THE MEMBER

As per IS 800-2007,clause 6.1

The members are connected by welding. As the gross section and net section of members

are the same, the checks due to "Rupture of Critical Section" and "Design Strength due to

Block Shear" do not arise.

Hence Design strength is governed by "Yielding of Gross area" only.

517418.18 N = 518 KN > 0 KN

N.A

CHECK FOR SHEAR STRENGTH OF THE MEMBER

As per IS 800-2007,clause 8.4

Vertical shear capacity -Vdy:

= 966.32 Av =A h / (b + h)

= 172950.58

= 157.23 KN

= 0.15

Utilization ratio = 0.15

HENCE SAFE

So calculate Design Moment (Md) as per IS 800-2007, clause 8.2.1.2

Horizontal shear capacity -Vdz:

= 869.68

= 172950.58

= 157.23 KN

= 0.15

Utilization ratio = 0.15

HENCE SAFE

So calculate Design Moment (Md) as per IS 800-2007, clause 8.2.1.2

CHECK FOR FLEXURAL STRENGTH OF THE MEMBER

Vertical bending - Mdz As per IS 800- 2007,Clause 8.2.1.2

Where 1

= 19 KN- m

= 18 KN- m

= 18.00 KN- m

Utilization ratio = 0.779

HENCE SAFE

Horizontal bending - Mdy As per IS 800- 2007,Clause 8.2.1.2

Pd =

Therefore Design Strength of Section Tdg = Ag.fy / ɣmo

Pd =

Vd = Vn / g mo

As per IS 800-2007,clause 8.4.1.1Vn = Vp = Av x f yw/ √3

Av mm2

Vn

Vd

V/Vd

Av mm2 As per IS 800-2007,clause 8.4.1.1

Vn

Vd

V/Vd

(for Simply supported)

βb =

Md=(βbZpfy/ɣm0)

Md=(1.2Zefy/ɣm0)

Design Bending Moment Md

M d=β b Z p f yγ mo

≤1 .2 Z e f yγ mo

M d=β b Z p f yγ mo

≤1 .2 Z e f yγ mo

Page 47: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF MGT VERTICALSDESIGNED CHECKED SHEET

MFM VETRI

Where 1

= 18.34 KN- m

= 18 KN- m

= 17.59 KN- m

Utilization ratio = 0.000

HENCE SAFE

CHECK FOR COMBINED AXIAL FORCE AND BENDING MOMENT

I) SECTION STRENGTH

As per IS 800:2007,clause 9.3.1.1

1. Axial Compression and Bending

N = 68.476 (C) KN = 388.06 KN

= 14.014 KN-m = 18.0 KN- m

= 0.0 KN- m = 17.6 KN- m

68.476/388.06+14.014/18+0/17.59 = 0.96 < 1

HENCE SAFE

2 Axial Tension and Bending

N = 0 (T) KN = 518 KN

= 14.014KN-m = 18.0 KN- m

= 0.0 KN- m = 17.6 KN- m

NA N.A 1

N.A

II) OVERALL MEMBER STRENGTH

Bending and Axial Tension

As per IS 800:2007,clause 9.3.2

Bending and Axial Compression

As per IS 800:2007,clause 9.3.2.2

SUMMARY

ACTUAL ALLOWABLE

68.476 KN < 388.06 KN HENCE SAFE

CHECK FOR TENSILE STRENGTH OF THE MEMBER 0 KN N.A N.A N.A

CHECK FOR FLEXURAL STRENGTH OF THE MEMBER

0.779 < 1 HENCE SAFE

0.000 < 1 HENCE SAFE

CHECK FOR SHEAR STRENGTH OF THE MEMBER

0.150 < 1 HENCE SAFE

0.150 < 1 HENCE SAFE

CHECK FOR COMBINED AXIAL FORCE AND BENDING MOMENT

1. Axial Compression and Bending 0.96 < 1 HENCE SAFE

2 Axial Tension and Bending N.A N.A N.A N.A

(for Simply supported)

βb =

Md=(βbZpfy/ɣm0)

Md=(1.2Zefy/ɣm0)

Design Bending Moment Md

Nd

Mz Mdz

My Mdy

(N/Nd)+(My/Mdy)+(Mz/Mdz)

Nd

Mz Mdz

My Mdy

(N/Nd)+(My/Mdy)+(Mz/Mdz)

As per IS 800:2007 clause 8.2.2, For Hollow section resistance of lateral torsional buckling need not be checked seperately. Hence both these checks are not required in this situation

CHECK FOR COMPRESSIVE STRENGTH OF THE MEMBER

Check for major axis bending (Mz)

Check for minor axis bending (My)

Vertical shear capacity -Vdy

Horizontal shear capacity -Vdz

M d=β b Z p f yγ mo

≤1 .2 Z e f yγ mo

Page 48: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF MAIN GANTRY TRUSSDESIGNED CHECKED SHEET

MFM VETRI

fy = 310 Mpa E = 200000 Mpa Ɛ = 0.9 = 1.1

Memb. No Leng

th

Axial Force

HOLLOW SECTION

SECTION CLASSIFICATION SLENDERNESS CHECK

T CKLz/rz KLy/ry

Inte

ract

ion

ratio

Inte

ract

ion

ratio

(m) (kN) (kN) (mm) (mm) (mm) (mm) (mm) (mm)

TOP CHORD MEMBERS

401 214 3.16 74.1 32.2 TUBS100x100x4.0 1495 3160 3160 3160 3160 38.91 38.91 Plastic Plastic Plastic 81.214 81.214 81.214 250 HENCE SAFE 271.76 0.12 HENCE SAFE 421.32 0.18

402 216 3.16 79.3 6.76 TUBS100x100x4.0 1495 3160 3160 3160 3160 38.91 38.91 Plastic Plastic Plastic 81.214 81.214 81.214 250 HENCE SAFE 271.76 0.03 HENCE SAFE 421.32 0.19

403 207 3 18.88 244.38 TUBS100x100x4.0 1495 3000 3000 3000 3000 38.91 38.91 Plastic Plastic Plastic 77.102 77.102 77.102 250 HENCE SAFE 289.03 0.85 HENCE SAFE 421.32 0.05

404 201 3 89.9 228.47 TUBS100x100x4.0 1495 3000 3000 3000 3000 38.91 38.91 Plastic Plastic Plastic 77.102 77.102 77.102 250 HENCE SAFE 289.03 0.8 HENCE SAFE 421.32 0.22

405 207 3 23.55 331.31 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.97 HENCE SAFE 517.42 0.05

406 201 3 108.64 322.9 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.94 HENCE SAFE 517.42 0.21

407 207 3 23.56 301.05 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.88 HENCE SAFE 517.42 0.05

408 201 3 117.11 280.51 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.82 HENCE SAFE 517.42 0.23

409 207 3 23.56 301.05 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.88 HENCE SAFE 517.42 0.05

410 201 3 117.12 280.5 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.82 HENCE SAFE 517.42 0.23

411 207 3 22.34 329.98 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.96 HENCE SAFE 517.42 0.05

412 201 3 106.22 322.32 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.94 HENCE SAFE 517.42 0.21

413 207 3 16.44 241.71 TUBS100x100x4.0 1495 3000 3000 3000 3000 38.91 38.91 Plastic Plastic Plastic 77.102 77.102 77.102 250 HENCE SAFE 289.03 0.84 HENCE SAFE 421.32 0.04

414 201 3 85.04 227.31 TUBS100x100x4.0 1495 3000 3000 3000 3000 38.91 38.91 Plastic Plastic Plastic 77.102 77.102 77.102 250 HENCE SAFE 289.03 0.79 HENCE SAFE 421.32 0.21

415 214 3 74.86 21.75 TUBS100x100x4.0 1495 3000 3000 3000 3000 38.91 38.91 Plastic Plastic Plastic 77.102 77.102 77.102 250 HENCE SAFE 289.03 0.08 HENCE SAFE 421.32 0.18

416 216 3 74.06 6.95 TUBS100x100x4.0 1495 3000 3000 3000 3000 38.91 38.91 Plastic Plastic Plastic 77.102 77.102 77.102 250 HENCE SAFE 289.03 0.03 HENCE SAFE 421.32 0.18

ɣm0

Load case

C/s area of sect.

Un

sup

p le

ng

th @

xa

xis

(lZ

Z)

Un

sup

p le

ng

th @

ya

xis

(ly

y)

Eff

len

gth

@ x

axi

s

(Le

ZZ

)

Eff

len

gth

@ y

axi

s

(Le

yy)

r zz ryy

CHECK FOR COMPRESSION STRENGTH

CHECK FOR TENSION STRENGTH

web classific

ation

flange classific

ation

OVERALL SCTION

CLASSIFICATION

Govn. Slenderness

Allowable slenderness

Check for slenderness

De

sig

n C

om

pre

ssiv

e

stre

ng

th K

N

Is sect. Ok/Not Ok?

De

sig

n T

en

sile

st

ren

gth

Is sect. Ok/Not Ok?

cm2

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

Page 49: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF MAIN GANTRY TRUSSDESIGNED CHECKED SHEET

MFM VETRI

fy = 310 Mpa E = 200000 Mpa Ɛ = 0.9 = 1.1

Memb. No Leng

th

Axial Force

HOLLOW SECTION

SECTION CLASSIFICATION SLENDERNESS CHECK

T CKLz/rz KLy/ry

Inte

ract

ion

ratio

Inte

ract

ion

ratio

(m) (kN) (kN) (mm) (mm) (mm) (mm) (mm) (mm)

ɣm0

Load case

C/s area of sect.

Un

sup

p le

ng

th @

xa

xis

(lZ

Z)

Un

sup

p le

ng

th @

ya

xis

(ly

y)

Eff

len

gth

@ x

axi

s

(Le

ZZ

)

Eff

len

gth

@ y

axi

s

(Le

yy)

r zz ryy

CHECK FOR COMPRESSION STRENGTH

CHECK FOR TENSION STRENGTH

web classific

ation

flange classific

ation

OVERALL SCTION

CLASSIFICATION

Govn. Slenderness

Allowable slenderness

Check for slenderness

De

sig

n C

om

pre

ssiv

e

stre

ng

th K

N

Is sect. Ok/Not Ok?

De

sig

n T

en

sile

st

ren

gth

Is sect. Ok/Not Ok?

cm2

BOTTOM CHORD MEMBERS

301 214 3.163 200.234 15.159 TUBS100x100x5.0 1836 3163 3163 3163 3163 38.43 38.43 Plastic Plastic Plastic 82.306 82.306 82.306 250 HENCE SAFE 333.22 0.05 HENCE SAFE 517.42 0.39

302 216 3.163 202.008 5.78 TUBS100x100x5.0 1836 3163 3163 3163 3163 38.43 38.43 Plastic Plastic Plastic 82.306 82.306 82.306 250 HENCE SAFE 333.22 0.02 HENCE SAFE 517.42 0.4

303 214 3 198.01 75.22 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.22 HENCE SAFE 517.42 0.39

304 216 3 213.04 5.71 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.02 HENCE SAFE 517.42 0.42

305 214 3 356.23 100.05 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.3 HENCE SAFE 517.42 0.69

306 216 3 364.73 7.34 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.03 HENCE SAFE 517.42 0.71

307 214 3 354.55 108.6 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.32 HENCE SAFE 517.42 0.69

308 216 3 363.62 5.86 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.02 HENCE SAFE 517.42 0.71

309 214 3 353.44 123.12 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.36 HENCE SAFE 517.42 0.69

310 216 3 374.69 4.81 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.02 HENCE SAFE 517.42 0.73

311 214 3 354.19 114.2 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.34 HENCE SAFE 517.42 0.69

312 216 3 367.62 5.1 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.02 HENCE SAFE 517.42 0.72

313 214 3 194.8 88.99 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.26 HENCE SAFE 517.42 0.38

314 216 3 225.73 2.28 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.01 HENCE SAFE 517.42 0.44

315 214 3 196.48 45.946 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.14 HENCE SAFE 517.42 0.38

316 216 3 200.673 2.194 TUBS100x100x5.0 1836 3000 3000 3000 3000 38.43 38.43 Plastic Plastic Plastic 78.065 78.065 78.065 250 HENCE SAFE 344.61 0.01 HENCE SAFE 517.42 0.39

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

Page 50: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF MAIN GANTRY TRUSSDESIGNED CHECKED SHEET

MFM VETRI

fy = 310 Mpa E = 200000 Mpa Ɛ = 0.9 = 1.1

Memb. No Leng

th

Axial Force

HOLLOW SECTION

SECTION CLASSIFICATION SLENDERNESS CHECK

T CKLz/rz KLy/ry

Inte

ract

ion

ratio

Inte

ract

ion

ratio

(m) (kN) (kN) (mm) (mm) (mm) (mm) (mm) (mm)

ɣm0

Load case

C/s area of sect.

Un

sup

p le

ng

th @

xa

xis

(lZ

Z)

Un

sup

p le

ng

th @

ya

xis

(ly

y)

Eff

len

gth

@ x

axi

s

(Le

ZZ

)

Eff

len

gth

@ y

axi

s

(Le

yy)

r zz ryy

CHECK FOR COMPRESSION STRENGTH

CHECK FOR TENSION STRENGTH

web classific

ation

flange classific

ation

OVERALL SCTION

CLASSIFICATION

Govn. Slenderness

Allowable slenderness

Check for slenderness

De

sig

n C

om

pre

ssiv

e

stre

ng

th K

N

Is sect. Ok/Not Ok?

De

sig

n T

en

sile

st

ren

gth

Is sect. Ok/Not Ok?

cm2

BRACINGS

8001 201 4.11 15.62 258.53 TUBS100x100x6.0 2163 4110 4110 4110 4110 37.95 37.95 Plastic Plastic Plastic 108.301 108.301 108.301 250 HENCE SAFE 265.78 0.98 HENCE SAFE 609.58 0.03

8002 201 4.11 6.89 259.56 TUBS100x100x6.0 2163 4110 4110 4110 4110 37.95 37.95 Plastic Plastic Plastic 108.301 108.301 108.301 250 HENCE SAFE 265.78 0.98 HENCE SAFE 609.58 0.02

8003 214 3.99 212.21 14.58 TUBS60x60x4.0 855 3990 3990 3990 3990 22.57 22.57 Plastic Plastic Plastic 176.784 176.784 176.784 250 HENCE SAFE 44.34 0.33 HENCE SAFE 240.96 0.89

8004 216 3.99 212.45 2.32 TUBS60x60x4.0 855 3990 3990 3990 3990 22.57 22.57 Plastic Plastic Plastic 176.784 176.784 176.784 250 HENCE SAFE 44.34 0.06 HENCE SAFE 240.96 0.89

8005 214 3.99 127.04 12.6 TUBS60x60x4.0 855 3990 3990 3990 3990 22.57 22.57 Plastic Plastic Plastic 176.784 176.784 176.784 250 HENCE SAFE 44.34 0.29 HENCE SAFE 240.96 0.53

8006 216 3.99 127.48 1.09 TUBS60x60x4.0 855 3990 3990 3990 3990 22.57 22.57 Plastic Plastic Plastic 176.784 176.784 176.784 250 HENCE SAFE 44.34 0.03 HENCE SAFE 240.96 0.53

8007 214 3.99 42.07 10.66 TUBS60x60x4.0 855 3990 3990 3990 3990 22.57 22.57 Plastic Plastic Plastic 176.784 176.784 176.784 250 HENCE SAFE 44.34 0.25 HENCE SAFE 240.96 0.18

8008 501 3.99 42.71 0 TUBS60x60x4.0 855 3990 3990 3990 3990 22.57 22.57 Plastic Plastic Plastic 176.784 176.784 176.784 250 HENCE SAFE 44.34 0 HENCE SAFE 240.96 0.18

8009 216 3.99 43.44 2.52 TUBS60x60x4.0 855 3990 3990 3990 3990 22.57 22.57 Plastic Plastic Plastic 176.784 176.784 176.784 250 HENCE SAFE 44.34 0.06 HENCE SAFE 240.96 0.19

8010 214 3.99 42.6 10.55 TUBS60x60x4.0 855 3990 3990 3990 3990 22.57 22.57 Plastic Plastic Plastic 176.784 176.784 176.784 250 HENCE SAFE 44.34 0.24 HENCE SAFE 240.96 0.18

8011 216 3.99 128.41 5.9 TUBS60x60x4.0 855 3990 3990 3990 3990 22.57 22.57 Plastic Plastic Plastic 176.784 176.784 176.784 250 HENCE SAFE 44.34 0.14 HENCE SAFE 240.96 0.54

8012 214 3.99 127.37 9.49 TUBS60x60x4.0 855 3990 3990 3990 3990 22.57 22.57 Plastic Plastic Plastic 176.784 176.784 176.784 250 HENCE SAFE 44.34 0.22 HENCE SAFE 240.96 0.53

8013 216 3.99 213.57 9.34 TUBS60x60x4.0 855 3990 3990 3990 3990 22.57 22.57 Plastic Plastic Plastic 176.784 176.784 176.784 250 HENCE SAFE 44.34 0.22 HENCE SAFE 240.96 0.89

8014 214 3.99 212.33 8.49 TUBS60x60x4.0 855 3990 3990 3990 3990 22.57 22.57 Plastic Plastic Plastic 176.784 176.784 176.784 250 HENCE SAFE 44.34 0.2 HENCE SAFE 240.96 0.89

8015 201 3.99 11.08 264.72 TUBS100x100x6.0 2163 3990 3990 3990 3990 37.95 37.95 Plastic Plastic Plastic 105.139 105.139 105.139 250 HENCE SAFE 279.19 0.95 HENCE SAFE 609.58 0.02

8016 201 3.99 17.21 263.1 TUBS100x100x6.0 2163 3990 3990 3990 3990 37.95 37.95 Plastic Plastic Plastic 105.139 105.139 105.139 250 HENCE SAFE 279.19 0.95 HENCE SAFE 609.58 0.03

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

HENCE SAFE

Page 51: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF END PORTAL VERTICALSDESIGNED CHECKED SHEET

MFM VETRI

Member mkd. 503 L/C 211

Factored

Vertical Bending Moment (Mz) = 58 KN- m Eff. Ly = 2.63 m

Horizontal Bending Moment (My) = 1.9 KN- m fu = 410

Shear force (V) = 77 KN = 1.25

Axial force- Tension (T) (Absolute value) = 0 KN = 1.1

Axial force- Compression (C) = 241 KN μ = 0.3

Eff. Length of the member (L x) = 2.63 m

Section assumed = UB254x146x37

PROPERTIES OF THE SECTION

D (or, h)= 256.0 mm 146.4 mm

6.300 mm 10.90 mm

432600 108 mm

78000 250

466659 118983

Area = 4717 mm2 55370000

5706000 34.8 mm

7.6 mm E= 200000 N/mm2

SECTION CLASSIFICATION

Type Rolled- I e= 1 Limit Class

Flange criteria: 9.4 Plastic

b = 73mm 6.7 10.5 Compact

Plastic 15.7 Semi compact

Web criteria: Limit Class

d= 219mm 34.8 84 Plastic

Plastic 105 Compact

Hence the section is classified as Plastic 126 Semi compact

COMBINED AXIAL FORCE AND BENDING MOMENT-SECTION STRENGTH

(As per IS 800:2007, clause 9.3.1.2 ( c ))

a. Design strength in bending (Mdz)

Case: Laterally supported

= 1

= 118 KN- m

= 106 KN- m

Mdz = 106.06 KN- m

b. Design strength in bending (Mdy)

Case: Laterally supported

= 1

= 22.00 KN- m

= 28.00 KN- m

Mdy = 22.00 KN- m

γm1

γmo

bf =

tw = tf =

Zez = mm3 rxx =

Zey = mm3 fy = N/mm2

Zpz = mm3 Zpy = mm3

Ixx= mm4

Iyy = mm4 ryy =

r1=

b/tf =

d/tw =

Section is not susceptible to web buckling under shear force before yielding

(My/Mndy)a1 + (Mz/Mndz)a2 ≤ 1.0

Mndz = 1.11 Mdz (1-n) ≤ Mdz

Mndy = Mdy (for n ≤ 0.2) & Mndy = 1.56 Mdy (1-n) (n+0.6) (for n > 0.2)

Md (βbZpfy / ɣm0) ≤ (1.2Zefy / ɣm0) Where βb =

1.2Zefy / ɣm0

βbZpfy / ɣm0

Md (βbZpfy / ɣm0) ≤ (1.2Zefy / ɣm0) Where βb =

1.2Zefy / ɣm0

βbZpfy / ɣm0

Page 52: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF END PORTAL VERTICALSDESIGNED CHECKED SHEET

MFM VETRI

c. Design strength in Tension (Td)

i. Design strength due to yielding of Gross section:

= 1072.05 KN

ii. Design strength due to rupture of critical section:

=

β =

≥ 0.7

Assume the connection as Web connected to gusset plate - welded connection

= 1.3 ≥ 0.7 O.K

w=146.4/2 = 73.2 mm bs =w = 73.2 mm

= 100 mm

10.9 mm

β = = 1.17

Therefore β = 1.17

= 1379.7 mm^2 (219x6.3)

= 3191.52 mm^2 (2x146.4x10.9)

= 1255.94 KN

Design tensile strength of the section (Td) = 1072.05 KN

91.83 KN- m < 106.06 KN-m

91.83 KN-m

21.951072 KN-m

d. Check for combined axial compression with bending

n= N/Nd = 1072.05 KN a1= 1.1

n=240.942/1072.05= 0.22 5n = 1.1 a2= 2

= 0.47 < 1 O.K

= 0.85 < 1 O.K

HENCE SAFE

e. Check for combined axial Tension with bending

Nd= 1072.05 KN N= 0 KN a1= 1

n=0/1072.05= 0 5n = 0 a2= 2

= N.A

= N.A

N.A

COMBINED AXIAL FORCE AND BENDING MOMENT - OVERALL MEMBER STRENGTH

a. Bending and axial tension Case: Laterally unsupported

Elastic lateral torsional buckling moment:

= 2625mm As per IS 800-2007 Table- 15 & 16

= 76923.08

Tensile strength , Tdg = Ag X (fy/ɣm0)

Tensile strength ,Tdn

≤ 0.9 x (fuɣmo/fyɣm1)

β = 0.9 x (fuɣmo/fyɣm1)

Length of end connection (Lc)

tf=

Anc

Ago

Tdn

Mndz = Mdz Where Mdz =

Therefore Mndz =

Mndy =

Where Nd = Ag x fy/ɣmo

As per IS 800-2007 Table- 17

(My/Mndy)a1 + (Mz/Mndz)a2

(N/Nd)+(My/Mdy)+(Mz/Mdz)

As per IS 800-2007 Table- 17

(My/Mndy)a1 + (Mz/Mndz)a2

(N/Nd)+(My/Mdy)+(Mz/Mdz)

LLT=

G = E/2(1+μ) N/mm2

0 .9 × Anc × ( f u /γm1) + β × Ag 0 × ( f y / γm0 )

1 .4 − 0 .076 × (w / t ) × ( f y / f u) × (bs /Lc )

M cr= √ π2EI y(LLT )

2 [GI t+ π 2EIw(LLT )

2 ]

1 .4 − 0 .076 × (w / t ) × ( f y / f u) × (bs /Lc )

Page 53: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF END PORTAL VERTICALSDESIGNED CHECKED SHEET

MFM VETRI

= 145915.17

As per IS 800-2007,clause E-1.2, Pg. 129

= 245.1mm

= 85695575265

= 241.813 KN- m

= 1

= 0.6946 ≤ 0.733

= 0.69

>0.4 Therefore Lateral buckling governs

= 0.21

= 0.7

= 1.28 > 1

= 291

= 136.00 KN-m

Check for major axis bending (Mz)

= (As per IS 800:2007, clause 9.3.2.1)

y = 1

= N.A

N.A

Check for minor axis bending (My)

Meff = N.A

N.A

b. Bending and axial Compression

(As per IS 800:2007, clause 9.3.2.2)

= 0.9 = 0.9

P = 241 KN My = 2 KN- m Mz = 58 KN- m

i. Design strength under axial compression (Pdz)

Euler buckling stress fcc = Clause 7.1.2.1

Effective Slenderness ratios 2.63m 2.63m

= 24.2 = 75.43

Max. slenderness ratio = 75.4 < 250

HENCE SAFE

= 3359.91

It mm4 (bfxtf3)/3+((D-2xtf)xtw

3)/3

Iw = Warping constant =

hy = (D - tf)

Iw mm6

Mcr

Non dimensional slenderness ratio(λLT):

≤ Sqrt (1.2 Ze fy / Mcr)

βb

ʎLT

ʎLT

aLT

ΦLT

c LT

fbd N/mm2

Mdz

Meff (M- ψT Zec/A) ≤ Md

Meff

Cmy Cmz

(π2E)/ (KL/r) 2

KLz = Kly =

KLz Kly

fcc N/mm2

b p yLT

cr

Z f

M

χ LT={ 1

φ LT +[φ LT2−λ

2LT ]0 . 5 }≤1.0

φ LT=0 .5 [1+α ( λ LT−0 . 2)+λLT2 ]

f bd= χ LT f y /γ mo

M d=β b Z p f bd

(1−β f ) β f I yh y2

Page 54: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF END PORTAL VERTICALSDESIGNED CHECKED SHEET

MFM VETRI

Non- dimensional effective slenderness ratio

= 0.27 tf<40mm

Buckling class about z-z axis = a h/bf = 1.75 >1.2

α = 0.21

Ф = 0.5[1 + (λ – 0.2)+λ2] (As per IS 800:2007, clause 7.1.2.1)

= 0.54

Stress reduction factor (χ):

χ = (As per IS 800:2007, clause 7.1.2.1)

= 0.99

=

= 225

= (As per IS 800:2007, clause 7.1.2)

= 1061.33 KN

ii. Design strength under axial compression (Pdy)

= 346.92

l = 0.85

tf<40mm Class = b

Ф = 0.97 α = 0.34

Stress reduction factor (χ) = 0.7

= 159.09

= 751 KN

iii. Design bending strength considering laterally unsupported length of C/S (Mdz)

= 136.00 KN-m (As per 3. a)

iv. Design bending strength considering laterally supported length of C/S (Mdy) (Cl.8.2.2)

= 22.00 KN-m (As per 2.b)

v. constants

= 0.3208

0.85 1.25

1.2 = 1.2000

0.2270 0.27

1.02 1.1816151432636

1.01589132503557

= 1 Assuming sway members

= 0.6946

= 0.97 ≥ 0.95

0.970

= 0.830

1/(Ф+ (Ф2 - λ2)0.5)

Design compressive stress, fcd

fcd χ fy / ɣmo

N/mm2

Design compressive strength, Pdzfcd X area of the section

fcc N/mm2

fcd N/mm2

Pdy

Mdz

Mdy

Ky = 1+ (ly-0.2) ny ≤ 1 +0.8 ny

ny = applied axial force / design axial strength about y axis

l y= 1+0.8 ny =

Ky =

Kz = 1+ (lz-0.2) nz ≤ 1 +0.8 nz

nz= l z=

Kz = 1+0.8 nz =

Kz =

KLT =

CmLT 0.6+0.4y =

l LT

KLT

Therefore, KLT =

λ=√ f y / f cc

Page 55: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF END PORTAL VERTICALSDESIGNED CHECKED SHEET

MFM VETRI

HENCE SAFE

= 0.67

HENCE SAFE

SHEAR CHECK

= 34.8 < 67

=

=

= 1612.8

= 232787.63 KN

= 211.63 KN

Utilization ratio = 0.36

HENCE SAFE

SUMMARY

ACTUAL ALLOWABLE

COMBINED AXIAL FORCE AND BENDING MOMENT-SECTION STRENGTH

Check for combined axial compression with bending

0.47 < 1 HENCE SAFE

0.85 < 1 HENCE SAFE

Check for combined axial Tension with bending

N.A N.A N.A N.A

N.A N.A N.A N.A

COMBINED AXIAL FORCE AND BENDING MOMENT - OVERALL MEMBER STRENGTH

Bending and axial tension

N.A N.A N.A N.A

N.A N.A N.A N.A

Bending and axial Compression

Check for slenderness 75.4 < 250.0 HENCE SAFE

0.830 < 1 HENCE SAFE

0.67 < 1 HENCE SAFE

SHEAR CHECK 0.36 < 1 HENCE SAFE

d/tw

No need to check for combined shear with bending

Vn = Vp Av x f yw/ √3

Vd Vn / ɣmo

Av mm2

Vn

Vd

(My/Mndy)a1 + (Mz/Mndz)a2

(N/Nd)+(My/Mdy)+(Mz/Mdz)

(My/Mndy)a1 + (Mz/Mndz)a2

(N/Nd)+(My/Mdy)+(Mz/Mdz)

Check for major axis bending (Mz)

Check for minor axis bending (My)

Check for major axis bending (Mz)

Check for minor axis bending (My)

Page 56: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF END PORTAL BOTTOM CROSS BEAMSDESIGNED CHECKED SHEET

MFM VETRI

Member mkd. 8017 L/C 210

Factored

Vertical Bending Moment (Mz) = 51 KN- m Eff. Ly = 3.80 m

Horizontal Bending Moment (My) = 26 fu = 410

Shear force (V) = 56 KN = 1.25

Axial force- Tension (T) (Absolute value) = 0 KN = 1.1

Axial force- Compression (C) = 4 KN μ = 0.3

Eff. Length of the member (L x) = 3.80 m

Section assumed = UB305x165x46

PROPERTIES OF THE SECTION

D (or, h)= 306.6 mm 165.7 mm

6.700 mm 11.80 mm

645700 130 mm

108000 250

694215 164969

Area = 5875 mm2 98990000

8957000 39 mm

8.9 mm E= 200000 N/mm2

SECTION CLASSIFICATION

Type Rolled- I e= 1 Limit Class

Flange criteria: 9.4 Plastic

b = 83mm 7.0 10.5 Compact

Plastic 15.7 Semi compact

Web criteria: Limit Class

d= 265mm 39.6 84 Plastic

Plastic 105 Compact

Hence the section is classified as Plastic 126 Semi compact

COMBINED AXIAL FORCE AND BENDING MOMENT-SECTION STRENGTH

(As per IS 800:2007, clause 9.3.1.2 ( c ))

a. Design strength in bending (Mdz)

Case: Laterally supported

= 1

= 220 KN- m

= 158 KN- m

Mdz = 158.00 KN- m

b. Design strength in bending (Mdy)

Case: Laterally supported

= 1

= 37.00 KN- m

= 38.00 KN- m

Mdy = 37.00 KN- m

γm1

γmo

bf =

tw = tf =

Zez = mm3 rxx =

Zey = mm3 fy = N/mm2

Zpz = mm3 Zpy = mm3

Ixx= mm4

Iyy = mm4 ryy =

r1=

b/tf =

d/tw =

Section is not susceptible to web buckling under shear force before yielding

(My/Mndy)a1 + (Mz/Mndz)a2 ≤ 1.0

Mndz = 1.11 Mdz (1-n) ≤ Mdz

Mndy = Mdy (for n ≤ 0.2) & Mndy = 1.56 Mdy (1-n) (n+0.6) (for n > 0.2)

Md (βbZpfy / ɣm0) ≤ (1.2Zefy / ɣm0) Where βb =

1.5Zefy / ɣm0

βbZpfy / ɣm0

Md (βbZpfy / ɣm0) ≤ (1.2Zefy / ɣm0) Where βb =

1.5Zefy / ɣm0

βbZpfy / ɣm0

Page 57: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF END PORTAL BOTTOM CROSS BEAMSDESIGNED CHECKED SHEET

MFM VETRI

c. Design strength in Tension (Td)

i. Design strength due to yielding of Gross section:

= 1335.23 KN

ii. Design strength due to rupture of critical section:

=

β =

≥ 0.7

Assume the connection as Web connected to gusset plate - welded connection

= 1.3 ≥ 0.7 O.K

w=165.7/2 = 82.85 mm bs =w = 82.85 mm

= 100 mm

11.8 mm

β = = 1.13

Therefore β = 1.13

= 1776.84 mm^2 (265.2x6.7)

= 3910.52 mm^2 (2x165.7x11.8)

= 1528.82 KN

Design tensile strength of the section (Td) = 1335.23 KN

175.38 KN- m > 158.00 KN-m

158 KN-m

37 KN-m

d. Check for combined axial compression with bending

n= N/Nd = 1335.23 KN a1= 1

n=4/1335.23= 0 5n = 0 a2= 2

= 0.79 < 1 O.K

= 0.99 < 1 O.K

HENCE SAFE

e. Check for combined axial Tension with bending

Nd= 1335.23 KN N= 0 KN a1= 1

n=0/1335.23= 0 5n = 0 a2= 2

= N.A

= N.A

N.A

COMBINED AXIAL FORCE AND BENDING MOMENT - OVERALL MEMBER STRENGTH

a. Bending and axial tension Case: Laterally unsupported

Elastic lateral torsional buckling moment:

= 3800mm As per IS 800-2007 Table- 15 & 16

= 76923.08

Tensile strength , Tdg = Ag X (fy/ɣm0)

Tensile strength ,Tdn

≤ 0.9 x (fuɣmo/fyɣm1)

β = 0.9 x (fuɣmo/fyɣm1)

Length of end connection (Lc)

tf=

Anc

Ago

Tdn

Mndz = Mdz Where Mdz =

Therefore Mndz =

Mndy =

Where Nd = Ag x fy/ɣmo

As per IS 800-2007 Table- 17

(My/Mndy)a1 + (Mz/Mndz)a2

(N/Nd)+(My/Mdy)+(Mz/Mdz)

As per IS 800-2007 Table- 17

(My/Mndy)a1 + (Mz/Mndz)a2

(N/Nd)+(My/Mdy)+(Mz/Mdz)

LLT=

G = E/2(1+μ) N/mm2

0 .9 × Anc × ( f u /γm1) + β × Ag 0 × ( f y / γm0 )

1 .4 − 0 .076 × (w / t ) × ( f y / f u) × (bs /Lc )

M cr= √ π2EI y(LLT )

2 [GI t+ π 2EIw(LLT )

2 ]

1 .4 − 0 .076 × (w / t ) × ( f y / f u) × (bs /Lc )

Page 58: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF END PORTAL BOTTOM CROSS BEAMSDESIGNED CHECKED SHEET

MFM VETRI

= 209872.24

As per IS 800-2007,clause E-1.2, Pg. 129

= 294.8mm

= 194606589320

= 228.777 KN- m

= 1

= 0.8710 ≤ 0.920

= 0.87

>0.4 Therefore Lateral buckling governs

= 0.21

= 0.9

= 0.89 ≤ 1

= 203

= 141.00 KN-m

Check for major axis bending (Mz)

= (As per IS 800:2007, clause 9.3.2.1)

y = 1

= N.A

N.A

Check for minor axis bending (My)

Meff = N.A

N.A

b. Bending and axial Compression

(As per IS 800:2007, clause 9.3.2.2)

= 0.9 = 0.9

P = 4 KN My = 26 KN- m Mz = 51 KN- m

i. Design strength under axial compression (Pdz)

Euler buckling stress fcc = Clause 7.1.2.1

Effective Slenderness ratios 3.80m 3.80m

= 29.3 = 97.44

Max. slenderness ratio = 97.4 < 250

HENCE SAFE

= 2303.1

It mm4 (bfxtf3)/3+((D-2xtf)xtw

3)/3

Iw = Warping constant =

hy = (D - tf)

Iw mm6

Mcr

Non dimensional slenderness ratio(λLT):

≤ Sqrt (1.2 Ze fy / Mcr)

βb

ʎLT

ʎLT

aLT

ΦLT

c LT

fbd N/mm2

Mdz

Meff (M- ψT Zec/A) ≤ Md

Meff

Cmy Cmz

(π2E)/ (KL/r) 2

KLz = Kly =

KLz Kly

fcc N/mm2

b p yLT

cr

Z f

M

χ LT={ 1

φ LT +[φ LT2−λ

2LT ]0 . 5 }≤1.0

φ LT=0 .5 [1+α ( λ LT−0 . 2)+λLT2 ]

f bd= χ LT f y /γ mo

M d=β b Z p f bd

(1−β f ) β f I yh y2

Page 59: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF END PORTAL BOTTOM CROSS BEAMSDESIGNED CHECKED SHEET

MFM VETRI

Non- dimensional effective slenderness ratio

= 0.33 tf<40mm

Buckling class about z-z axis = a h/bf = 1.85 >1.2

α = 0.21

Ф = 0.5[1 + (λ – 0.2)+λ2] (As per IS 800:2007, clause 7.1.2.1)

= 0.57

Stress reduction factor (χ):

χ = (As per IS 800:2007, clause 7.1.2.1)

= 0.97

=

= 220.45

= (As per IS 800:2007, clause 7.1.2)

= 1295.14 KN

ii. Design strength under axial compression (Pdy)

= 207.92

l = 1.1

tf<40mm Class = b

Ф = 1.26 α = 0.34

Stress reduction factor (χ) = 0.53

= 120.45

= 708 KN

iii. Design bending strength considering laterally unsupported length of C/S (Mdz)

= 141.00 KN-m (As per 3. a)

iv. Design bending strength considering laterally supported length of C/S (Mdy) (Cl.8.2.2)

= 37.00 KN-m (As per 2.b)

v. constants

= 0.0056

1.1 1

1.0 = 1.0000

0.0031 0.33

1.00 1.0024707753602

1.00040150099603

= 1 Assuming sway members

= 0.8710

= 0.99 ≥ 0.99

0.990

= 0.980

1/(Ф+ (Ф2 - λ2)0.5)

Design compressive stress, fcd

fcd χ fy / ɣmo

N/mm2

Design compressive strength, Pdzfcd X area of the section

fcc N/mm2

fcd N/mm2

Pdy

Mdz

Mdy

Ky = 1+ (ly-0.2) ny ≤ 1 +0.8 ny

ny = applied axial force / design axial strength about y axis

l y= 1+0.8 ny =

Ky =

Kz = 1+ (lz-0.2) nz ≤ 1 +0.8 nz

nz= l z=

Kz = 1+0.8 nz =

Kz =

KLT =

CmLT 0.6+0.4y =

l LT

KLT

Therefore, KLT =

λ=√ f y / f cc

Page 60: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF END PORTAL BOTTOM CROSS BEAMSDESIGNED CHECKED SHEET

MFM VETRI

HENCE SAFE

= 0.7

HENCE SAFE

SHEAR CHECK

= 39.6 < 67

=

=

= 2054.22

= 296501.12 KN

= 269.55 KN

Utilization ratio = 0.21

HENCE SAFE

SUMMARY

ACTUAL ALLOWABLE

COMBINED AXIAL FORCE AND BENDING MOMENT-SECTION STRENGTH

Check for combined axial compression with bending

0.79 < 1 HENCE SAFE

0.99 < 1 HENCE SAFE

Check for combined axial Tension with bending

N.A N.A N.A N.A

N.A N.A N.A N.A

COMBINED AXIAL FORCE AND BENDING MOMENT - OVERALL MEMBER STRENGTH

Bending and axial tension

N.A N.A N.A N.A

N.A N.A N.A N.A

Bending and axial Compression

Check for slenderness 97.4 < 250.0 HENCE SAFE

0.980 < 1 HENCE SAFE

0.7 < 1 HENCE SAFE

SHEAR CHECK 0.21 < 1 HENCE SAFE

d/tw

No need to check for combined shear with bending

Vn = Vp Av x f yw/ √3

Vd Vn / ɣmo

Av mm2

Vn

Vd

(My/Mndy)a1 + (Mz/Mndz)a2

(N/Nd)+(My/Mdy)+(Mz/Mdz)

(My/Mndy)a1 + (Mz/Mndz)a2

(N/Nd)+(My/Mdy)+(Mz/Mdz)

Check for major axis bending (Mz)

Check for minor axis bending (My)

Check for major axis bending (Mz)

Check for minor axis bending (My)

Page 61: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF END PORTAL ROOF MEMBERSDESIGNED CHECKED SHEET

MFM VETRI

Member mkd. 7027 L/C 211

Factored

Vertical Bending Moment (Mz) = 58 KN- m Eff. Ly = 0.98 m

Horizontal Bending Moment (My) = 6.2 KN- m fu = 410

Shear force (V) = 34 KN = 1.25

Axial force- Tension (T) (Absolute value) = 0 KN = 1.1

Axial force- Compression (C) = 37 KN μ = 0.3

Eff. Length of the member (L x) = 2.00 m

Section assumed = UB254x146x37

PROPERTIES OF THE SECTION

D (or, h)= 256.0 mm 146.4 mm

6.300 mm 10.90 mm

432600 108 mm

78000 250

466659 118983

Area = 4717 mm2 55370000

5706000 34.8 mm

7.6 mm E= 200000 N/mm2

SECTION CLASSIFICATION

Type Rolled- I e= 1 Limit Class

Flange criteria: 9.4 Plastic

b = 73mm 6.7 10.5 Compact

Plastic 15.7 Semi compact

Web criteria: Limit Class

d= 219mm 34.8 84 Plastic

Plastic 105 Compact

Hence the section is classified as Plastic 126 Semi compact

COMBINED AXIAL FORCE AND BENDING MOMENT-SECTION STRENGTH

(As per IS 800:2007, clause 9.3.1.2 ( c ))

a. Design strength in bending (Mdz)

Case: Laterally supported

= 1

= 118 KN- m

= 106 KN- m

Mdz = 106.06 KN- m

b. Design strength in bending (Mdy)

Case: Laterally supported

= 1

= 22.00 KN- m

= 28.00 KN- m

Mdy = 22.00 KN- m

γm1

γmo

bf =

tw = tf =

Zez = mm3 rxx =

Zey = mm3 fy = N/mm2

Zpz = mm3 Zpy = mm3

Ixx= mm4

Iyy = mm4 ryy =

r1=

b/tf =

d/tw =

Section is not susceptible to web buckling under shear force before yielding

(My/Mndy)a1 + (Mz/Mndz)a2 ≤ 1.0

Mndz = 1.11 Mdz (1-n) ≤ Mdz

Mndy = Mdy (for n ≤ 0.2) & Mndy = 1.56 Mdy (1-n) (n+0.6) (for n > 0.2)

Md (βbZpfy / ɣm0) ≤ (1.2Zefy / ɣm0) Where βb =

1.2Zefy / ɣm0

βbZpfy / ɣm0

Md (βbZpfy / ɣm0) ≤ (1.2Zefy / ɣm0) Where βb =

1.2Zefy / ɣm0

βbZpfy / ɣm0

Page 62: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF END PORTAL ROOF MEMBERSDESIGNED CHECKED SHEET

MFM VETRI

c. Design strength in Tension (Td)

i. Design strength due to yielding of Gross section:

= 1072.05 KN

ii. Design strength due to rupture of critical section:

=

β =

≥ 0.7

Assume the connection as Web connected to gusset plate - welded connection

= 1.3 ≥ 0.7 O.K

w=146.4/2 = 73.2 mm bs =w = 73.2 mm

= 100 mm

10.9 mm

β = = 1.17

Therefore β = 1.17

= 1379.7 mm^2 (219x6.3)

= 3191.52 mm^2 (2x146.4x10.9)

= 1255.94 KN

Design tensile strength of the section (Td) = 1072.05 KN

114.19 KN- m > 106.06 KN-m

106.06 KN-m

22 KN-m

d. Check for combined axial compression with bending

n= N/Nd = 1072.05 KN a1= 1

n=37.109/1072.05= 0.03 5n = 0.15 a2= 2

= 0.58 < 1 O.K

= 0.86 < 1 O.K

HENCE SAFE

e. Check for combined axial Tension with bending

Nd= 1072.05 KN N= 0 KN a1= 1

n=0/1072.05= 0 5n = 0 a2= 2

= N.A

= N.A

N.A

COMBINED AXIAL FORCE AND BENDING MOMENT - OVERALL MEMBER STRENGTH

a. Bending and axial tension Case: Laterally unsupported

Elastic lateral torsional buckling moment:

= 2000mm As per IS 800-2007 Table- 15 & 16

= 76923.08

Tensile strength , Tdg = Ag X (fy/ɣm0)

Tensile strength ,Tdn

≤ 0.9 x (fuɣmo/fyɣm1)

β = 0.9 x (fuɣmo/fyɣm1)

Length of end connection (Lc)

tf=

Anc

Ago

Tdn

Mndz = Mdz Where Mdz =

Therefore Mndz =

Mndy =

Where Nd = Ag x fy/ɣmo

As per IS 800-2007 Table- 17

(My/Mndy)a1 + (Mz/Mndz)a2

(N/Nd)+(My/Mdy)+(Mz/Mdz)

As per IS 800-2007 Table- 17

(My/Mndy)a1 + (Mz/Mndz)a2

(N/Nd)+(My/Mdy)+(Mz/Mdz)

LLT=

G = E/2(1+μ) N/mm2

0 .9 × Anc × ( f u /γm1) + β × Ag 0 × ( f y / γm0 )

1 .4 − 0 .076 × (w / t ) × ( f y / f u) × (bs /Lc )

M cr= √ π2EI y(LLT )

2 [GI t+ π 2EIw(LLT )

2 ]

1 .4 − 0 .076 × (w / t ) × ( f y / f u) × (bs /Lc )

Page 63: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF END PORTAL ROOF MEMBERSDESIGNED CHECKED SHEET

MFM VETRI

= 145915.17

As per IS 800-2007,clause E-1.2, Pg. 129

= 245.1mm

= 85695575265

= 388.179 KN- m

= 1

= 0.5482 ≤ 0.578

= 0.55

>0.4 Therefore Lateral buckling governs

= 0.21

= 0.6

= 1.19 > 1

= 271

= 127.00 KN-m

Check for major axis bending (Mz)

= (As per IS 800:2007, clause 9.3.2.1)

y = 1

= N.A

N.A

Check for minor axis bending (My)

Meff = N.A

N.A

b. Bending and axial Compression

(As per IS 800:2007, clause 9.3.2.2)

= 0.9 = 0.9

P = 37 KN My = 6 KN- m Mz = 58 KN- m

i. Design strength under axial compression (Pdz)

Euler buckling stress fcc = Clause 7.1.2.1

Effective Slenderness ratios 2.00m 0.98m

= 18.5 = 28.05

Max. slenderness ratio = 28.0 < 250

HENCE SAFE

= 5787.98

It mm4 (bfxtf3)/3+((D-2xtf)xtw

3)/3

Iw = Warping constant =

hy = (D - tf)

Iw mm6

Mcr

Non dimensional slenderness ratio(λLT):

≤ Sqrt (1.2 Ze fy / Mcr)

βb

ʎLT

ʎLT

aLT

ΦLT

c LT

fbd N/mm2

Mdz

Meff (M- ψT Zec/A) ≤ Md

Meff

Cmy Cmz

(π2E)/ (KL/r) 2

KLz = Kly =

KLz Kly

fcc N/mm2

b p yLT

cr

Z f

M

χ LT={ 1

φ LT +[φ LT2−λ

2LT ]0 . 5 }≤1.0

φ LT=0 .5 [1+α ( λ LT−0 . 2)+λLT2 ]

f bd= χ LT f y /γ mo

M d=β b Z p f bd

(1−β f ) β f I yh y2

Page 64: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF END PORTAL ROOF MEMBERSDESIGNED CHECKED SHEET

MFM VETRI

Non- dimensional effective slenderness ratio

= 0.21 tf<40mm

Buckling class about z-z axis = a h/bf = 1.75 >1.2

α = 0.21

Ф = 0.5[1 + (λ – 0.2)+λ2] (As per IS 800:2007, clause 7.1.2.1)

= 0.52

Stress reduction factor (χ):

χ = (As per IS 800:2007, clause 7.1.2.1)

= 1

=

= 227.27

= (As per IS 800:2007, clause 7.1.2)

= 1072.03 KN

ii. Design strength under axial compression (Pdy)

= 2509.51

l = 0.32

tf<40mm Class = b

Ф = 0.57 α = 0.34

Stress reduction factor (χ) = 0.96

= 218.18

= 1030 KN

iii. Design bending strength considering laterally unsupported length of C/S (Mdz)

= 127.00 KN-m (As per 3. a)

iv. Design bending strength considering laterally supported length of C/S (Mdy) (Cl.8.2.2)

= 22.00 KN-m (As per 2.b)

v. constants

= 0.0360

0.32 1.02

1.0 = 1.0000

0.0346 0.21

1.00 1.0276925086052

1.00034615635756

= 1 Assuming sway members

= 0.5482

= 0.99 ≥ 0.99

0.990

= 0.740

1/(Ф+ (Ф2 - λ2)0.5)

Design compressive stress, fcd

fcd χ fy / ɣmo

N/mm2

Design compressive strength, Pdzfcd X area of the section

fcc N/mm2

fcd N/mm2

Pdy

Mdz

Mdy

Ky = 1+ (ly-0.2) ny ≤ 1 +0.8 ny

ny = applied axial force / design axial strength about y axis

l y= 1+0.8 ny =

Ky =

Kz = 1+ (lz-0.2) nz ≤ 1 +0.8 nz

nz= l z=

Kz = 1+0.8 nz =

Kz =

KLT =

CmLT 0.6+0.4y =

l LT

KLT

Therefore, KLT =

λ=√ f y / f cc

Page 65: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling IC

BMH - EDRCPROJECT: RIL-MHS FOR GASIFICATION PROJECT

DOCUMENT NO DATE

TITLE: DESIGN OF END PORTAL ROOF MEMBERSDESIGNED CHECKED SHEET

MFM VETRI

HENCE SAFE

= 0.6

HENCE SAFE

SHEAR CHECK

= 34.8 < 67

=

=

= 1612.8

= 232787.63 KN

= 211.63 KN

Utilization ratio = 0.16

HENCE SAFE

SUMMARY

ACTUAL ALLOWABLE

COMBINED AXIAL FORCE AND BENDING MOMENT-SECTION STRENGTH

Check for combined axial compression with bending

0.58 < 1 HENCE SAFE

0.86 < 1 HENCE SAFE

Check for combined axial Tension with bending

N.A N.A N.A N.A

N.A N.A N.A N.A

COMBINED AXIAL FORCE AND BENDING MOMENT - OVERALL MEMBER STRENGTH

Bending and axial tension

N.A N.A N.A N.A

N.A N.A N.A N.A

Bending and axial Compression

Check for slenderness 28.0 < 250.0 HENCE SAFE

0.740 < 1 HENCE SAFE

0.6 < 1 HENCE SAFE

SHEAR CHECK 0.16 < 1 HENCE SAFE

d/tw

No need to check for combined shear with bending

Vn = Vp Av x f yw/ √3

Vd Vn / ɣmo

Av mm2

Vn

Vd

(My/Mndy)a1 + (Mz/Mndz)a2

(N/Nd)+(My/Mdy)+(Mz/Mdz)

(My/Mndy)a1 + (Mz/Mndz)a2

(N/Nd)+(My/Mdy)+(Mz/Mdz)

Check for major axis bending (Mz)

Check for minor axis bending (My)

Check for major axis bending (Mz)

Check for minor axis bending (My)

Page 66: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN CALCULATION FOR PLANT TRANSFER CONVEYOR DESIGNED CHECKED SHEET

PDE VETRI

ROOF TRUSS LOAD CALCULATION

Page 67: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE WIND LOAD CALCULATION ON ROOF TRUSSDESIGNED CHECKED SHEET

PDE VETRI

Spacing of Truss = 3.00 m

Roof angle = 18.43 deg.

spacing of purlin = 1.250 m

cantilever projection of sheets = 0.100 m

Initial spacing of purlin = 0.115 m

LOAD COMPUTATION

a) DEAD LOAD

1) Selfweight of Sheeting + Fixtures = 0.1

2) = 0.1

Threfore ,Total load of sheeting + fixtures = 0.200

3) Selfweight of Purlin TUBS60x60x4.0 = 0.066 KN/ m

LOAD DISTRIBUTION AT NODES

AT NODE 1 & 8 0.2x3x (1.25/2 +0.1) + 0.066x3 = 0.633 kN

AT NODE 2 , 3 , 6 & 7 0.2x3x ( 1.25/2 +1.25/2) +0.066X3 = 0.948 kN

AT NODE 4 & 5 0.2x3x (1.25/2 +0.115) + 0.066x3 = 0.642 kN

b) LIVE LOAD

Live load on roof truss (For non accessible) = 0.75

Deduction as per IS 875- part 2 = 0.75-0.02x(18.43-10) = 0.58

Dust load on truss = 0.5

Total live load = 1.08

Total live load (as per IS 875-part 2 - caluse 4.5.1 ) = 2/3 x1.08 = 0.72

LOAD DISTRIBUTION AT NODES

AT NODE 1 & 6 0.72 x3 X (1.25 /2+0.1) = 1.57 kN

AT NODE 2 & 5 0.72 x 3 X 1.25 = 2.7 kN

AT NODE 3 & 6 0.72 x3 X (1.25 /2+0.115) = 1.6 kN

3.wind load

Basic Wind Speed ( Vb ) = 50 m / s (As per DBR)

k1 = 1.08 (As per DBR)

k2 ( Terrain Category - 2, Class B, at 30m) = 1.1

k3 = 1 (As per DBR)

Design Wind Speed ( Vz ) 50 x 1.08 x 1.1 x 1 = 59.4 m / s (As per IS875 (PART III)-1987,clause 5.3)

Design Wind Pressure ( Pz ) 0.6 X 59.4 X 59.4 = 2.12 (As per IS875 (PART III)-1987,clause 5.4)

Length of Building ( l ) = 22.70 m

Width of Building ( w ) = 7.10 m

Height of Building ( h ) = 2.63 m

h / w = 0.37

For Roof Angle ( a ) = 18.43 deg

(As per IS875 (PART III)-1987,Table 5)

when q = 0 (wind perpendicular to ridge)

= -0.526

= -0.400

(Cpi) = 0.5 or -0.5

CASE 1

For Cpi = 0.5

-0.5256 -0.4SIDE PORTION Cpe Cpi Cpe-Cpi

WWS ROOF -0.5256 0.5 -1.0256

LWS ROOF -0.4 0.5 -0.9

0.50.5

CASE 2

For Cpi = -0.5

-0.4-0.5256 SIDE PORTION Cpe Cpi Cpe-Cpi

WWS ROOF -0.5256 -0.5 -0.0256

LWS ROOF -0.4 -0.5 0.1

KN/m2

Self weight of rafter & tie bracing (10 Kg/m2 ). KN/m2

KN/m2

KN/m2

KN/m2

KN/m2

KN/m2

KN/m2

(As per IS875 (PART III)-1987,TABLE 2,For Terrain category-2, class B )

kN/m2

Therefore, h / w < 1/2

(Cpe)windward

(Cpe)leeward

WWS

LWS

WWS LWS

Page 68: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE WIND LOAD CALCULATION ON ROOF TRUSSDESIGNED CHECKED SHEET

PDE VETRI

-0.5 -0.5

Page 69: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE WIND LOAD CALCULATION ON ROOF TRUSSDESIGNED CHECKED SHEET

PDE VETRI

when q = 90 (wind parallel to ridge)

= -0.7157

= -0.6

(Cpi) = 0.5 or -0.5

CASE 3

For Cpi = 0.5

-0.6SIDE PORTION Cpe Cpi Cpe-Cpi

-0.7157 WWS ROOF -0.7157 0.5 -1.2157

LWS ROOF -0.6 0.5 -1.1

0.5

0.5

CASE 4

For Cpi = -0.5

-0.6 SIDE PORTION Cpe Cpi Cpe-Cpi

-0.72 WWS ROOF -0.7157 -0.5 -0.2157

LWS ROOF -0.6 -0.5 -0.1

-0.5 -0.5

CASE 1:

= -1.2157x2.12 = -2.17

( Pw ) Leeward = -1.1x2.12 = -1.91

-4.48 KN -3.94 KN -7.72 KN -6.79 kN -4.58 KN -4.02 kN

-1.49 KN -1.31 KN -2.57 KN -2.26 kN -1.52 KN -1.34 kN

CASE 2:

= -0.0256x2.12 = -0.05

( Pw ) Leeward = 0.1x2.12 = 0.21

-0.1 KN 0.44 KN -0.18 KN 0.75 kN -0.11 KN 0.45 kN

(Cpe)windward

(Cpe)leeward

( Pw ) windward KN/m2

KN/m2

FORCE COMP.

AT WINDWARD SIDE END NODE

AT LEEWARD SIDE END NODE

AT WINDWARD SIDE

INTERMEDIATE NODE

AT LEEWARD SIDE INTERMEDIATE NODE

AT WINDWARD SIDE INTIAL NODE

AT LEEWARD SIDE INTIAL NODE

P COSa

-2.17 x 3 X (1.25 /2+0.1) X

COS 18.43

-1.908 x 3 X (1.25 /2+0.1) X

COS 18.43

-2.17 x 3 X 1.25 X COS 18.43

-1.908 x 3 X 1.25 X COS 18.43

-2.17 x 3 X ( 1.25 /2+0.115 ) X COS 18.43

-1.908 x 3 X ( 1.25 /2+0.115 ) X

COS 18.43

FORCE COMP.

AT WINDWARD SIDE END NODE

AT LEEWARD SIDE END NODE

AT WINDWARD SIDE

INTERMEDIATE NODE

AT LEEWARD SIDE INTERMEDIATE NODE

AT WINDWARD SIDE INTIAL NODE

AT LEEWARD SIDE INTIAL NODE

P sina

-2.17 x 3 X (1.25 /2+0.1) X sin

18.43

-1.908 x 3 X (1.25 /2+0.1) X sin

18.43

-2.17 x 3 X 1.25 X sin 18.43

-1.908 x 3 X 1.25 X sin 18.43

-2.17 x 3 X ( 1.25 /2+0.115 ) X sin 18.43

-1.908 x 3 X ( 1.25 /2+0.115 ) X

sin 18.43

( Pw ) windward KN/m2

KN/m2

FORCE COMP.

AT WINDWARD SIDE END NODE

AT LEEWARD SIDE END NODE

AT WINDWARD SIDE

INTERMEDIATE NODE

AT LEEWARD SIDE INTERMEDIATE NODE

AT WINDWARD SIDE INTIAL NODE

AT LEEWARD SIDE INTIAL NODE

P COSa

-0.05 x 3 X (1.25 /2+0.1) X

COS 18.43

0.212 x 3 X (1.25 /2+0.1) X

COS 18.43

-0.05 x 3 X 1.25 X COS 18.43

0.212 x 3 X 1.25 X COS 18.43

-0.05 x 3 X ( 1.25 /2+0.115 ) X COS 18.43

0.212 x 3 X ( 1.25 /2+0.115 ) X COS

18.43

WWSLWS

WWSLWS

Pcosa

Psina

a

a = 18.43

Pcosa

Psina

a

a = 18.43

Pcosa

Psina

a

a = 18.43

Page 70: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE WIND LOAD CALCULATION ON ROOF TRUSSDESIGNED CHECKED SHEET

PDE VETRI-0.1 KN 0.44 KN -0.18 KN 0.75 kN -0.11 KN 0.45 kN

P COSa

a = 18.43

Pcosa

Page 71: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE WIND LOAD CALCULATION ON ROOF TRUSSDESIGNED CHECKED SHEET

PDE VETRI

-0.03 KN 0.15 KN -0.06 KN 0.25 kN -0.04 KN 0.15 kN

CASE 3:

= -1.2157x2.12 = -2.58

( Pw ) Leeward = -1.1x2.12 = -2.33

-5.32 KN -4.81 KN -9.18 KN -8.3 kN -5.44 KN -4.92 kN

-1.77 KN -1.6 KN -3.06 KN -2.76 kN -1.81 KN -1.64 kN

CASE 4:

= -0.2157x2.12 = -0.46

( Pw ) Leeward = -0.1x2.12 = -0.21

-0.95 KN -0.44 KN -1.64 KN -0.75 kN -0.97 KN -0.45 kN

FORCE COMP.

AT WINDWARD SIDE END NODE

AT LEEWARD SIDE END NODE

AT WINDWARD SIDE

INTERMEDIATE NODE

AT LEEWARD SIDE INTERMEDIATE NODE

AT WINDWARD SIDE INTIAL NODE

AT LEEWARD SIDE INTIAL NODE

P sina

-0.05 x 3 X (1.25 /2+0.1) X sin

18.43

0.212 x 3 X (1.25 /2+0.1) X sin

18.43

-0.05 x 3 X 1.25 X sin 18.43

0.212 x 3 X 1.25 X sin 18.43

-0.05 x 3 X ( 1.25 /2+0.115 ) X sin 18.43

0.212 x 3 X ( 1.25 /2+0.115 ) X

sin 18.43

( Pw ) windward KN/m2

KN/m2

FORCE COMP.

AT WINDWARD SIDE END NODE

AT LEEWARD SIDE END NODE

AT WINDWARD SIDE

INTERMEDIATE NODE

AT LEEWARD SIDE INTERMEDIATE NODE

AT WINDWARD SIDE INTIAL NODE

AT LEEWARD SIDE INTIAL NODE

P COSa

-2.58 x 3 X (1.25 /2+0.1) X

COS 18.43

-2.332 x 3 X (1.25 /2+0.1) X

COS 18.43

-2.58 x 3 X 1.25 X COS 18.43

-2.332 x 3 X 1.25 X COS 18.43

-2.58 x 3 X ( 1.25 /2+0.115 ) X COS 18.43

-2.332 x 3 X ( 1.25 /2+0.115 ) X

COS 18.43

FORCE COMP.

AT WINDWARD SIDE END NODE

AT LEEWARD SIDE END NODE

AT WINDWARD SIDE

INTERMEDIATE NODE

AT LEEWARD SIDE INTERMEDIATE NODE

AT WINDWARD SIDE INTIAL NODE

AT LEEWARD SIDE INTIAL NODE

P sina

-2.58 x 3 X (1.25 /2+0.1) X sin

18.43

-2.332 x 3 X (1.25 /2+0.1) X sin

18.43

-2.58 x 3 X 1.25 X sin 18.43

-2.332 x 3 X 1.25 X sin 18.43

-2.58 x 3 X ( 1.25 /2+0.115 ) X sin 18.43

-2.332 x 3 X ( 1.25 /2+0.115 ) X

sin 18.43

( Pw ) windward KN/m2

KN/m2

FORCE COMP.

AT WINDWARD SIDE END NODE

AT LEEWARD SIDE END NODE

AT WINDWARD SIDE

INTERMEDIATE NODE

AT LEEWARD SIDE INTERMEDIATE NODE

AT WINDWARD SIDE INTIAL NODE

AT LEEWARD SIDE INTIAL NODE

P COSa

-0.46 x 3 X (1.25 /2+0.1) X

COS 18.43

-0.212 x 3 X (1.25 /2+0.1) X

COS 18.43

-0.46 x 3 X 1.25 X COS 18.43

-0.212 x 3 X 1.25 X COS 18.43

-0.46 x 3 X ( 1.25 /2+0.115 ) X COS 18.43

-0.212 x 3 X ( 1.25 /2+0.115 ) X

COS 18.43

Pcosa

Psina

a

a = 18.43

Pcosa

Psina

a

a = 18.43

Pcosa

Psinaa

a = 18.43

Pcosa

Psinaa

a = 18.43

Page 72: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE WIND LOAD CALCULATION ON ROOF TRUSSDESIGNED CHECKED SHEET

PDE VETRI-0.95 KN -0.44 KN -1.64 KN -0.75 kN -0.97 KN -0.45 kN

P COSa

a = 18.43

Pcosa

Page 73: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE WIND LOAD CALCULATION ON ROOF TRUSSDESIGNED CHECKED SHEET

PDE VETRI

-0.32 KN -0.15 KN -0.55 KN -0.25 kN -0.32 KN -0.15 kN

FORCE COMP.

AT WINDWARD SIDE END NODE

AT LEEWARD SIDE END NODE

AT WINDWARD SIDE

INTERMEDIATE NODE

AT LEEWARD SIDE INTERMEDIATE NODE

AT WINDWARD SIDE INTIAL NODE

AT LEEWARD SIDE INTIAL NODE

P sina

-0.46 x 3 X (1.25 /2+0.1) X sin

18.43

-0.212 x 3 X (1.25 /2+0.1) X sin

18.43

-0.46 x 3 X 1.25 X sin 18.43

-0.212 x 3 X 1.25 X sin 18.43

-0.46 x 3 X ( 1.25 /2+0.115 ) X sin 18.43

-0.212 x 3 X ( 1.25 /2+0.115 ) X

sin 18.43

Pcosa

Pcosa

Psina

a

a = 18.43

Page 74: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN CALCULATION FOR PLANT TRANSFER CONVEYOR DESIGNED CHECKED SHEET

PDE VETRI

CHECK FOR DEFLECTION AND RESONANCE

Page 75: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE CHECK FOR DEFLECTION AND RESONANCEDESIGNED CHECKED SHEET

PDE VETRIDEFLECTION CHECK FOR CONVEYOR GALLERY

DEFLECTION CHECK FOR CROSS BEAMLength of cross beams = 7.1 m

= 9.848 mm From STAAD Model

= span/500

= 14.2 mm >

HENCE SAFE

DEFLECTION CHECK FOR MGTLength of MGT = 22.7 m

= ### From STAAD Model

= span/325

= 69.85 mm >

HENCE SAFE

DEFLECTION CHECK FOR END PORTALHeight of end portal, H = 2.625 m

= ### From STAAD Model

= span/200

= 13.13 mmREVISE THE SECTIONS

CHECK FOR RESONANCE

Belt speed V = 3.49 m/secIdler diameter φ = 0.1397 mIdler frequency fd = V X 60 / (Pi X dia.)

= 3.49 X 60 / ( 3.14 X 0.1397)= 477.36505 rpm

fn < 0.5 X fd or 1.5 fd < fn238.68 rpm or 716.05 rpm

Deflection of MGT = ### MM From STAAD Model= 0.048 M (Delta)

f = 30ÖD

= 136.931 r.p.m

Maximum deflection of the member from analysis Dactual

Allowable deflection for the cross beams, Dallowable

Maximum deflection of the member

Maximum vertical deflection of MGT from analysis, Dactual

Allowable deflection for MGT, Dallowable

Maximum deflection of MGT

Maximum horizontal deflection from analysis, Dactual =

Allowable horizontal deflection for end portal, Dallowable =

As per NIT Document 10080-1-ENGG-CS-DBD-001 Cl. No. 9.1.5.1, Exclusion of frequency range is

Page 76: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE CHECK FOR DEFLECTION AND RESONANCEDESIGNED CHECKED SHEET

PDE VETRIHENCE SAFE

Page 77: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE BASE PLATE DESIGNDESIGNED CHECKED SHEET

PDE VETRI

250

Size of the column UB305x165x46 71.7 b (1mm strip)

Factored loads: x 47.8

Max. compression 453 KN Node: 140 306.6 450

Max. tension 26 KN Node: 1 a (1mm strip) Y

Max. shear 90 KN Node: 141 C/C = 100

For Compression42.15 165.7

Assume the base plate size as 250 x 450 Steel grade fy = 250

Max. compression 453 KN

Hence base pressure -(w) 4.03

< than 0.45times the strength of bedding material

Hence O.K

From Mukhanov's chart, Edge condition - Plate supported on three sides.

For Plate 1

a1 = 71.7 mm Checking whether panel acting as cantilever

d1 = 154.4 mm (Length of free edge) a1/d1 < 0.5

Hence a1/d1 = 0.46 0

Hence coefficient = 0

0*4.03*154.4^2= 0 N-mm 1.1

From Mukhanov's chart, Edge condition - Plate supported on three sides.

For Plate 2

a1 = 125 mm Checking whether panel acting as cantilever

d1 = 306.6 mm (Length of free edge) a1/d1 < 0.5

Hence a1/d1 = 0.41 31484.375

Hence coefficient = 0

0*4.03*306.6^2= 0 N-mm 1.1

= 4.03X71.7X71.7 / 2= 10358.89335 N-mm 250 N/mm2

Thickness of plate required = As per IS 800- 2007,Clause 8.2.1.2 410 N/mm2

Assuming width of the plate b = 1 mm

26.32 mm (From Compression only)

Minimum thickness check as per cl. 7.4.3

11.8 mm

= 3 mm a = 42.15 mm

Hence, ts = 11.8 mm b = 71.7 mm

Check for weld size connecting base plate to Column 6.7 mm

Total length availble for welding along the periphery of column A = 5875 mm2

2x(306.6+165.7-11.8)-6.7 = 914.3 mm

Deducting length 10% for end return = 822.87 mm

Capcacity of 6 mm weld = 0.803 KN / mm 1.25

= 236.71 189.37

Design force for weld = 401 KN

Required length of weld = ### < 822.87 mm HENCE SAFE

For Tension

Support reaction = 26 KN (Max Tension)

Assume 4 Nos 16 dia H.D bolts Grade 4.6 (Bearing type bolt)

mm2 N/mm2

N/mm2

Cantilever moment Md =

Hence moment on the base plate Md= gmo =

Cantilever moment Md =

Hence moment on the base plate Md= gmo =

Edge cantilever moment Md fy =

√(5 Md gmo / b fy) fu =

treqd =

ts = √(2.5 w (a2 - 0.3 b2)gmo / fy > tf tf =

tw =

gmw =

fwn = fu / √3 fwd= fwn / gmw =

Page 78: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE BASE PLATE DESIGNDESIGNED CHECKED SHEET

PDE VETRI

(As per Cl. 10.3.5) 1.25 As per IS 800- 2007,Table 5

240 400

57.91 KN 201.06

54.83 KN 160.848 mm^2

54.83 KN

43.86 KN

26/4= 6.5 KN Hence O.K

Diagonal distance from bolt centre to web = 70.7 mm

Moment in the plate due to bolt tension= 6.5 x 1000 x 70.7 = 459550 N-mm

Assuming width of the plate= 71.7 mm

Thickness of plate required = As per IS 800- 2007,Clause 8.2.1.2

11.87 mm (From tension only)

Hence provide thickness of base plate= 26.32 mm Round to 28 mm

Shear capacity of bolt:

e = 27.2

= 229600 N = 0.5 410

183.68 KN 18 mm

Therefore Shear capacity of single Bolt= 29.72 KN Hence O.K

Check for combined shear and Tension:

(Vsb / Vdb)^2 + (Tb / Tdb)^2 = 0.6 Vsb = 22.5 KN

<1 Hence O.K Tb = 6.5 KN

Design of stiffner plate x -

Moment at the face of the column web -(for compression in the coulmn)

4.03*(306.6/2+71.7)*((250))^2/2= 28335937.5 N-mm

Moment at face of stiffener (due to bolt tension) -

6500*71.7/2= 233025 N-mm

Assume plate thickness - 8 mm

Height of plate required = As per IS 800- 2007,Clause 8.2.1.2

= 279.15 mm Hence, Provide stiffner plate height as 300 mm

Design of stiffner plate y -

Moment at the face of the column web -(for compression in the coulmn)

4.03*(250/2)*(71.7)^2/2= 1294861.67 N-mm

Moment at face of stiffener (due to bolt tension) -

6500*1.7*16= 176800 N-mm

Assume plate thickness - 8 mm

Height of plate required = As per IS 800- 2007,Clause 8.2.1.2

= 59.67 mm Hence, Provide stiffner plate height as 300 mm

Tension capacity of bolt Tdb = Tnb / gmb gmb =

Tnb = 0.9 fub An < fyb Asb (gmb / gm0) fyb= N/mm2 fub = N/mm2

0.9 fub An = Shank area of the bolt(Asb)= mm2

fyb Asb (gmb/gm0)= Net tensile area at the bottom of threads (An)=

Tnb = ( Approx. 80 % of Asb)

Tension capacity of single bolt Tdb =

Tension/bolt (Tb) =

√(5 Md gmo / b fy)

treqd =

Vnpb = 2.5 kb d t fu Kb = Min (e / 3do, p/ 3 do - 0.25, fub/fu, 1)

fu =

Vdpb = do =

√(5 Md gmo / b fy)

√(5 Md gmo / b fy)

Page 79: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE BASE PLATE DESIGNDESIGNED CHECKED SHEET

MFM VETRI

200

Size of the column UB254x146x37 72 b (1mm strip)

Factored loads: x y

Max. compression ### Node: 70 256 400

Max. tension ### Node: 67 a (1mm strip)

Max. shear ### Node: 70 C/C = 100

For Compression146.4

Assume the base plate size as 200 x 400 Steel grade fy = 250

Max. compression ###

Hence base pressure -(w) 3.26

< than 0.45times the strength of bedding material

Hence O.K

From Mukhanov's chart, Edge condition - Plate supported on three sides.

a1 = 100 mm Checking whether panel acting as cantilever

d1 = 128 mm (Length of free edge) a1/d1 > 0.5

Hence a1/d1 = 0.78 NOT APPLICABLE

Hence coefficient = 0.0952

0.0952*3.26*128^2= 5084.807168 N-mm 1.1

= 3.26X72X72 / 2= 8449.92 N-mm 250 N/mm2

Thickness of plate required = As per IS 800- 2007,Clause 8.2.1.2 410 N/mm2

Assuming width of the plate b = 1 mm

13.63 mm (From Compression only)

Minimum thickness check as per cl. 7.4.3

10.9 mm

= 0 mm a = 26.8 mm

Hence, ts = ### b = 72 mm

Check for weld size connecting base plate to Column 6.3 mm

Total length availble for welding along the periphery of column

2x(146.4+146.4-6.3+256-10.9) = 1063.2 mm

Deducting length 10% for end return = 956.88 mm

Capcacity of 6 mm weld = 0.803 KN / mm 1.25

= 236.71 189.37

Required length of weld = ### < 956.88 mm HENCE SAFE

For Tension

Support reaction = ### (Max Tension)

Assume 4 Nos 20 dia H.D bolts Grade 4.6 (Bearing type bolt)

(As per Cl. 10.3.5) 1.25 As per IS 800- 2007,Table 5

240 400

90.48 KN 314.16

85.68 KN 251.328 mm^2

85.68 KN

68.54 KN

95.601/4= 23.9 KN Hence O.K

mm2 N/mm2

N/mm2

Cantilever moment Md =

Hence moment on the base plate Md= gmo =

Edge cantilever moment Md fy =

√(5 Md gmo / b fy) fu =

treqd =

ts = √(2.5 w (a2 - 0.3 b2)gmo / fy > tf tf =

tw =

gmw =

fwn = fu / √3 fwd= fwn / gmw =

Tension capacity of bolt Tdb = Tnb / gmb gmb =

Tnb = 0.9 fub An < fyb Asb (gmb / gm0) fyb= N/mm2 fub = N/mm2

0.9 fub An = Shank area of the bolt(Asb)= mm2

fyb Asb (gmb/gm0)= Net tensile area at the bottom of threads (An)=

Tnb = ( Approx. 80 % of Asb)

Tension capacity of single bolt Tdb =

Tension/bolt (Tb) =

Page 80: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE BASE PLATE DESIGNDESIGNED CHECKED SHEET

MFM VETRI

Diagonal distance from bolt centre to web = 70.7 mm

Moment in the plate due to bolt tension= 23.9 x 1000 x 70.7 = 1689730 N-mm

Assuming width of the plate= 100 mm

Thickness of plate required = As per IS 800- 2007,Clause 8.2.1.2

19.28 mm (From tension only)

Hence provide thickness of base plate= 19.28 mm Round to 20 mm

Shear capacity of bolt:

58041.72 N 46.43 KN

Bearing capacity of the bolt:

e = 50

= 311600 N = 0.76 410

249.28 KN 22 mm

Therefore Shear capacity of single Bolt= 46.43 KN Hence O.K

Check for combined shear and Tension:

(Vsb / Vdb)^2 + (Tb / Tdb)^2 = 0.3 Vsb = 19.40925 KN

<1 Hence O.K Tb = 23.9 KN

Design of stiffner plate x -

Moment at the face of the column web -(for compression in the coulmn)

3.26*256/2*(200/2)^2/2= 2086400 N-mm

Moment at face of the column web (due to bolt tension) -

23900*100/2= 1195000 N-mm

Assume plate thickness - 8 mm

Height of plate required = As per IS 800- 2007,Clause 8.2.1.2

= 75.75 mm Hence, Provide stiffner plate height as 100 mm

Moment at the face of the column flange - (for compression on column)

3.26*(256/4+72)*((200-146.4)/2)^2/2= 159219.443 N-mm

Moment at face of the column web (due to bolt tension) -

23900/2*100/2= 597500 N-mm

Height of plate required = As per IS 800- 2007,Clause 8.2.1.2

= 40.54 mm Hence, Provide stiffner plate height as 100 mm

√(5 Md gmo / b fy)

treqd =

Vnsb = fu An / √3 = Vdsb =

Vnpb = 2.5 kb d t fu Kb = Min (e / 3do, p/ 3 do - 0.25, fub/fu, 1)

fu =

Vdpb = do =

√(5 Md gmo / b fy)

Design of stiffner plate y -

√(5 Md gmo / b fy)

Page 81: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN CALCULATION FOR PLANT TRANSFER CONVEYOR DESIGNED CHECKED SHEET

PDE VETRI

ADDITIONAL CHECK FOR WALKWAY RUNNERS, PURLINS, SIDE RUNNERS

Page 82: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF WALKWAY RUNNERDESIGNED CHECKED SHEET

PDE VETRI

DESIGN OF WALKWAY MEMBER FOR 600 mm ( CLEAR) WALKWAY

Width of the walkway = 600 mm

Span of Walkway = 3201 mm

600 mm

SECTIONAL PROPERTIES

Section Assumed = TUBR80x40x4.0

W = 0.066 KN/m

A = 855 mm2

Izz = 647900 mm4

Zez= = 16200 mm3

Zpz= = 19794.500877 mm4

ry = 15.85 mm

D = 80 mm

T = 4 mm

B = 40 mm

d = 72 mm

b = 32 mm

fy = 310

fu = 450

E = 200000

ɣm0 = 1.1

FOR SHS,RHS

Ɛ = 0.899

Limit 29.3 Ɛ 33.5 Ɛ 42 Ɛ 84 Ɛ 105 Ɛ 126 Ɛ

Class Plastic Compact Semi compact Plastic Compact Semi compact

8 Plastic

18 Plastic Plastic

Hence the section is classified as PlasticLOAD CALCULATION

a) DEAD LOAD

Self Weight of chequerd plate(Thickness=6mm) = 0.53 KN/ m^2 x0.6/2"= 0.16 KN/ m

Self Weight of Walkway Member = 0.066 KN/ m

Self Weight of Handrails = 9.62 Kg/m = 0.095 KN/ m

TOTAL DEAD LOAD = 0.33 KN/m

b) LIVE LOAD

Live Load on Walkway = 2.5 KN/ m^2 As Per DBR

= 2.5x0.6/2"= = 0.75 KN/m

COMBINATION OF LOAD

TOTAL LOAD (DL + LL) = 0.33+0.75 = 1.08 KN/m

FACTORED LOAD (1.5DL+1.5LL) = (1.5*0.33)+(1.5*1.08) = 1.62 KN/m

CHECK FOR BENDING STRENGTH

The span of walkway is taken as 3000mm(maximum). Here the walkway is considered as three span continuous beam and accordingly moment, deflections were calculated.

N/mm2

N/mm2

N/mm2

b / tf d / tw

b / tf =

d / tw =`

Page 83: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF WALKWAY RUNNERDESIGNED CHECKED SHEET

PDE VETRI

Maximum Bending strength due to factored DL+LL

Considering walkway as a three span continuous beam

1.62 KN/m

3201 3201 3201

Maximum Bending strength due to factored DL+LL =

= 1.62*3.201^2/10

= ###

Design Bending Strength

= As per IS 800- 2007,Clause 8.2.1.2

Where β = 1

Md = 5.58 KN-m

Utilization ratio = 0.30 < 1

HENCE SAFE

CHECK FOR DEFLECTION (Considering Live load & SIDL only - Un factored)

Allowable deflectrion = L/300 As per IS: 800-2007,Table: 6

= 10.67mm

Actual deflection = For 3 span continuous beam

= 5.35mm < Allowable deflectrion

HENCE SAFE

SUMMARY ACTUAL ALLOWABLE

1 Check for bending strength 0.30 < 1 HENCE SAFE

2 Check for deflection 5.35mm < 10.67mm HENCE SAFE

WL2/10

Design Bending Strength Md βbZpfy / ɣm0

5 wl 4/ 768 EI

Page 84: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF WALKWAY RUNNERDESIGNED CHECKED SHEET

PDE VETRI

DESIGN OF WALKWAY MEMBER FOR 800 mm ( CLEAR) WALKWAY

Width of the walkway = 800 mm

Span of Walkway = 3201 mm

800 mm

SECTIONAL PROPERTIES

Section Assumed = TUBR80x40x4.0

W = 0.066 KN/m

A = 855 mm2

Izz = 647900 mm4

Zez= = 16200 mm3

Zpz= = 19794.500877 mm4

ry = 15.85 mm

D = 80 mm

T = 4 mm

B = 40 mm

d = 72 mm

b = 32 mm

fy = 310

fu = 450E = 200000ɣm0 = 1.1

FOR SHS,RHS

Ɛ = 0.899

Limit 29.3 Ɛ 33.5 Ɛ 42 Ɛ 84 Ɛ 105 Ɛ 126 Ɛ

Class Plastic Compact Semi compact Plastic Compact Semi compact

8 Plastic

18 Plastic Plastic

Hence the section is classified as Plastic

LOAD CALCULATION

a) DEAD LOAD

Self Weight of chequerd plate(Thickness=6mm) = 0.53 KN/ m^2 x0.8/2"= 0.22 KN/ m

Self Weight of Walkway Member = 0.066 KN/ m

Self Weight of Handrails = 9.62 Kg/m = 0.095 KN/ m

TOTAL DEAD LOAD = 0.39 KN/m

b) LIVE LOAD

Live Load on Walkway = 2.5 KN/ m^2 As Per DBR

= 2.5x0.8/2"= = 1 KN/m

COMBINATION OF LOAD

TOTAL LOAD (DL + LL) = 0.39+1 = 1.39 KN/m

The span of walkway is taken as 3000mm(maximum). Here the walkway is considered as three span continuous beam and accordingly moment, deflections were calculated.

N/mm2

N/mm2

N/mm2

b / tf d / tw

b / tf =

d / tw =

`

Page 85: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF WALKWAY RUNNERDESIGNED CHECKED SHEET

PDE VETRI

FACTORED LOAD (1.5DL+1.5LL) = (1.5*0.39)+(1.5*1.39) = 2.09 KN/m

CHECK FOR BENDING STRENGTH

Maximum Bending strength due to factored DL+LL

Considering walkway as a three span continuous beam

2.09 KN/m

3201 3201 3201

Maximum Bending strength due to factored DL+LL =

= 2.09*3.201^2/10

= ###

Design Bending Strength

= As per IS 800- 2007,Clause 8.2.1.2

Where β = 1

Md = 5.58 KN-m

Utilization ratio = 0.38 < 1

HENCE SAFE

CHECK FOR DEFLECTION (Considering Live load & SIDL only - Un factored)

Allowable deflectrion = L/300 As per IS: 800-2007,Table: 6

= 10.67mm

Actual deflection = For 3 span continuous beam

= 6.99mm < Allowable deflectrion

HENCE SAFE

SUMMARY ACTUAL ALLOWABLE

1 Check for bending strength 0.38 < 1 HENCE SAFE

2 Check for deflection 6.99mm < 10.67mm HENCE SAFE

WL2/10

Design Bending Strength Md βbZpfy / ɣm0

5 wl 4/ 768 EI

Page 86: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF PURLINDESIGNED CHECKED SHEET

PDE VETRI

Max span of purlins = 3.62 m

Spacing of purlins = 1.1 m 1.1

The purlin is designed as Simply supported beam

Consider purlin RHS TUBS91.5x91.5x4.5 α = 18.43 degree

1.04

DEAD LOAD CALCULATION

Self wt of Roofing sheet = 10 Kg/m2 Thickness of sheet= 1mm

Wt of sheet/m = 10x1.04x9.81/1000 = 0.102 KN/m

Self wt of purlin = 11.89 Kg/m

= 0.117 KN/m

Total = 0.219 KN/m

LIVE LOAD CALCULATION

Live load on roof = 0.75 (As per DBR)

Deduction as per IS875 (PART II)-1987,TABLE 2 = 0.59

Dust load = 0.5 (As per DBR)

Hence live load /m = (0.59+0.5)*1.04 = 1.13 KN/m

WIND LOAD CALCULATION

Basic wind speed = 50 m/sec (As per DBR)

K1 = 1.08 (As per DBR)

K3 = 1 (As per DBR)

K2 = 1.1

Design wind speed = 50*1.08*1*1.1 = 59.4 m/sec (As per IS875 (PART III)-1987,clause 5.3)

Design wind pressure = 0.6*59.4^2 = 2117.02 N/m2 (As per IS875 (PART III)-1987,clause 5.4)

= 2.117 KN/m2

Assuming % of openings 5 to 20%

Cpi = ±0.5 (As per IS875 (PART III)-1987,clause 6.2.3.2)

h = 2.625 m

w = 3.8 m

h/w = 2.625/3.8 = 0.69

Roof angle = = 18.43

FOR 0 Deg. Wind Cpe (WWS) = -0.763

Cpe (LWS) = -0.516(As per IS875 (PART III)-1987,clause 6.2.2.2,Table 5)

FOR 90 Deg. Wind Cpe (WWS) = -0.8

Cpe (LWS) = -0.6

Hence Wind load on purlin

On WWS - (-0.8-0.5)*2.117*1.1= = -3.030 KN/m For Cpi +ve

On LWS - (-0.6-0.5)*2.117*1.1= = -2.560 KN/m

On WWS - (-0.8+0.5)*2.117*1.1= = -0.699 KN/m For Cpi -ve

On LWS - (-0.6+0.5)*2.117*1.1= = -0.233 KN/m

Purlin will be designed for Cpi +ve. ( Maximum coefficient)

LOAD COMBINATION -1 DL+LL

Load component normal to the rafter - (DL+LL)Cosα = (0.219+1.13)*0.95 = 1.28 KN/m

Load component parallel to the rafter - (DL+LL)Sinα = (0.219+1.13)*0.32 = 0.43 KN/m

sag rod = 0 no sag rod

Max bending moment for simply suppoted beam = wl^2/8

Mz = 1.28 x 3.62 ^2/8 = 2.1 KN-m

My = 0.43 x (3.62/1)^2/8 = 0.71 KN-m

KN/m2

KN/m2

KN/m2

(As per IS875 (PART III)-1987,TABLE 2,For Terrain category-2, class B )

Page 87: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF PURLINDESIGNED CHECKED SHEET

PDE VETRI

Mz = 1.5 x 2.1 = 3.15 KN- m 1.5

My = 1.5 x 0.71 = 1.065 KN- m 1.1

Max shear for simply suppoted beam = wl/2

Vy = 1.5x1.28 x 3.62/2 = 3.48 KN

Vz = 1.5 x 0.43 x 3.62/2 = 1.16745 KN

SECTION PROPERTIES

A= 1514 mm^2 4.5mm b = 82.5mm D(or, h)= 91.5mm

B = 91.5mm 41000mm^3 41000mm^3 ###

### 1875700mm^4 ### d = 82.5mm

310 N/mm2 450 N/mm2

SECTION CLASSIFICATION

Ɛ = 0.9 0.81

For CHS only

Limit 42 Ɛ^2 52 Ɛ^2 146 Ɛ^2

Class Plastic Compact Semi compact

20.33 Plastic

FOR SHS,RHS

Limit 29.3 Ɛ 33.5 Ɛ 42 Ɛ 84 Ɛ 105 Ɛ 126 Ɛ

Class Plastic Compact Semi compact Plastic Compact Semi compact

18.33 Plastic

18.33 Plastic Plastic

Hence the section is classified as Plastic

CHECK FOR SHEAR CAPACITY

A h / (b + h) = = 796.16 mm^2

A b / (b + h) = = 717.84 mm^2

= 129.55 KN Vdy > Vy HENCE SAFE

= 116.8 KN Vdz > Vz HENCE SAFE

Vy&Vz < 0.6*Vdy & 0.6* Vdz,So calculate Design Moment (Md) as per IS 800-2007, clause 8.2.1.2

CHECK FOR BENDING STRENGTH

= As per IS 800- 2007,Clause 8.2.1.2

Where = 1

a. Design strength in bending (Mdz)

= 13.3KN-m

= 13.87 KN- m

= 13.3 KN- m

b. Design strength in bending (Mdy)

= 13.3KN-m

= 13.87 KN- m

= 13.3 KN- m

Member section strength

0.32 < 1

HENCE SAFE

CHECK FOR DEFLECTION (Considering Live load & SIDL only - Un factored)

Actual vertical deflection = 5wl^4/384EI For simply suppoted beam

Load component normal to the rafter - (LL)Cosα = (1.13+0.102)*0.95 = 1.17 KN/m

Actual vertical deflection = 6.963 mm

Allowable deflection = Span / 150 As per IS: 800-2007,T able: 6 for purlins

= 24.13 mm

So 6.963 < 24.13 mm

HENCE SAFE

Factored moments,

ɣf =

ɣmo=

Factored shear,

t =

Zez = Zey = Zpz =

Zpy = Izz = Iyy =

fy = fU =

Ɛ2=

D / t =

b / tf d / tw

b / tf =

d / tw =

Avy =

Avz =

Vdy = fy x Av / ɣmo x 1.732

Vdz = fy x Av / ɣ mo x 1.732

Design Bending Strength Md (βbZpfy / ɣm0) ≤ (1.2Zefy / ɣm0)

βb

βbZpfy / ɣm0

1.2Zefy / ɣm0

Therefore Mdz

βbZpfy / ɣm0

1.2Zefy / ɣm0

Therefore Mdy

Mz / Mdz + My / Mdy =

Page 88: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF PURLINDESIGNED CHECKED SHEET

PDE VETRI

LOAD COMBINATION -1 (DL+WL) (Check for wind suction)

Load component normal to the rafter = WL+DLCosα = -3.03+(0.219*0.95) = -2.822 KN/m

Load component parallel to the rafter = DLSinα = 0.07 KN/m

Max bending moment for simply suppoted beam = wl^2/8

Mz = 2.822 x 3.62 ^2/8 = = 4.63 KN- m

My = 0.07 x (3.62/1)^2/8 = 0.12 KN- m

Factored momenMz = 1.5 x 4.63 = 6.945 KN- m 1.5

My = 1.5 x 0.12 = 0.18 KN- m

Factored shear, Vy = 1.5x2.822 x 3.62/2 = 7.66 KN Vdy > Vy HENCE SAFE

Vz = 1.5 x 0.07 x 3.62/2 = 0.19005 KN Vdz > Vz HENCE SAFE

Member section strength

Mz / Mdz + My / Mdy = 0.54 < 1

HENCE SAFE

CHECK FOR DEFLECTION (Considering Wind load only- Un factored)

Actual vertical deflection = 5wl^4/384EI For simply suppoted beam

Load component normal to the rafter - (WL) = 3.03 KN/ m

Actual vertical deflection = 18.031 mm

Allowable deflection = Span / 150 As per IS: 800-2007,T able: 6 for purlins

= 24.13 mm

So 18.031 < 24.13 mm

HENCE SAFE

SUMMARY

Dead Load + Live Load combination

Check for shear capacity ACTUAL ALLOWABLE

Check for Vertical shear 3.48 KN < 129.55 KN HENCE SAFE

Check for Horizontal shear 1.16745 KN < 116.8 KN HENCE SAFE

Check for bending 0.32 < 1 HENCE SAFE

Check for deflection 18.031 < 24.13 HENCE SAFE

Dead Load + Wind Load combination

Check for shear capacity

Check for Vertical shear 7.66 KN < 129.55 KN HENCE SAFE

Check for Horizontal shear 0.19005 KN < 116.8 KN HENCE SAFE

Check for bending 0.54 < 1 HENCE SAFE

Check for deflection 18.031 < 24.13 HENCE SAFE

gf =

Page 89: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF SIDE RUNNERSDESIGNED CHECKED SHEET

PDE VETRI

As per IS 800: 2007

Max span of side runner = 3.62 m

Spacing of side runner = 1.2 m 1.2 m

Side runner is designed as Simply supported beam

Consider side runner as RHS TUBS91.5x91.5x4.5

1.2 m

DEAD LOAD CALCULATION

Self wt of cladding sheet = 10 Kg/m2 Thickness of sheet= .8mm

Wt of sheet/m = 10x1.2x9.81/1000 = 0.118 KN/m DL

Self wt of the member = 11.89 Kg/m

= 0.12 KN/m WL

Total = 0.238 KN/m

WIND LOAD CALCULATION

Basic wind speed Vb = 50 m/sec (As per DBR)

K1 = 1.08 (As per DBR)

K3 = 1 (As per DBR)

K2 = 1.1

Design wind speed = 50*1.08*1*1.1 = 59.4 m/sec (As per IS875 (PART III)-1987,clause 5.3)

Design wind pressure = 0.6*59.4^2 = 2117.02 N/m2 (As per IS875 (PART III)-1987,clause 5.4)

= 2.117 KN/m2

Assuming % of openings 5 to 20%

Cpi = ±0.5 (As per IS875 (PART III)-1987,clause 6.2.3.2)

Structure height, h = 2.625 m

Structure width, w = 3.8 m

Structure length, l = 24 m

h/w = 2.625/3.8 = 0.69 Therefore,1/2 < h / w < 3/2

l/w = 24/3.8 6.32 Therefore, 3/2 < l / w < 4

For wind Angle = 0 Cpe (WWS) = 0.7(As per IS875 (PART III)-1987,Table 4)

Cpe (LWS) = -0.3

Considering maximum coeffiecient for Face A & B

Total wind force on a side runner (WWS) -

(0.7+0.5)*2.117*(1.2)= 3.050 KN/m

Total wind force on a side runner (LWS) - 1.5

(0.3-0.5)*2.117*(1.2)= -0.51 KN/m 1.1

sag rod = 0 no sag rod

DL+WL (Check for wind loading)

Max bending moment for simply suppoted beam = wl^2/8

Mz = 3.05 x 3.62 ^2/8 = = 5 KN- m

My = 0.238 x (3.62/1)^2/8 = 0.39 KN- m

(As per IS875 (PART III)-1987,TABLE 2,For Terrain category-2, class B )

ɣf =

ɣm0 =

Page 90: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF SIDE RUNNERSDESIGNED CHECKED SHEET

PDE VETRI

Mz = 1.5 x 5 = 7.5 KN- m

My = 1.5 x 0.39 = 0.585 KN- m

Max shear for simply suppoted beam = wl/2

Vy = 1.5*3.05*3.62/2" = 8.28 KN

Vz = 1.5 x 0.238 x 3.62/2= = 0.64617 KN

SECTION PROPERTIES

A= 1514 mm^2 4.5mm b = 82.5mm D(or, h)= 91.5mm

B = 91.5mm 41000mm^3 41000mm^3 ###

### 1875700mm^4 ### d = 82.5mm

310 N/mm2 450 N/mm2

SECTION CLASSIFICATION

Ɛ = 0.89802651013 0.81

For CHS only

Limit 42 Ɛ^2 52 Ɛ^2 146 Ɛ^2

Class Plastic Compact Semi compact

20.33 Plastic

FOR SHS,RHS

Limit 29.3 Ɛ 33.5 Ɛ 42 Ɛ 84 Ɛ 105 Ɛ 126 Ɛ

Class Plastic Compact Semi compact Plastic Compact

18.33 Plastic

18.33 Plastic Plastic

Hence the section is classified as Plastic

CHECK FOR SHEAR CAPACITY

A h / (b + h) = = 796.16 mm^2

A b / (b + h) = = 717.84 mm^2

= 129.55 KN Vdy > Vy HENCE SAFE

= 116.8 KN Vdz > Vz HENCE SAFE

Vy&Vz < 0.6*Vdy & 0.6* Vdz,So calculate Design Moment (Md) as per IS 800-2007, clause 8.2.1.2

CHECK FOR BENDING STRENGTH

= As per IS 800- 2007,Clause 8.2.1.2

Where = 1

a. Design strength in bending (Mdz)

= 13.3KN-m

= 13.87 KN- m

Therefore Mdz = 13.3 KN- m

b. Design strength in bending (Mdy)

= 13.3KN-m

Factored moments,

Factored shear,

t =

Zez = Zey = Zpz =

Zpy = Izz = Iyy =

fy = fU =

Ɛ2 =

D / t =

b / tf d / tw

Semi compact

b / tf =

d / tw =

Avy =

Avz =

Vdy = fy x Avy / ɣmo x 1.732

Vdz = fy x Avz / ɣmo x 1.732

Design Bending Strength Md (βbZpfy / ɣm0) ≤ (1.2Zefy / ɣm0)

βb

βbZpfy / ɣm0

1.2Zefy / ɣm0

βbZpfy / ɣm0

Page 91: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN OF SIDE RUNNERSDESIGNED CHECKED SHEET

PDE VETRI

= 13.87 KN- m

Therefore Mdy = 13.3 KN- m

Member section strength

0.61 < 1

HENCE SAFE

CHECK FOR DEFLECTION (Considering Wind load only- Un factored)

Actual vertical deflection = 5wl^4/384EI For simply suppoted beam

Load considered for deflection- (WL) = 3.05 KN/ m

Actual vertical deflection = = 18.150 mm

Allowable deflection = Span / 150 As per Table: 6 of IS: 800-2007 for purlins

= 24.13 mm

So 18.150 < 24.13 mm

HENCE SAFE

SUMMARY

ACTUAL ALLOWABLE

Check for shear capacity

Check for Vertical shear 8.28 KN < 129.55 KN HENCE SAFE

Check for Horizontal shear 0.64617 KN < 116.8 KN HENCE SAFECheck for bending 0.61 < 1 HENCE SAFE

Check for deflection 18.150 < 24.13 HENCE SAFE

1.2Zefy / ɣm0

Mz / Mdz + My / Mdy =

Page 92: Base Plate Design is 800-2007

L&T CONSTRUCTIONMetallurgical & Material Handling ICBMH - EDRC

PROJECT RIL-MHS FOR GASIFICATION PROJECTDOCUMENT NO DATE

TITLE DESIGN CALCULATION FOR PLANT TRANSFER CONVEYOR DESIGNED CHECKED SHEET

PDE VETRI

STAAD OUTPUT FILE

Page 93: Base Plate Design is 800-2007

PROJECTDOCUMENT NO DATE

TITLEDESIGNED CHECKED SHEET

550

Size of the column HD 500 X 492 92.5 b (1mm strip)

Factored loads: x y

Max. compression 3980 KN Node: 8 465 650

Max. tension 1350 KN Node: 13 a (1mm strip)

Max. shear 534 KN Node: 13 C/C = 450

For Compression421

Assume the base plate size as 550 x 650 Concrete Grade, fck = 30

Max. compression 3980 KN

Hence base pressure -(w) 11.13

< than 0.45times the strength of bedding material

Hence O.K

From Mukhanov's chart, Edge condition - Plate supported on three sides.

a1 = 275 mm Checking whether panel acting as cantilever

d1 = 232.5 mm (Length of free edge) a1/d1 > 0.5

Hence a1/d1 = 1.18 NOT APPLICABLE

Hence coefficient = 0.1184

0.1184*11.13*232.5^2= 71234.8938 N-mm 1.1

= 11.13X92.5X92.5 / 2= 47615.53125 N-mm 250 N/mm2

Thickness of plate required = As per IS 800- 2007,Clause 8.2.1.2 410 N/mm2

Assuming width of the plate b = 1 mm

39.59 mm (From Compression only)

Minimum thickness check as per cl. 7.4.3

72 mm

= 14 mm a = 64.5 mm

Hence, ts = 72 mm b = 92.5 mm

Check for weld size connecting base plate to Column 45 mm

Total length availble for welding along the periphery of column A = 75490 mm2

2x(421-72+465)-45 = 1583 mm

Deducting length 10% for end return = 1424.7 mm

Capcacity of 30 mm weld = 4.017 KN / mm 1.25

= 236.71 189.37

Design force for weld = 5147 KN

Required length of weld = ### < 1424.7 mm HENCE SAFE

For Tension

Support reaction = 1350 KN (Max Tension)

Assume 8 Nos 56 dia H.D bolts Grade 4.6 (Bearing type bolt)

(As per Cl. 10.3.5) 1.25 As per IS 800- 2007,Table 5

240 400

709.35 KN 2463.01

671.73 KN 1970.408 mm^2

671.73 KN

537.38 KN

Tension capacity of single bolt as per RIL standards = 608 KN

mm2 N/mm2

N/mm2

Cantilever moment Md =

Hence moment on the base plate Md= gmo =

Edge cantilever moment Md fy =

√(5 Md gmo / b fy) fu =

treqd =

ts = √(2.5 w (a2 - 0.3 b2)gmo / fy > tf tf =

tw =

gmw =

fwn = fu / √3 fwd= fwn / gmw =

Tension capacity of bolt Tdb = Tnb / gmb gmb =

Tnb = 0.9 fub An < fyb Asb (gmb / gm0) fyb= N/mm2 fub = N/mm2

0.9 fub An = Shank area of the bolt(Asb)= mm2

fyb Asb (gmb/gm0)= Net tensile area at the bottom of threads (An)=

Tnb = ( Approx. 80 % of Asb)

Tension capacity of single bolt Tdb =

Page 94: Base Plate Design is 800-2007

PROJECTDOCUMENT NO DATE

TITLEDESIGNED CHECKED SHEET

Hence tension capacity of single bolt = 537.38 KN

1350/8= 168.8 KN Hence O.K

Diagonal distance from bolt centre to web = 263.69 mm

Moment in the plate due to bolt tension= 168.75 x 1000 x 263.69 = 44497688 N-mm

Assuming width of the plate= 232.5 mm

Thickness of plate required = As per IS 800- 2007,Clause 8.2.1.2

64.89 mm (From tension only)

Hence provide thickness of base plate= 72 mm Round to 12 mm

Shear capacity of bolt:

455046.24 N 364.04 KN

Bearing capacity of the bolt:

e = 95.2

= 371952 N = 0.54 410

297.56 KN 59 mm

Shear capacity of single bolt as per RIL standards = 253 KN

Therefore Shear capacity of single Bolt= 253 KN Hence O.K

Check for combined shear and Tension:

(Vsb / Vdb)^2 + (Tb / Tdb)^2 = 0.17 Vsb = 66.75 KN

<1 Hence O.K Tb = 168.75 KN

Design of stiffner plate x -

Moment at the face of the column web -(for compression in the coulmn)

11.13*465/2*(550/2)^2/2= 97848351.563 N-mm

Moment at face of stiffener (due to bolt tension) -

168750*450/2= 37968750 N-mm

Assume plate thickness - 16 mm

Height of plate required = As per IS 800- 2007,Clause 8.2.1.2

= 366.8 mm Hence, Provide stiffner plate height as 100 mm

Moment at the face of the column flange - (for compression on column)

11.13*(465/4+92.5)*((550^2)/2= 351412359.38 N-mm

Moment at face of stiffener (due to bolt tension) -

168750*(465-450)/2= C/C = 1265625 N-mm

Height of plate required = As per IS 800- 2007,Clause 8.2.1.2

= 695.12 mm Hence, Provide stiffner plate height as 100 mm

Design for shear key - H (max) = 801 KN

Shear key size 250 x 30 thk. cross

Provide 250 mm deep shear key

317000 525000 0.6

udl on the shear key = 801000/250= 3204 N/mm

Hence cantilever moment on the shear key (M)= 3204*250^2/2 = 100125000 N-mm = 100.13 KN-m

Section classification as per Table- 2 of IS 800: 2007:

d/t = 8.33 1.86339 Plastic

For a Plastic section, 1

119.32 KN- m

M < Md, Hence O.K Hence provide shear key size as 250x250x30

Tension/bolt (Tb) =

√(5 Md gmo / b fy)

treqd =

Vnsb = fu An / √3 = Vdsb =

Vnpb = 2.5 kb d t fu Kb = Min (e / 3do, p/ 3 do - 0.25, fub/fu, 1)

fu =

Vdpb = do =

√(5 Md gmo / b fy)

Design of stiffner plate y -

√(5 Md gmo / b fy)

(1.2xShear capacity of the member, (AvXfy/(Ö3Xϒm0)X1.2))

Ze of the section = mm3 Zp of the section = mm3 Ze/Zp =

e =

Design bending strength Md = bbZpfy/gmo

ßb =

Md =

Page 95: Base Plate Design is 800-2007

PROJECTDOCUMENT NO DATE

TITLEDESIGNED CHECKED SHEET

450

Size of the column HE 400 84 b (1mm strip)

Factored loads: x y

Max. compression 1781 KN Node: 7 432 600

Max. tension 1020 KN Node: 11 a (1mm strip)

Max. shear 430 KN Node: 11 C/C = 390

For Compression307

Assume the base plate size as 450 x 600 Concrete Grade, fck = 30

Max. compression 1781 KN

Hence base pressure -(w) 6.60

< than 0.45times the strength of bedding material

Hence O.K

From Mukhanov's chart, Edge condition - Plate supported on three sides.

a1 = 225 mm Checking whether panel acting as cantilever

d1 = 216 mm (Length of free edge) a1/d1 > 0.5

Hence a1/d1 = 1.04 NOT APPLICABLE

Hence coefficient = 0.112

0.112*6.6*216^2= 34488.1152 N-mm 1.1

= 6.6X84X84 / 2= 23284.8 N-mm 250 N/mm2

Thickness of plate required = As per IS 800- 2007,Clause 8.2.1.2 410 N/mm2

Assuming width of the plate b = 1 mm

27.55 mm (From Compression only)

Minimum thickness check as per cl. 7.4.3

40 mm

= 15 mm a = 71.5 mm

Hence, ts = 40 mm b = 84 mm

Check for weld size connecting base plate to Column 21 mm

Total length availble for welding along the periphery of column A = 32600 mm2

2x(307-40+432)-21 = 1377 mm

Deducting length 10% for end return = 1239.3 mm

Capcacity of 30 mm weld = 4.017 KN / mm 1.25

= 236.71 189.37

Design force for weld = 2223 KN

Required length of weld = ### < 1239.3 mm HENCE SAFE

For Tension

Support reaction = 1020 KN (Max Tension)

Assume 4 Nos 48 dia H.D bolts Grade 4.6 (Bearing type bolt)

(As per Cl. 10.3.5) 1.25 As per IS 800- 2007,Table 5

240 400

521.15 KN 1809.56

493.52 KN 1447.648 mm^2

493.52 KN

394.82 KN

Tension capacity of single bolt as per RIL standards = 441 KN

mm2 N/mm2

N/mm2

Cantilever moment Md =

Hence moment on the base plate Md= gmo =

Edge cantilever moment Md fy =

√(5 Md gmo / b fy) fu =

treqd =

ts = √(2.5 w (a2 - 0.3 b2)gmo / fy > tf tf =

tw =

gmw =

fwn = fu / √3 fwd= fwn / gmw =

Tension capacity of bolt Tdb = Tnb / gmb gmb =

Tnb = 0.9 fub An < fyb Asb (gmb / gm0) fyb= N/mm2 fub = N/mm2

0.9 fub An = Shank area of the bolt(Asb)= mm2

fyb Asb (gmb/gm0)= Net tensile area at the bottom of threads (An)=

Tnb = ( Approx. 80 % of Asb)

Tension capacity of single bolt Tdb =

Page 96: Base Plate Design is 800-2007

PROJECTDOCUMENT NO DATE

TITLEDESIGNED CHECKED SHEET

Hence tension capacity of single bolt = 394.82 KN

1020/4= 255.0 KN Hence O.K

Diagonal distance from bolt centre to web = 225.13 mm

Moment in the plate due to bolt tension= 255 x 1000 x 225.13 = 57408150 N-mm

Assuming width of the plate= 216 mm

Thickness of plate required = As per IS 800- 2007,Clause 8.2.1.2

76.47 mm (From tension only)

Hence provide thickness of base plate= 76.47 mm Round to 12 mm

Shear capacity of bolt:

334319.98 N 267.46 KN

Bearing capacity of the bolt:

e = 81.6

= 312912 N = 0.53 410

250.33 KN 51 mm

Shear capacity of single bolt as per RIL standards = 183 KN

Therefore Shear capacity of single Bolt= 183 KN Hence O.K

Check for combined shear and Tension:

(Vsb / Vdb)^2 + (Tb / Tdb)^2 = 0.76 Vsb = 107.5 KN

<1 Hence O.K Tb = 255 KN

Design of stiffner plate x -

Moment at the face of the column web -(for compression in the coulmn)

6.6*432/2*(450/2)^2/2= 36085500 N-mm

Moment at face of stiffener (due to bolt tension) -

255000*390/2= 49725000 N-mm

Assume plate thickness - 16 mm

Height of plate required = As per IS 800- 2007,Clause 8.2.1.2

= 261.48 mm Hence, Provide stiffner plate height as 100 mm

Moment at the face of the column flange - (for compression on column)

6.6*(432/4+84)*((450^2)/2= 128304000 N-mm

Moment at face of stiffener (due to bolt tension) -

255000*(432-390)/2= C/C = 5355000 N-mm

Height of plate required = As per IS 800- 2007,Clause 8.2.1.2

= 420.02 mm Hence, Provide stiffner plate height as 100 mm

Design for shear key - H (max) = 645 KN

Shear key size 250 x 25 thk. cross

Provide 250 mm deep shear key

263020.83 429687.5 0.61

udl on the shear key = 645000/250= 2580 N/mm

Hence cantilever moment on the shear key (M)= 2580*250^2/2 = 80625000 N-mm = 80.63 KN-m

Section classification as per Table- 2 of IS 800: 2007:

d/t = 10 2.5 Plastic

For a Plastic section, 1

97.66 KN- m

M < Md, Hence O.K Hence provide shear key size as 250x250x25

Tension/bolt (Tb) =

√(5 Md gmo / b fy)

treqd =

Vnsb = fu An / √3 = Vdsb =

Vnpb = 2.5 kb d t fu Kb = Min (e / 3do, p/ 3 do - 0.25, fub/fu, 1)

fu =

Vdpb = do =

√(5 Md gmo / b fy)

Design of stiffner plate y -

√(5 Md gmo / b fy)

(1.2xShear capacity of the member, (AvXfy/(Ö3Xϒm0)X1.2))

Ze of the section = mm3 Zp of the section = mm3 Ze/Zp =

e =

Design bending strength Md = bbZpfy/gmo

ßb =

Md =