Basal ganglia oscillations: the role of delays and external...

31
Basal ganglia oscillations: the role of delays and external excitatory nuclei Ihab Haidar Supervised by: William Pasillas-LØpine, Elena Panteley & Antoine Chaillet Laboratoire des Signaux et SystLmes (LSS)-SupØlec 5 June 2013 1 / 31

Transcript of Basal ganglia oscillations: the role of delays and external...

  • Basal ganglia oscillations:

    the role of delays and

    external excitatory nuclei

    Ihab Haidar

    Supervised by:

    William Pasillas-Lépine, Elena Panteley & Antoine Chaillet

    Laboratoire des Signaux et Systèmes (LSS)-Supélec

    5 June 2013

    1 / 31

  • Outline

    Pathological oscillations within the basal ganglia

    Mathematical model

    Theoretical results

    Numerical simulations

    Conclusion

    2 / 31

  • The basal ganglia

    Cortex

    Thalamus

    Subthalamic nucleus

    Globus pallidus

    In Parkinson's disease, the dopaminergic

    neurons are destroyed in the substantia

    nigra.

    allows the communication

    between neurones and is

    involved in the motricity

    control

    Substantia

    nigra

    3 / 31

  • The basal ganglia

    Cortex

    Striatum

    Substantia nigra

    Thalamus

    GPe STN

    Excitatory

    Inhibitory

    Dopaminergic

    Basal ganglia

    Figure : Normal state

    4 / 31

  • The basal ganglia

    Cortex

    Striatum

    Substantia nigra

    Thalamus

    GPe STN

    Excitatory

    Inhibitory

    Dopaminergic

    Basal ganglia

    Figure : Parkinsonian state

    5 / 31

  • Neuron spikes and �ring rateA

    B

    C

    Firing rate=number of spikes /unit of time

    Dayan, P., and Abbott, L. (2001), “Computational and mathematical modelling of neural systems,” Theoretical neuroscience, MIT Press.

    6 / 31

  • Pathological oscillations

    Cortex

    Striatum

    Substantia nigra

    Thalamus

    GPe STN

    Inhibitory

    Inhibitrice

    Dopaminergic

    Figure : Possible involvement of the STN-GPe loop

    7 / 31

  • The STN-GPe loop

    A.L. Nevado-Holgado, J.R. Terry and R. Bogacz, Conditions for thegeneration of beta oscillations in the subthalamic nucleus-globus pallidusnetwork, The Journal of Neuroscience, vol. 30, no. 37, pp. 12340-12352, Sep.2010.

    A. Pavlides, S.J. Hogan and R. Bogacz, Improved conditions for thegeneration of beta oscillations in the subthalamic nucleus-globus pallidusnetwork, European Journal of Neuroscience, vol. 36, pp. 2229-2239, 2012.

    W. Pasillas-Lépine, Delay-induced oscillations in Wilson and Cowan's model :An analysis of the subthalamo-pallidal feedback loop in healthy andparkinsonian subjects, Biological Cybernetics, vol. 107 no. 3, pp. 289-308,2013.

    8 / 31

  • The STN-GPe loop

    τs ẋs = −xs + Ss

    (− cgs xg (t − δgs ) + ccs Ctx

    )τg ẋg = −xg + Sg

    (csgxs(t − δsg )− cgg xg (t − δgg ) + cxgStr

    )xs and xg represent the �ring rates of STN and GPe, respectively.

    Ctx et Str describe the external inputs from the Cortex and Striatum,

    respectively.

    A.L. Nevado-Holgado, J.R. Terry and R. Bogacz, Conditions for the generation of beta

    oscillations in the subthalamic nucleus-globus pallidus network, The Journal of Neuroscience,

    vol. 30, no. 37, pp. 12340-12352, Sep. 2010.

    9 / 31

  • Firing rate modeling

    10 / 31

  • Pedunculopontine nucleus (PPN)

    CortexStriatum

    GPe STN

    Excitatory

    Inhibitory

    PPN

    Figure : Pedunculopontine nucleus : an external excitatory nucleus

    11 / 31

  • Model

    τs ẋs = Ss

    (cps xp(t − δps )− cgs xg (t − δgs ) + us

    )− xs

    τg ẋg = Sg(csgxs(t − δsg )− cgg xg (t − δgg ) + ug

    )− xg

    τp ẋp = Sp(cspxs(t − δsp) + up

    )− xp

    (1)

    xs , xg and xp represent the �ring rates of STN, GPe and PPN,respectively.

    us , ug and up describe the external inputs from the Cortex and

    Striatum.

    12 / 31

  • Assumption 1

    −3 −2 −1 0 1 2 30

    0.2

    0.4

    0.6

    0.8

    1

    Input

    Act

    ivat

    ion

    func

    tion

    S

    i

    σi=Max S′

    i

    Max Si

    Min Si

    Figure : Activation functions

    13 / 31

  • Analysis in the absence of delays

    14 / 31

  • Existence and uniqueness of equilibrium point

    Theorem

    Under Assumption 1, if

    σpσscps c

    sp ≤ 1 (2)

    then the system (1) has a unique equilibrium point, for each constant

    vector (u?s , u?g , u

    ?p) ∈ R3. Otherwise, there exists a constant vector

    (u?s , u?g , u

    ?p) for which the system (1) has at least three distinct equilibria.

    15 / 31

  • Global asymptotic stability

    Proposition

    Consider the system (1) and let Assumption 1 holds. Fix any constant

    input vector u?, consider an equilibrium x? associated to these inputs. If

    the conditions (2) and

    σs (cps + c

    gs ) + σgc

    sg + σpc

    sp < 2 (3)

    are both satis�ed, then x? is globally asymptotically stable for (1).

    16 / 31

  • Robustness to delays

    17 / 31

  • Linearized system

    By letting

    e := x − x? and v := u − u?,the linearization arround x? is given by

    τs ės = σ?s

    (cps ep(t − δps )− cgs eg (t − δgs ) + vs

    )− es

    τg ėg = σ?g

    (csges(t − δsg )− cgg eg (t − δgg ) + vg

    )− eg

    τp ėp = σ?p

    (cspes(t − δsp) + vp

    )− ep ,

    (4)

    where

    σ?s := S′s(c

    ps x

    ?p − cgs x?g + u?s ), σ?g := S ′g (csgx?s − cgg x?g + u?g )

    σ?p := S′p(c

    spx

    ?s + u

    ?p).

    18 / 31

  • Two di�culties : two loops and irrational transfer functions

    Hg(s)

    Hs(s)

    Hp(s)

    cgse−δgss csge

    −δsgs

    cpse−δpss cspe

    −δsps

    ++

    ++

    ++ +

    +

    Hsg(s)

    Hsp(s)

    vg

    vp

    vs es

    With

    Hs(s) =σ?s

    τss + 1, Hp(s) =

    σ?pτps + 1

    and Hg (s) =σ?g

    τg s + 1 + σ?gcgg e−δ

    g

    g s

    19 / 31

  • Equivalent choice

    Hsg

    Hp

    cpse−δpss cspe

    −δsps

    ++

    ++

    vp

    vsHg

    Hsp

    cgse−δgss csge

    −δsgs

    ++

    ++

    vs

    vg

    Hsp :=Hs

    1− cspcpsHpHse−(δsp+δps)s

    Hsg :=Hs

    1 + csgcgsHgHse−(δsg+δgs)s.

    20 / 31

  • Cross-over frequency and delay margin

    For a given transfer function G , the gain γG (ω) and phase ϕG (ω) arede�ned by

    γG (ω) = 20 log10 |G (jω)| and ϕG (ω) = arg (G (jω)) .

    Assume that G is a strictly proper transfer function and that γG is strictlydecreasing. If γG (0) > 0 we can de�ne ωG as the only frequency such that

    γG (ωG ) = 0.

    This frequency can be used to de�ne the delay margin ∆(G ) by the relation

    ∆(G ) =π − ϕG (ωG )

    ωG.

    21 / 31

  • Stability of the delayed feedback system

    Letcp := c

    ps c

    sp , cg := c

    gs c

    sg ,

    δp := δsp + δ

    ps , δg := δ

    sg + δ

    gs

    Theorem

    Consider the delayed linearized system (4). Let u? ∈ R3 be any constantinput such that, for the equilibrium x? associated to these inputs, the

    transfer functions Hg ,Hsp and Hsg are input-output stable. De�neH := cgHgHsp. Assume that the gain of H is strictly decreasing. For eachδp > 0, x

    ? is exponentially stable for the linearized system (4) if and only if

    δg < ∆(H).

    22 / 31

  • Numerical simulations

    23 / 31

  • Parameter values

    Si (x) =Bi

    Bi + (Mi − Bi )e−4x, ∀ i ∈ {s, g , p} (5)

    Parameter Value Description

    Ms 300 spk/s STN Maximal �ring rate

    Bs 17 spk/s Firing rate at rest for STN

    Mg 400 spk/s GPe Maximal �ring rate

    Bg 75 spk/s Firing rate at rest for GPe

    Mp 300 spk/s PPN Maximal �ring rate

    Bp 17 spk/s Firing rate at rest for PPN

    24 / 31

  • Parameter values

    Parameter Value Description

    δsg 6 ms Delay from STN to GPe

    δgs 6 ms Delay from GPe to STN

    δgg 4 ms Internal self-inhibition delay in the GPe

    τs 6 ms STN time constant

    τg 14 ms GPe time constant

    τp 6 ms PPN time constant

    25 / 31

  • Parameter values

    Parameter Healthy state Disease state

    csg 14.3 15

    cgs 1.5 14.3

    cgg 6.6 12.3

    us 0.01 0.03

    ug 0.03 0.35

    c ij = cij

    H+ k

    (c ij

    D − c ijH)∀ i , j ∈ {s, g} (6)

    where k is a parameter that describes the evolution of Parkinson's disease

    26 / 31

  • Evaluation of the delay margin ∆(H)

    cp

    K

    0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55

    0.05

    0.1

    0.15

    0.2

    0.25

    0.3

    2

    3

    4

    5

    6

    7

    8

    9

    10

    11

    12x 10

    −3

    Figure : In�uence of cp and k on the delay margin ∆(H).

    27 / 31

  • Temporal evolution of the nonlinear dynamics : k=0.25

    −1.5 −1 −0.5 0 0.5 1 1.5−1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    Re(H)

    Im(H

    )

    Unit circleδ

    g=0 ms

    δg=12 ms

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.05

    0.1

    0.15

    0.2

    0.25

    Time [s]

    Firin

    g r

    ate

    [sp

    k/s]

    EquilibriumSTNGPePPN

    −1 0 1 2−1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    Re(H)

    Im(H

    )

    Unit circleδ

    g=0 ms

    δg=12 ms

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.05

    0.1

    0.15

    0.2

    0.25

    Time [s]

    Firin

    g r

    ate

    [sp

    k/s]

    EquilibriumSTNGPePPN

    cp = 0 :

    cp = 0.1 :

    Figure : In�uence on stability of the interconnection gain cspand cp

    s, for k = 0.25.

    On the left, the open-loop frequency-response is represented in a Nyquistdiagram. On the right, the temporal evolution of the system (1) is plotted.(a)-(b) : The system is simulated at A. (c)-(d) : The system is simulated at B

    28 / 31

  • Temporal evolution of the nonlinear dynamics : k=0.15

    −1 0 1 2−1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    Re(H)

    Im(H

    )

    Unit circleδ

    g=0 ms

    δg=12 ms

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.05

    0.1

    0.15

    0.2

    0.25

    Time [s]

    Firin

    g r

    ate

    [sp

    k/s]

    EquilibriumSTNGPePPN

    −1 0 1 2−1.5

    −1

    −0.5

    0

    0.5

    1

    1.5

    Re(H)

    Im(H

    )

    Unit circleδ

    g=0 ms

    δg=12 ms

    0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

    0.05

    0.1

    0.15

    0.2

    0.25

    Time [s]

    Firin

    g r

    ate

    [sp

    k/s]

    EquilibriumSTNGPePPN

    cp = 0.3 :

    cp = 0.6 :

    Figure : In�uence on stability of the interconnection gain cspand cp

    s, for k = 0.15.

    On the left, the open-loop frequency-response is represented in a Nyquistdiagram. On the right, the temporal evolution of the system (1) is plotted.(a)-(b) : The system is simulated at A. (c)-(d) : The system is simulated at B

    29 / 31

  • Conclusion

    Theorem 1 shows the in�uence of the strengths of interconnection

    between the STN and PPN on the multiplicity of equilibrium points

    Theorem 2 shows how the transmission delays and the strengths of

    interconnection between the STN and PPN can change stability of the

    network and intervene in the modulation of pathological oscillations.

    The consideration of external nuclei can shed additional light on how

    the external inputs can a�ect the basal ganglia and thus lead to better

    understanding of basal ganglia functioning.

    30 / 31

  • Conclusion

    Thank you

    31 / 31

    IntroductionFiring rate modelingAnalysis in the absence of delaysAnalysis in the presence of delaysNumerical simulationsConclusion